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Abstract: Intelligent reflecting surfaces (IRS) and power-domain non-orthogonal multiple access (PD-
NOMA) have recently gained significant attention for enhancing the performance of next-generation
wireless communications networks. More specifically, IRS can smartly reconfigure the incident signal
of the source towards the destination node, extending the wireless coverage and improving the
channel capacity without consuming additional energy. On the other side, PD-NOMA can enhance
the number of devices in the network without using extra spectrum resources. This paper proposes
a new optimization framework for IRS-enhanced NOMA communications where multiple drones
transmit data to the ground Internet of Things (IoT) devices under successive interference cancellation
errors. In particular, the power budget of each drone, PD-NOMA power allocation of IoT devices,
and the phase shift matrix of IRS are simultaneously optimized to enhance the total spectral efficiency
of the system. Given the system model and optimization setup, the formulated problem is coupled
with three variables, making it very complex and non-convex. Thus, this work first transforms
and decouples the problem into subproblems and then obtains the efficient solution in two steps.
In the first step, the closed-form solutions for the power budget and PD-NOMA power allocation
subproblem at each drone are obtained through Karush–Kuhn–Tucker (KKT) conditions. In the
second step, the subproblem of efficient phase shift design for each IRS is solved using successive
convex approximation and DC programming. Numerical results demonstrate the performance of the
proposed optimization scheme in comparison to the benchmark schemes.

Keywords: intelligent reflecting surfaces; drones; non-orthogonal multiple access; imperfect succes-
sive interference cancellation decoding; spectral efficiency optimization

1. Introduction

Drone communications are expected to play a significant role in future mobile net-
works, providing high-speed and on-demand wireless connectivity [1]. Because of its
distinct channel characteristics, accurate channel modeling of drone-aided air–ground
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communication is critical for network performance analysis and system design [2]. Drones
can be used to assist the ground base station (BS) in serving users with high data traffic
and overloaded cases due to their flexibility in deployment and cost-effectiveness [3,4].
Furthermore, drones can be combined with key physical layer technologies to achieve
higher capacity, such as power-domain non-orthogonal multiple access (PD-NOMA) [5],
millimeter wave (mmWave) communications [6], backscatter communications [7], intel-
ligent reflecting surfaces (IRS) [8], mobile edge computing [9–11], cognitive radio [12],
terahertz communication [13] and so on.

Traditional orthogonal multiple access (OMA) methods, such as time division multiple
access (TDMA) and orthogonal frequency division multiple access (OFDMA), only support
a single user per orthogonal resource block [14]. The following straightforward example
demonstrates the OMA’s spectral inefficiency. For the sake of fairness, suppose that one
user who is experiencing very poor channel conditions nevertheless needs to be serviced
because they have high priority data or have not been served for a long time [15]. As a
result of this user’s poor channel conditions, OMA guarantees that they will consume
all of one of the few available bandwidth resources. This obviously reduces the system’s
overall spectrum efficiency and throughput [16]; whereas PD-NOMA guarantees that the
user with poor channel circumstances is served, it also allows users with better channel
conditions to share the same bandwidth without negatively impacting the weak user’s
experience [17]. Therefore, if user fairness is to be ensured, PD-NOMA’s system throughput
can be much higher than that of OMA. Academic and corporate research has shown that
NOMA can efficiently handle vast connectivity, which is critical for assuring that future
wireless networks can support Internet of Things (IoT) features [18].

In recent years, intelligent reflecting surface (IRS) has emerged as a promising tech-
nique to reconfigure the propagation environments and enhance network performance,
thanks to the availability of massive low-cost passive reflecting elements [19]. IRS requires
much less energy consumption and can be easily deployed on building facades, ceilings,
and walls in comparison to existing techniques like active relay and backscattering com-
munication. In order to improve capacity, energy efficiency, and physical layer security,
IRS has recently been considered for use in terrestrial networks [20]. To achieve various
communication goals, various network designs can jointly optimize the phase shifts of
reflecting elements and the transmission control of transceivers [21].

In spite of drone communication’s many benefits, air-to-ground routes may be ob-
structed by the surrounding terrain and environment [22]. In addition, when eavesdropping
is present, it is possible that genuine users’ data security will be compromised. IRS can be
used in drone-aided air–ground networks to combat these challenges by creating a more
favorable propagation environment and enhancing the quality of communication for target
users [23]. By carefully crafting the passive beamforming, IRS can simultaneously cancel
out the unwanted signals to decrease interference and prevent adversary eavesdropping.
Recently, research has emerged that combines drone communications with IRS to boost
the efficiency of air–ground networks [24]. In particular, IRS allows for increased drone
coverage, allowing for the support of a wide variety of user QoS needs. IRS deployed on a
mobile drone allows for greater deployment flexibility and a larger signal reflection range
than when put on a stationary structure. Accordingly, IRSs can also be placed onto building
walls to assist the signal delivery from drone to ground IoT devices.

As is well known, the channel power gains of various users in PD-NOMA transmission
are crucial for successful SIC decoding at receiver side. However, PD-NOMA faces new
challenges when implemented in IRS-assisted drone communication systems, where the
channel response can be artificially altered by adjusting the phase shifts. Although there
exist numerous research works on IRS and PD-NOMA, to the best of authors knowledge
there is no work that exists on the sum capacity maximization of PD-NOMA IRS-assisted
multiple drone communications under imperfect SIC decoding.

Following the characteristics of drones, IRS, and NOMA mentioned above, it is critical
to integrate these technologies to improve the performance of existing wireless communi-
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cations networks. Therefore, this work proposes a new optimization scheme for NOMA
IRS-assisted drone communications networks, where multiple drones share the same fre-
quency and communicate with ground IoT devices using the NOMA protocol. Due to
large objects in urban areas, some IoT devices face large-scale fading. Hence, we consider
multiple IRS systems mounted strategically on walls to assist signal delivery from drones to
IoT devices. The objective of this is to maximize the total achievable capacity of the system
under imperfect SIC decoding. In particular, the proposed framework simultaneously
optimizes the total power of each drone, transmits the power of IoT devices according
to NOMA, and optimizes the phase shift design of IRS subject to the minimum capacity
requirements of IoT devices. The problem of total achievable capacity maximization is
formulated as non-convex; thus, it is very complex to get a joint optimal solution. To make
the optimization problem tractable and reduce the overall complexity, we first decouple
the optimization problem into subproblems. Then, we exploit KKT conditions to calculate
the power allocation of drones while adopting successive convex approximation and DC
programming to obtain an efficient phase shift design at IRS. To validate the proposed
framework, we also provide simulation results which show the benefits of the proposed
scheme. The main contributions of this work can be summarized as follows.

• A downlink PD-NOMA system is considered that consists of multiple drones, multiple
IRSs, and IoT devices, where each drone in its coverage area communicates with IoT
devices through direct and IRS-assisted links. Due to large objects in urban areas,
IRSs are mounted on strategic positions to assist the signal delivery from drones to
IoT devices. To maximize the spectral efficiency of the system, each drone shares the
same spectrum resources. Thus, IoT devices in the coverage area of one drone receive
interference from neighboring drones. Besides that, IoT devices in the same coverage
area also cause PD-NOMA interference. Moreover, interference due to imperfect SIC
also exists in the system. Therefore, the objective of this framework is to enhance the
sum capacity of the system through efficient resource allocation.

• The problem is formulated to enhance the sum capacity maximization of the system
subject to quality of services and other practical constraints. In particular, the proposed
approach simultaneously optimizes the transmit power budget of drones, PD-NOMA
power allocation for IoT devices, and phase shift design of IRSs. Due to the non-
convex nature of the formulated problem, computing optimal solution directly is very
challenging. To make it tractable and reduce the complexity, we first divide the joint
problem into subproblems and then obtain an efficient solution. For power allocation
subproblem, we adopt a Lagrangian method based on KKT conditions where dual
variables are updated iteratively. Next, for efficient phase shift design, we employ
successive convex approximation and the DC programming method.

• To validate the proposed solution, numerical results are provided to check the system’s
performance with respect to different optimization variables. For better analysis, we
compare the proposed solution with benchmark solutions such as a solution with
perfect SIC decoding, a solution without IRS, and a solution where only long-distance
IoT device signals can be assisted by IRS. The results demonstrate that the proposed
approach outperforms the benchmark solutions in the sum capacity maximization
of the system. Moreover, our approach contain very low complexity and converges
within a few iterations.

The remaining paper can be structured as follows: Section 2 will provide a system
model and formulate a total achievable maximization problem. Section 3 studies the
process of the proposed solution, including the decoupling of the problem, transformations,
and closed-form expressions. Section 4 provides and discusses numerical results obtained
through Monte Carlo simulations. Finally, we conclude this work in Section 5. Different
notations used in our work can be found in Table 1.
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Table 1. List of notations used in this work.

Notation Definition

U Set of drones

u Drone index

Θ Phase shift matrix of IRS

ψ Amplitude of passive reflection of IRS element

θ Phase shift of IRS element

x Transmitted superimposed signal of drone

v Passive element of IRS

l, m Index IoT devices

Q Power budget of drone

$ PD-NOMA power allocation coefficient

h Channel between drone and IRS

ϑ Reference channel gain over 1 meter

ζ 2D coordinate of drone

υ Location of IRS and IoT devices on horizontal plane

H Altitude of drone

g Channel between IRS and IoT devices

G Rayleigh fading coefficient

D Distance between IRS and IoT device

y Received signal at IoT device

ω Additive white Gaussian noise

C Capacity of IoT device

Γ Co-channel interference

Cmin Minimum capacity of IoT devices

Pmax Maximum power budget of IoT device

L Lagrangian function

λ Vector of Lagrangian multipliers

µ Lagrangian multiplier

Recent Literature

Due to their potential usefulness in a wide variety of civilian contexts, drones have
recently been projected to grow into a USD 55 billion industry worldwide by 2027 [25].
Drones can be used in a wide variety of situations due to their rapid deployment on
demand, low cost of operation and maintenance, and flexible and controllable maneuver-
ability [26]. Some examples include monitoring traffic in real time, precision agriculture,
remote sensing, communication relaying, and wireless coverage. Due to their mobility,
drones can establish reliable line-of-sight (LoS) air–ground links to IoT devices on the
ground, which is especially useful in the drone wireless communications paradigm. This
solves a problem with conventional fixed-infrastructure wireless networks by providing
improved wireless coverage while consuming less power. As a result, there has been exten-
sive study devoted to the development of systems for efficient path planning/deployment
and resource management in drone IoT networks [27–29]. However, the vast majority of
previous studies have focused on the sub-6 GHz bands of the microwave spectrum for
drone communications. Because these frequencies are already being used extensively by
older wireless technologies, we are facing a “spectrum crunch” [30]. This is why future
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drone IoT networks are searching for designs of drone communications systems on other
frequency bands, such as the promising terahertz (THz) bands.

Recently, IRS has been integrated to drone communications to further enhance the air–
ground communications. IRS-assisted drone communications [31–36] and the references
therein have seen a rise in popularity as of late. For instance, in [31], a drone was considered
as an aerial user equipment, and an IRS installed on a nearby building was used to enhance
the drone’s communication channel capacity. Received power was shown to increase with
increasing the number of IRS elements, as shown by the authors of the article. They also
showed that IRSs are more useful at higher altitudes for the drone. However, the maximum
gain was reached once the drone followed the main lobe of the BS antenna. A conclusion
was reached: the BS’s down-tilted antenna pattern determines where the drone and IRS
should be placed for maximum efficiency. In [32], a drone’s IRS was powered via energy
harvesting by the non-reflected portion of an impinging wave. Multiple antennas at the BS
with beamforming towards the IRS were considered, and the propagation environment was
modeled with reinforcement learning to maintain a LoS connection between the drone and
the IRS while the ground user equipment was in motion. This research demonstrates that,
even at low drone altitudes, IRS can significantly increase spectral efficiency. The authors
in [33] made the same assumption, in which numerous IRSs were installed on the outsides
of nearby building walls. Because the drone has multiple antennas, the ground user can
pick up signals from the drone directly as well as from the reflection of the IRSs. In order
to achieve maximum received power at the ground user, it was necessary to optimize
both the passive beamforming at the IRSs and the trajectory of the drone. As shown on
this premise that the amount of power harvested grows exponentially with the number of
reflecting elements of installed IRS. In addition, comparable to the system model considered
in [31], but with a single IRS, was examined by the authors of [34]. Note that the drone’s
active beamforming, the IRS’s passive beamforming, and the drone’s trajectory were all
collaboratively adjusted to maximize the average throughput at the ground user. It was
demonstrated that when compared to a scheme in which decoupled optimization is carried
out, the average rate was greater when joint optimization was implemented.

Similarly, to further improve the signal quality, a user equipment combined trans-
missions from a drone equipped with an IRS [35]. There were three approaches taken to
accomplish this goal: using only the drone, using only the IRS, and having the IRS aid the
drone. Both the ergodic capacity and the outage probability could be written in closed form
for this configuration. It was demonstrated that the IRS-only mode is more power efficient
for LoS communication and when the drone is located closer to the user [37]. To improve
communication between a ground station and mobile devices, researchers in [36] deployed
an IRS on a drone. To maximize the signal-to-noise ratio over a rectangular coverage area,
aerial IRS involves optimizing the drone deployment, BS beamforming vector, and IRS
passive beamforming [38], whereas the LoS communication channels are used for all com-
munications links [39]. The optimal drone placement was carried out at the user equipment
site based on the measured height difference between the user equipment and the drone.
Assuming a rectangular area small enough to be covered by the IRS array response, the au-
thors found that the array gain scales quadratically with the number of reflection elements.
In all other aspects, the gain of an IRS array increases proportionally with the number of
elements, as the area does. Other than that study, all of the above research considered
either a distance-based path loss model with Rician fading or a dual-slope height path
loss model with spatial channel models for the drone to link with user equipment [40].
In [35], a probability of LoS, path loss component, and a path loss exponent that depends
on the elevation angle was used to optimize the BS-to-drone and drone-to-user equipment
links. It is possible that the LoS probability used in this analysis is not applicable to the
BS to drone link because it is based on the drone-to-user equipment link [41]. Specifically,
they employed the LoS probability model for the BS-to-drone link that was created and
presented in [42]. The authors in [43] proposed a cooperative non-terrestrial network to
investigate the outage probability and bit error rate.
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2. System Model and Problem Formulation

A downlink PD-NOMA IRS-assisted drone communication scenario is considered
where multiple drones communicate with IoT devices in an urban area using multiple IRSs,
as shown in Figure 1. Let us denote the number of drones as U such that {u = 1, 2, 3, . . . , u, . . . , U}.
In the considered model, we assume that each drone covers a geographical area and
transmits data to two IoT devices. For simplicity, this work considers that each drone
communicates with two IoT devices simultaneously. However, this model can be easily
extended to large IoT devices by considering multiple resource blocks at each drone.
In such a case, drones can efficiently share all resource blocks so that each resource block
accommodates multiple PD-NOMA IoT devices. To enhance the spectral efficiency, all the
drones share the same spectrum, hence cause co-channel interference with each other [44].
Let us assume that l and m are the two IoT devices associated with drone u, where u ∈ U.
Without loss of generality, IoT device l has strong channel conditions due to the line-of-site
(LoS) connection with drone u. However, the IoT device m’s connection with drone u
is blocked by large objects, hence there is no direct connection from the drone u to IoT
device m. To address this issue and enhance the overall system performance, we consider
an IRS in the coverage area of each drone that is mounted on a strategic position for the
delivery of the signal of a drone u to IoT device l and IoT device m. The IRS consists of V
passive elements such that its diagonal matrix for reflecting the signal of drone u can be
expressed as:

Θu = diag{ψ1,uejθ1,u , ψ2,uejθ2,u , . . . , ψV,uejθV,u} (1)

where ψv,u ∈ [0, 1] denotes the amplitude of passive reflection and θv,u ∈ [0, 2π] is the
phase shift of passive element v at IRS. Next, we assume that xu is the transmitted signal of
drone u to IoT device l and IoT device m which can be written as:

xu =
√

Qu$l,uxl,u +
√

Qu$m,uxm,u, ∀u ∈ U, (2)

where Qu is the transmit power of drone u, $l,u denotes the power allocation coefficient of
IoT device l, $m,u shows the power allocation coefficient of IoT device m, xl,m denotes the
unit power signal of IoT device l, and xm,u shows the unite power signal of IoT device m.
In the proposed model, the channel between the drone and IoT device l and between drone
and the IRS is LoS based and can be modeled as:

hκ,u =
ϑ0

‖ζu − υκ‖2 + H2 , (3)

where ϑ0 shows the reference channel gain over 1 meter of distance, ζ is the 2D coordinates
of each drone u such that ζu ∈ {Xu, Yu}, and υκ denotes the location of the IRS and IoT
device at horizontal plane, where κ ∈ {l, v}, and H represents the fixed altitude of drone u.
In this work, we consider that the trajectory of drones has already been calculated before the
proposed optimization framework. The optimal trajectory of drones can further enhance
the system performance; however, it is beyond the scope of this work. Next, the channel
between an IRS and IoT devices can be modeled as:

gι,u = Gι,u × D
φ
2
ι,u, (4)

where Gι,u denotes the Rayleigh fading coefficient and Dι,u is the distance between IRS and
IoT device ι, where ι ∈ {l, m} and φ shows the path loss exponent. The signal that IoT
device l receives from drone u through direct and IRS links can be written as:

yl,u = (hl,u + hv,uΘugH
l,v,u)xu +

U

∑
u′=1,u′ 6=u

(hl,u′ + hv,u′ΘugH
l,v,u′)

√
Qu′$l,u′xl,u′ + ωl,u, (5)
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where the first segment in (5) is the desired superimposed signal at IoT device l through
both direct and indirect links, the second segment shows the co-channel interference from
other drones, and the third segment is the additive white Gaussian noise with zero mean
and σ2 variance. Similarly, the signal that IoT device m receives through IRS can be stated as:

ym,u = hv,uΘugH
m,v,u +

U

∑
u′=1,u′ 6=u

(hm,u′ + hv,u′ΘugH
m,v,u′)

√
Qu′$m,u′xm,u′ + ωm,u, (6)

where the first segment is the desired signal at IoT device m through IRS only, the second
segment depicts the co-channel interference from other drones, and the last segment denotes
the additive white Gaussian noise with zero mean and σ2, respectively.

dr
on
e2

01
7

dr
on
e2

01
7

dr
on
e2

01
7

dr
on
e2

01
7

UAV

Intended signal
Co-channel interference

IoT

IoT

IoT

IRS
IRS

UAV

Figure 1. NOMA IRS-assisted drone communications.

Following the PD-NOMA principle, the IoT device l associated with drone u can apply
SIC to decode the signal of IoT device m before decoding its own signal. However, we
assume that IoT device l cannot always decode it successfully. Thus, we consider errors
during the decoding process of the superimposed signal. Given the above observation, we
express the achievable data rate of IoT device l and IoT device m as:

Cl,u = log2

(
1 +

Qu$l,u(|hl,u|2 + |hv,uΘugH
l,v,u|

2)

Qu(1− $l,u)(|hl,u|2 + |hv,uΘugH
l,v,u|2)δ + Γl,u′ + σ2

)
, (7)

Cm,u = log2

(
1 +

Qu$l,u(1− $l,u)|hv,uΘugH
m,v,u|2

Qu$l,u|hv,uΘugH
m,v,u|2 + Γm,u′ + σ2

)
, (8)

where 1− $l,u = $m,u. The nominator in (7) is the signal gain received from drone through
direct and IRS-assisted link. The denominator in (7) denotes the PD-NOMA interference,
imperfect SIC interference, and Γl,u′ = ∑

u′=1,u′ 6=u
(|hl,u′ |2 + |hv,u′Θu′gH

l,v,u′ |
2)Qu′$l,u′ is the co-

channel interference from other drones and σ2 shows the variance. Accordingly, the nomi-
nator in (8) denotes the signal gain received from drone through direct and IRS-assisted
links and the denominator shows the PD-NOMA interference and co-channel interference.

This work seeks to maximize the spectral efficiency of the proposed PD-NOMA
IRS-assisted drone communications with imperfect SIC decoding. This can be achieved
by optimizing multiple variables, i.e., the power budget of each drone, the PD-NOMA
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power allocation of IoT devices, and the phase shift design of every IRS in the system.
Mathematically, this framework can be formulated in the following problem as:

(P) : maximize
($u ,Qu ,Θu)

U

∑
u=1

(Cl,u + Cm,u) (9)

s.t.



W1 : Cl,u ≥ Cmin, ∀u,
W2 : Cm,u ≥ Cmin, ∀u,
W3 : 0 ≤ Qu ≤ Pmax, ∀u,
W4 : θv,u ∈ {0, 2π}, ∀k, u,
W5 : |ψv,u| = 1, ∀k, u,
W6 : 0 ≤ $l,u ≤ 1

2 , ∀n,

where (9) is the objective function for sum capacity maximization. ConstraintsW1 andW2
ensure the minimum spectral efficiency of IoT device l and IoT device m, where Cmin is
the threshold. ConstraintW3 controls the transmission power of each drone, where Pmax
shows the maximum power budget. ConstraintsW4 andW5 design an efficient phase
shift for IRS while constraintW1 distributes the power among PD-NOMA IoT devices.

3. Proposed Optimization Solution

In this section, we provide an efficient solution for the formulated problem in (18).
In particular, we first calculate the total power budget of each drone and PD-NOMA power
allocation of IoT devices. Then, we design the efficient phase shift of each IRS.

3.1. Efficient Power Allocation

For any given phase shift design at IRS, the problem in (18) can be effectively up-
dated as:

(P1) : maximize
($u ,Qu)

U

∑
u=1

(Cl,u + Cm,u) (10)

s.t.
{
W1,W2,W3,W6,

where (P1) is the problem of drone power allocation. Next, we define the Lagrangian
function as:

L = −
U

∑
u=1

((Cl,u + Cm,u)) +
U

∑
u=1

λl,u(Cmin − Cl,u) +
U

∑
u=1

λm,u(Cmin − Cm,u)

+
U

∑
u=1

λu(Qu − Pmax) +
U

∑
u=1

µl,u($l,u − 0.5), (11)

where λ ∈ {λl,u, λm,u, λu, µl,u} denotes the Lagrangian multipliers. Now, we employ KKT
conditions by calculating the derivations of L with respect to $l,m and Qu. For $l,m, we
obtain the following solution:

$6
l,m((δ− 1)2δ2µl,u(|hl,u|2 + |hv,u|2Θu|gl,v,u|2)4(|hm,u|2 + |hv,u|2Θu|gm,v,u|2)2Q6

u)

+ $5
l,uγ5 + $4

l,uγ4 + $l,uγ3 + $2
l,uγ2 + $l,uγ1 + γ0 = 0, (12)

where the values of γ0, γ1, γ2, γ3, γ4, and γ5 can be found in Appendix A. It can be
observed that (12) is a polynomial of order six that can be efficiently solved using a
mathematical/polynomial solver. For Qu, we can calculate its partial derivation as:
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Q4
u(($l,u − 1)$l,u((δ− 1)− δ)δ(|hl,u|2 + |hv,u|2Θu|gl,v,u|2)2(|hm,u|2 + |hv,u|2Θu|gm,v,u|2)2λu)+

+ Q3
u ϕ3 + Q2

u ϕ2 + Q1
u ϕ1 + ϕ0, (13)

where the values of ϕ0, ϕ1, ϕ2, and ϕ3 are shown in Appendix B. During computing $l,u
and Qu, the Lagrangian multipliers are updated as:

λ
(t+1)
l,u = [λl,u(t) + χ(Cmin − Cl,u)]

+ (14)

λ
(t+1)
m,u = [λm,u(t) + χ(Cmin − Cm,u)]

+ (15)

λ
(t+1)
u = [λu(t) + χ(Qu − Pmax)]

+ (16)

µ
(t+1)
l,u = [µl,u(t) + χ($l,u − 0.5)]+ (17)

where t is the iteration index, χ denotes the step size, and [Ψ]+ = max Ψ, 0. In each t,
the proposed scheme iteratively updated until the values of the Lagrangian and optimiza-
tion variables converge.

3.2. Efficient Phase Shift Design

In this subsection, we investigate efficient phase shift design at each IRS. For a given
power allocation scheme, the problem of phase shift design can be expressed as:

(P2) : maximize
(Θu)

U

∑
u=1

(Cl,u + Cm,u) (18)

s.t.
{
W1,W2,W4,W5,

where the above problem is the efficient phase shift design at IRS. To reduce the complexity
of the above problem and obtain an efficient solution, we exploit the successive convex
approximation method. Based on this method, the rate of IoT device l and m associated
with drone u can be effectively written as:

Cl,u = Ξl,u log2(SINRl,u) + Πl,u, (19)

Cm,u = Ξm,u log2(SINRm,u) + Πm,u, (20)

where Ξl,u, Ξm,u, Πl,u, and Πm,u are, respectively, give as:

Ξl,u =
SINRl,u

1 + SINRl,u
, (21)

Ξm,u =
SINRm,u

1 + SINRm,u
, (22)

Πl,u = log2(1 + SINRl,u)−
SINRl,u

1 + SINRl,u
, (23)
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Πm,u = log2(1 + SINRm,u)−
SINRm,u

1 + SINRm,u
, (24)

Note that SINRl,u and SINRm,u are the signal-to-interference-plus-noise ratios of IoT device
l and m and can be expressed as:

SINRl,u =
Qu$l,u(|hl,u|2 + |hv,uΘugH

l,v,u|
2)

Qu(1− $l,u)(|hl,u|2 + |hv,uΘugH
ł,v,u|2)δ + Γl,u′ + σ2

, (25)

SINRm,u =
Qu$l,u(1− $l,u)|hv,uΘugH

m,v,u|2

Qu$l,u|hv,uΘugH
m,v,u|2 + Γm,u′ + σ2 , (26)

Next, we can efficiently transform the rate of IoT device l and IoT device m as:

Cl,u = Ξl,u(log2(Qu$l,u(|hl,u|2 + |hv,uΘugH
l,v,u|

2))

− log2(Qu(1− $l,u)(|hl,u|2 + |hv,uΘugH
l,v,u|

2)δ + Γl,u′ + σ2)) + Πl,u, (27)

Cm,u = Ξm,u(log2(Qu$l,u(1− $l,u)|hv,uΘugH
m,v,u|2))

− log2(Qu$l,u|hv,uΘugH
m,v,u|2 + Γm,u′ + σ2)) + Πm,u, (28)

Now, let us assume that Ωu = ΘuΘH
u and Ψl,v,u = |hv,ugH

m,v,u|2, where Ωu ≥ 1, Ψl,v,u ≥ 1
and rank(Ωu) = 1, rank(Ψl,v,u) = 1, respectively. Then, ξl,1(Ωu) and ξl,2(Ωu) can be
written as:

ξl,1(Ωu) = log2(Qu$l,u(|hl,u|2 + ΩuΨl,v,u)), (29)

ξl,2(Ωu) = log2(Qu(1− $l,u)(|hl,u|2 + ΩuΨl,v,u)δ + Γl,u′ + σ2), (30)

Accordingly, ξm,1(Ωu) and ξm,2(Ωu) are given as:

ξm,1(Ωu) = log2(Qu$l,u(1− $l,u)ΩuΨm,v,u)), (31)

ξm,2(Ωu) = log2(Qu$l,uΩuΨm,v,u + Γm,u′ + σ2), (32)

After the above transformation, we have:

Ĉ∗l,u = Ξl,u[ξl,1(Ωu)− ξl,2(Ωu)] + Ψl,u, (33)

Ĉ∗m,u = Ξm,u[ξm,1(Ωu)− ξm,2(Ωu)] + Ψm,u, (34)

Next, we adopt DC programming to make the problem standard semi-definite program-
ming and then use the MOSEK toolbox of MATLAB for obtaining an efficient solution.

4. Numerical Results and Discussion

The numerical results of the presented optimization scheme are provided here. Param-
eters for the simulation are as follows, unless otherwise specified: All drones use the same
frequency for optimal spectrum utilization, the value of the imperfect SIC is set to 0.1, the
variance of AWGN is set to 0.01, the average channels are obtained from 103 realizations,
the transmit power of each drone is 30 dBm, the passive elements of each IRS are set to 50,
the number of ground IoT devices associated with each drone is two, and the path loss
exponent is three. In addition, the system parameters are also provided in Table 2.
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Table 2. System parameter details.

Parameter Definition

Number of drones 10

Number of IoT devices 10

Number of IRSs 10

Imperfect SIC parameter 0.1

Monte Carlo simulation 1000

IRS passive elements 50

Power budget of each drone 30

Path loss exponent 3

Additive white Gaussian noise 0.01

Altitude of drone 80

To begin with, it is of the utmost significance to have demonstrated the complexity of
the proposed IRS-assisted PD-NOMA drone communication scheme. Figure 2 illustrates
the behavior of convergence for the total achievable capacity as a function of the number
of iterations in this regard. It is clear from looking at the figure that the system converges
within a fair number of iterations, and that increasing the number of drones that are
interfering has little effect on the amount of time it takes for the system to converge.
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Figure 2. Convergence of the proposed PD-NOMA IRS-enhanced drone communications scheme.

Following that, it is critical to demonstrate the effect of drone transmit power on
the system’s total achievable capacity. Figure 3 depicts the increasing values of each
drone power versus the system’s total achievable capacity for different number of drones
and minimum capacity requirements. The total achievable capacity grows as the drone’s
transmit power is increased. Furthermore, as more available transmit power at the drone
becomes available for optimization, the gap in the total achievable capacity offered by all
scenarios grows. As a result, the scenario with fewer restrictions on capacity requirements
outperforms other scenarios with higher capacity requirements. Aside from that, we can
see that the total achievable capacity increases in a similar manner as the number of drones
increases from five to ten. This validates the proposed scheme for a large PD-NOMA
IRS-assisted drone communications network.
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Figure 3. The total achievable capacity of the system versus the available transmit power of each
drone, where the number of drones are five and ten while the minimum capacity requirements are
set as 0.5 and 1 b/s/Hz.

To examine the impact of SIC errors on capacity when IoT devices decode their signals,
Figure 4 plots the system’s total achievable capacity against increasing SIC error values
where the number of drones is five and ten and the minimum capacity requirement of each
IoT device is set at 0.5 b/s/Hz and 1 b/s/Hz. As the value of SIC errors increases, the total
achievable capacity of all considered scenarios is also decreased. Because of the poor signal
decoding capability, high values of SIC errors increase interference among IoT devices on
the same frequency. Another point to mention is the decreasing capacity gap of all scenarios
as SIC errors increase. This is because, as SIC errors increase, more power is required by all
IoT devices to meet the minimum capacity requirements. As a result, the power distribution
becomes less flexible. Obtaining perfect SIC in practical systems is a difficult task. However,
most works in the literature have considered perfect SIC for ease of solution. As we can see,
using perfect SIC results in an overly optimistic performance evaluation.
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Figure 4. The total achievable capacity of the system versus increasing SIC errors, where the number
of drones are five and ten while the minimum capacity requirements are set as 0.5 and 1 b/s/Hz.

Figure 5 depicts the total achievable capacity of the system versus the passive elements
of each IRS for a number of different drones and minimum capacity requirements. In both
scenarios, we can see that with the increasing number of IRS passive elements, the total
achievable capacity also increases. It can also be seen that when the capacity requirements
are high, the total achievable capacity is lower than when the capacity requirements are
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low. The key concept here is that in high capacity requirements scenarios, some IoT devices
struggle to meet their capacity requirements. In such scenarios, IoT devices with high
capacity reduce their power to minimize interference received by weak IoT devices and
assist them in meeting their capacity requirements. Although IoT devices meet their
minimum capacity requirements, the overall system capacity decreases. Furthermore,
the figure shows that the system with ten drones achieves nearly double the total achievable
capacity as the system with five drones. This shows how important the proposed scheme is
for PD-NOMA IRS-enhanced drone communications networks on a large scale.
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Figure 5. The total achievable capacity of the system versus the number of passive elements of IRS,
where the number of drones are five and ten while the minimum capacity requirements are set as
0.5 and 1 b/s/Hz.

Figure 6 depicts the effect of IRS elements on system performance. Here, we plot
the system’s total achievable capacity versus an increasing number of IRS elements. We
compared the performance of the considered system model to a scenario in which the IRS
only smartly reflects the signal of far IoT devices, while the strong IoT devices receive their
signals directly from drones. As expected, increasing the number of IRS elements increases
the system’s total achievable capacity for both scenarios. Furthermore, we can see that
when each IRS reflects the data of both IoT devices, we get much better performance. All
of the results in this section showed that systems with a greater number of drones have a
greater achievable capacity. This demonstrates the significance of the proposed scheme for
large-scale PD-NOMA IRS-assisted drone communications networks.
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Figure 6. The total achievable capacity of the system versus the number of passive elements of IRS,
where the number of drones are five and ten.
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5. Conclusions

The incorporation of PD-NOMA and IRS in multi-drone communications has the
potential to extend wireless communication and connect large numbers of devices in future
wireless networks. This paper proposes a new optimization scheme for PD-NOMA IRS-
assisted drone communication networks in order to maximize the system’s total achievable
capacity. Specifically, under the assumption of SIC errors, our framework simultaneously
optimizes the transmission power of each drone and the reflection coefficient of each IRS.
KKT conditions were used to calculate the total transmission power of drones and the
power allocation coefficients of IoT devices. Using successive convex approximation and
DC programming, an efficient IRS reflection coefficient was then designed. The benefits of
the proposed optimization scheme have been demonstrated by simulation results.
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Appendix A. γ0, γ1, γ2, γ3, γ4, and γ5

The values of γ0, γ1, γ2, γ3, γ4, and γ5 are given as:

γ0 = (Γm,u′ + σ2)(Γl,u′ + δΛlQu + σ2)3(µl,u(Γm,u′ + σ2)(Γl,u′ + δΛlQu + σ2)

+ Qu(−Λl(Γm,u′ + σ2)(1 + λl,u) + Λl(Γl,u + δΛlQu + σ2)(1 + λm,u))). (A1)

γ1 = Qu(Γl,u′ + δΛlQu + σ2)2(2µl,u(Γm,u′ + σ2)(Γl,u′ + δΛlQu + σ2)(−(2δ− 1)Λl(Γm,u′ + σ2) + Λm)

(Γl,u′ + δΛlQu + σ2)) + Qu((2δ− 1)Λ2
l (Γm,u′ + σ2)2(1 + λl,n) + Λ2

m(Γl,u′δΛlQu + 1)2(1 + λm,u)

− 2ΛlΛm(Γm,u′ + σ2)(Γl,u′ + δΛlQu + σ2)(λl,u − λm,u + 2δ(1 + λm,u))). (A2)

γ2 = Q2
u(Γl,u′ + δΛl + σ2)(µl,u(Γl,u′ + δΛlQu + σ2)((1 + 6(δ− 1)δ)Λ2

l (Γm,u′ + σ2)2 − 4(2δ− 1)ΛlΛm

(Γm,u′ + σ2)(Γl,u′ + δΛlQu + σ2) + Λ2
m(Γl,u′ + δΛlQu + σ2)2)−ΛlQu((δ− 1)δΛ2

l (Γm,u′ + σ2)2

(1 + λl,u) + Λ2
m(Γl,u′ + δΛlQu + σ2)2(λl,u − 1− 2λm,u + 4δ(1 + λm.u))−ΛlΛm(Γm,u′ + σ2)

(Γl,u′ + δΛlQu + σ2)(−1− 2λl,u + λm,u + 2δ(3δ− 1 + 2λl,u + 3(δ− 1)λm,u)))). (A3)

γ3 = −ΛlQ3
u(Γl,u′ + δΛlQu + σ2)(2µl,u((δ− 1)δ(2δ− 1)Λ2

l (Γm,u′ + σ2)2 − (1 + 6(δ− 1)δΛlΛj

(Γm,u′ + σ2)(Γl,u′ + δΛlQu + σ2) + (2δ− 1)Λ2
m(Γl,u′ + δΛlQu + σ2)2)−ΛlΛmQu(−2δ3Λl(2Γm,u′

− 3ΛmQu + 2σ2)(1 + λm,u) + Λm(Γl,u′ + σ2)(λm,u − λl,u) + Λm(2Γl,u′(λl,u − 2− 3λm,u) + 2σ2

(λl,u − 2− 3λm,u)ΛlQu(λm,u − λl,u))) + 2δ2 + (−Λl(Γm,u′ + σ2)(λl,u − 2− 3λm,u)

+ Λm(3σ2Qu ++Λl(λl,u − 2) + 3(Γl,u′ + (Γl,u′ −ΛlQu + σ2)λm,u))))). (A4)
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γ4 = Λ2
l Q4

u(µl,u((δ− 1)2δ2Λ2
l (Γm,u′ + σ2)2 − 4(δ− 1)δ(2δ− 1)ΛlΛm(Γm,u′ + σ2)(Γl,u′ + δΛlQu + σ2)

+ (1 + 6(δ− 1)δ)Λ2
m(Γl,u′ + δΛlQu + σ2)2)− (δ− 1)δΛlΛmQu(−1(δ− 1)

δΛl(IΓm,u′ + σ2)(1 + λm,u) + Λm(Γl,u′δΛlQu + σ2)(λl,u − 1− 2λm,u + 4δ(1 + λm,u)))). (A5)

γ5 = (δ− 1)δΛ3
l ΛmQ5

u(2µl,u(−(δ− 1)δΛl(Γm,u′ + σ2) + (2δ− 1)Λm(Γl,u′ + δΛlQu + σ2))

+ (δ− 1)δΛlΛmQu(1 + λm,u)). (A6)

where Λl = |hl,u|2 + |hv,uΘugH
l,v,u|

2 and Λm = |hv,uΘugH
m,v,u|2, respectively.

Appendix B. ϕ0,ϕ1,ϕ2, and ϕ3

The values of ϕ0, ϕ1, ϕ2, and ϕ3 can be expressed as:

ϕ0 = (Γl,u′ + σ2)(Γm,u′ + σ2)(−(Γm,u′ + σ2)(−λu(Γl,u′ + σ2)

+ $l,uΛl(1 + λl,u)) + ($l,u − 1)Λm(Γl,u′ + σ2)(1 + λm,u)). (A7)

ϕ1 = (Γl,u′ + σ2)(Γm,u′ + σ2)(Λmλu(Γl,u′ + σ2)− $2
l,uΛlΛm(λl,u − λm,u + 2δ(1 + λm,u))

− 2δΛl(−λu(Γm,u′ + σ2) + Λm(1 + λm,u)) + $l,u(Λmλu(Γl,u′ + σ2) + |hl,u|2(−(2δ

− 1)λu(Λm + σ2)−Λm(2 + λl,u + λm,u − 4δ(1 + λm,u))) + |hv,uΘugH
l,v,u|

2

(−(2δ− 1)λu(Γm,u′ + σ2)−Λm(2 + λl,u + λm,u − 4δ(1 + λm,u))))). (A8)

ϕ2 = $3
l,u(δ− 1)δΛ2

l Λm(Γm,u′ + σ2)(1 + λm,u) + δΛl(Γm,u′ + σ2)(2Λmλu(Γl,u′ + σ2)

− δΛm(λu(Λm + σ2) + Λm(1 + λm,u))) + $l,u(Λmλu(Γl,u′ + σ2)(Λm(Γl,u′ + σ2)

+ Λl(Γm,u′ + σ2) + δΛ2
l (Γm,u′ + σ2)(λu(Γm,u′ + σ2)−Λm(1 + λm,u)) + δ2Λ2

l

(Γm,u′ + σ2)(−2λu(Γm,u′ + σ2) + 3Λm(1 + λm,u)))− $2
l,uΛl(−(δ− 1)δΛlλu(Λm + σ2)2

+ Λ2
m(Γl,u′ + σ2)(1 + λl,u) + Λm(Γm,u′ + σ2)(1 + λl,u) + Λm(Γm,u′ + σ2)

(−λu(Γl,u′ + σ2) + 3δ3Λl(1 + λm,u)− 2δ(Λl − λu(Γl,u′ + σ2) + Λlλm,u))). (A9)

ϕ3 = ΛlΛmλu($
3
l,u(δ− 1)δΛl(Γm,u′ + σ2) + δ2Λl(Γm,u′ + σ2) + $l,uδ(2Λm(Γl,u′ + σ2)− (δ− 1)

Λl(Γm,u′ + σ2))− $2
l,u((2δ− 1)Λm(Γl,u′ + σ2) + δ2Λl(Γm,u′ + σ2))). (A10)
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