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Abstract: Binocular stereoscopic matching is an essential method in computer vision, imitating
human binocular technology to obtain distance information. Among plentiful stereo matching
algorithms, Semi-Global Matching (SGM) is recognized as one of the most popular vision algorithms
due to its relatively low power consumption and high accuracy, resulting in many excellent SGM-
based hardware accelerators. However, vision algorithms, including SGM, are still somewhat
inaccurate in actual long-range applications. Therefore, this paper proposes a disparity improvement
strategy based on subpixel interpolation and disparity optimization post-processing using an area
optimization strategy, hardware-friendly divider, split look-up table, and the clock alignment multi-
directional disparity occlusion filling, and depth acquisition based on floating-point operations. The
hardware architecture based on optimization algorithms is on the Stratix-IV platform. It consumes
about 5.6 K LUTs, 12.8 K registers, and 2.5 M bits of on-chip memory. Meanwhile, the non-occlusion
error rate of only 4.61% is about 1% better than the state-of-the-art works in the KITTI2015 dataset.
The maximum working frequency can reach up to 98.28 MHz for the 640 × 480 resolution video and
128 disparity range with the power dissipation of 1.459 W and 320 frames per second processing speed.

Keywords: semi-global matching; subpixel interpolation; multi-direction occlusion filling; single
precision floating point; disparity refinement; FPGA

1. Introduction

Binocular stereoscopic matching is an essential method in computer vision, [1,2] im-
itating human binocular technology to obtain distance information. The main goal of
binocular stereoscopic matching is to find the corresponding point from two images of the
same scene and use the similar triangle principle to generate a reference image disparity
map. Based on the disparity diagram generated by binocular stereo matching, a depth
map for 3D reconstruction can be generated based on spatial geometric relationships [3,4].
The binocular stereo vision technology has been applied to many fields, including med-
ical diagnosis, unmanned driving [5], virtual reality, three-dimensional reconstruction,
robot navigation [6], drone piloting, and virtual reality and augmented reality (VR/AR)
applications in need of disparity estimation [7].

1.1. Related Works

Among plentiful stereo matching algorithms, Semi-Global Matching (SGM) is rec-
ognized as one of the most popular vision algorithms due to its relatively low power
consumption and high accuracy, resulting in many excellent SGM-based hardware acceler-
ators. H. Hirschmuller [8] presented stereo processing using SGM and mutual information
on accurate applications. P. Dong et al. [9] proposed a coprocessor with a pixel-level pipeline
and region-optimized method for semi-global matching in real cases and complimented it
on FPGA.
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However, vision algorithms, including SGM, are still relatively inaccurate in actual
long-range applications. Compared with the algorithm based on deep learning, the tra-
ditional binocular stereo-matching algorithm is too inaccurate. Still, it cannot cope with
high-complexity scenarios, so its application has been minimal. Specifically, under the
condition of occlusion and mismatch, the algorithm generally has an undesirable situation
with an increased error rate. These two points are crucial for practical application.

In recent years, stereo matching has still been paid massive attention to instead of
disparity refinement, which is significant in obtaining precise depth information. Massive
relative works focus on subpixel interpolation. Rui Fan et al. [10] proposed a disparity
map with subpixel resolution where a disparity error larger than one pixel may result in a
non-neglected difference in the reconstructed road surface.

Besides, Typical disparity filling considers only single row 2-direction filling: the
0-angle and 180-angle filling. Z. Chen et al. [11] offered a post-processing structure of
occlusion filling in only 0-angle and 180-angle directions with an error rate of 7.27% using
the same database and disparity range. S. Jin et al. [12] presented a left-right check and
occlusion filling with a maximum working frequency 93.09 MHz and 11,000 slices, an
exceeded resource utilization. Cambium et al. [13] got a disparity whose error rate is 32.9%
under KITTI 2015 dataset after occlusion filling with 24.5 K LUTs and 9.1 K registers.

1.2. Contributions

This work proposes a disparity improvement strategy with at least 2× smaller FPGA
resource usage compared to the previous works. as for the subpixel interpolation, the
contribution can be featured in the hardware-friendly divider, split look-up table for cosine
function. Furthermore, the disparity optimization post-processing novelty includes the
clock alignment multi-directional disparity occlusion filling and depth acquisition based
on floating-point operations. Finally, a hardware-friendly architecture is implemented on
the FPGA platform with outstanding accuracy and robustness. The hardware architecture
based on optimization algorithms is on the Stratix-IV platform. It consumes about 5.6 K
LUTs, 12.8 K registers, and 2.5 M bits of on-chip memory. Compared with the state-of-the-
art works, the error rate in non-occlusion is reduced by 1% under KITTI 2015 dataset.

1.3. Paper Structure

The remains of this paper are organized as follows. We illustrate the proposed subpixel
interpolation and disparity optimization post-processing in Section 2. Section 3 elaborates
on the implementation of the hardware architecture. Section 4 presents the experimental
results with accuracy, hardware-resource usage, and performance. Finally, we conclude
in Section 5.

2. Algorithm
2.1. Framework Overview

The overall flow from cameras to disparity depth map rendering is shown in Figure 1.
The main contribution of this work is the post-processing procedure after the aggregation
cost (marked with a star) in Figure 1. First, after image corrections and aggregation cost,
the proposed sub-pixel interpolation calculates the decimal parts with a cosine look-up
table and Newton’s division operator. Further, by carefully conducting a left-right check
for the occlusion and mismatching regions, this work processes the left and right disparity
values into a multi-direction occlusion filling module for practical disparity values obtained
according to different filling rules for occlusion and mismatching regions.
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Figure 1. The overall framework of disparity refinement.

2.2. Aggregation Cost with Census Aggregation and Hamming Distance

Zabih et al. [14] proposed a commonly acknowledged census algorithm for calculating
matching costs. It can significantly detect the local structural features and achieve high
robustness in a light-variable environment. The including census transformation works
well in both light and dark conditions. The aimed census flag has been obtained by
comparing the gray value of each pixel in the adjacent window to the gray matter of each
center pixel of the window. The corresponding explanation Equation containing census
transform vector R is shown below:

R(P(i, j)) = ⊗
(a,b)εW

ξ(P(i, j), P(a + i, b + j))

ξ(p, p′) =
{

1, p < p′

0, p ≥ p′

(1)

where ⊗ denotes the concatenation, P(i, j) means the center pixel, and W is the matching
window. On the condition that the gray value of a certain pixel is greater than the gray
value of the center pixel, it is marked as 1. (Otherwise, it is marked as 0.)

The Hamming distance shown in Figure 2 shows that the number of the corresponding
bits of two-bit strings is not the same. The calculation method is to perform the XOR
operation on the two vectors to obtain a new vector and calculate its number, as shown in
Equation (2). The calculated one’s number is the Hamming distance, which represents the
initial matching cost of a pixel.

C
(

P(i, j), d
)
= ∑ Hamming(RR

(
P(i−d, j)

)
, RL(P(i, j))) (2)

In this case, P(i, j) means the position of a pixel in the base image, and P(i−d, j) means
the position of the pixel in another image.
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Figure 2. Schematic diagram of the initial matching cost calculation.

The Optimization step of the initial matching costs uses a cost aggregation strategy.
In the SGM algorithm, a general energy function is established to minimize it for opti-
mization. Further, it considers the one-way dynamic programming method to solve a
two-dimensional optimization problem with the most optimized energy function. 0-angle
and 135-angle directions resulted in the lowest error rate in experimental results from
P. Dong [9], as shown in Figure 3.
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2.3. Disparity Computing with Subpixel Interpolation Based on Split Cosine Look-Up Table and
Practical Divider

Semi-global matching uses the Winner-Take-All (WTA) method to calculate dispar-
ity [15]. Each pixel chooses the disparity value related to the minimum aggregate cost
as the final disparity. This disparity is usually integer, not adequately reasonable, and
desirable in actual cases. The integer is suitable for most circumstances but cannot consider
the long-distance situation. According to Equation (7), even if the fraction part’s value is
relatively small, the depth can become significant with a low error rate after conducting the
multiply. I. Haller and S. Nedevschi [16] proposed an approach of disparity interpolation
to solve this problem. Interpolation can increase the decimal place of the disparity, which
can effectively improve the accuracy at the line of sight. The difference is declared as the
following Equation (3), which consists of two parts. Where d indicates the integer disparity,
interpFunction(i) indicates the interpolation value with essential fractions information,
and m is the value obtained by the cost aggregation of the pixel.
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dFinal = d + interpFunction(i) (3)

le f tDi f = md−1 −md (4)

rightDi f = md+1 −md (5)

i =
rightDi f
le f tDi f

(6)

interpFunction(x) = 0.5− 1
2
× cos

(
x× π

2

)
(7)

It is important to consider worst-case errors to make the disparity calculation method
more robust. Therefore, this work uses the function with the maximum error instead of the
sum of errors as the metric for function fitting in Equation (7).

This results in the demand for a hardware-friendly look-up table for the cosine function.
Initially containing 360◦, this look-up table is divided into six sub-tables, each 64◦ for better
use. Here a projection of processes is formed; for instance, each y corresponds to a function
value of a 9-decimal precision cos y, with each projected value effectively expressed through
hardware description. Simultaneously, this part introduces the divider with Newton’s
method to simplify the calculation process. The representation of the denominator is crucial
in most cases. However, it can be replaced as several local changing elements with small
intervals typically ranging from one to two, where the parameter can be recorded as binary
exponential forms. Finally, the interpolated disparity is obtained.

Further, this paper proposes a decimal replication method for the fraction part in inter-
polation. Figure 4 denotes the instances of the decimal replication method. For example,
the result of the calculation may have many decimal places. To reduce the consumption of
hardware resources, only two decimal places keep retained after the calculated decimal
point, and the remaining decimal places are filled by copying the existing decimal places.
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Figure 4. Examples of decimal replication method.

In Figure 5, the accuracy in retaining only 3-digit decimals is smaller, and the accuracy
error with 3-digit decimals or more is almost the same. The accuracy improvement caused
by more than three decimal places is tiny but requires more hardware resources. Therefore,
3-digit decimals and replicating them to other decimal places can balance the best accuracy
and the minor resource consumption simultaneously.
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2.4. Multi-Direction Disparity Occlusion Filling with Clock Alignment after Left-Right Check

Disparity filling is the main challenge in disparity refinement due to weak texture
conditions, obstacles, etc. The mechanism of left-right detection is as follows: in calculating
disparity, the disparity values of left and right maps at the same position are completely
different. However, not all differences are unreasonable, and the calculated disparity
is reasonable under the threshold. If exceeding, the disparity result is not reasonable.
Disparity DL(i, j) stands for the disparity value of the pixel (i, j) in the left disparity map
whereas DR(i, j) stands for the value of pixel (i, j) in the right one.

According to the left image and disparity uniqueness, DR(i, j) can be obtained by
swapping the positions of the left and right images and then gaining the pixel with the
same name as an individual pixel in the right image and the disparity value corresponding
to the pixel. If the difference between these two disparity values is smaller than one pixel,
it can be held. Otherwise, it is abandoned, and [17] proposed to divide it into mismatch or
occlusion. The occlusion region is an area of pixels visible on the left view but not on the
right view due to foreground occlusion. The occlusion region is more likely in the disparity
discontinuity area, where one side is the foreground (larger disparity value) while the other
is the background (smaller disparity value). The framework above can be shown in the
following Equation (8).

|DL(i, j)− DR(i− DL(i, j), j)| ≤ 1 (8)

Generally, the disparity of the surrounding background pixels should be chosen
for occlusion conditions when filling occlusions, and the foreground pixels should be
avoided [8]. Because the background pixel disparity value is smaller than the foreground,
the adjacent minimum is chosen by collecting surrounding valid values. The contiguous
pixels of the mismatching region are most likely on the consecutive surface. All pixels in
the adjacent area are expected to be concerned when processing occlusion filling. Since
the valid disparity values around the mismatching region are relatively equivalent, the
middle one is optional. Equation (9) expresses how a resolution-dependent size median
filter works for hole-filling. Each hole chooses five valid pixels and then sorts these values
from largest to smallest, as shown in Figure 6. If a hole is an occlusion, the second smallest
of the five pixels is selected to fill it; if this hole is mismatched, the median of the five pixels
is chosen to fill it.
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D′p =


second minimum vpi occlusion
median vpi mismatch
Dp other cases

(9)

Here, the vpi means the sequence of five-direction valid disparity from minimum to
maximum and Dp is a defined value set in the beginning.
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Figure 6. Valid values for occlusion and mismatch.

2.5. Floating-Point Operation for Disparity Conversion Depth

Binocular stereo vision fuses the images obtained by the two eyes and observes the
differences between them so that we can obtain a distinct sense of depth, establish a
correspondence between features, and correspond to the reflection points of the same
spatial, physical point in different images. Such a difference, disparity image is defined.

Depth image, also known as distance imagery, refers to an image that takes the distance
(depth) value from the image collector to each point in the scene as the pixel value. Thus,
to better clarify the depth information of the camera input data, adopting the disparity
conversion depth function, Equation (10) is shown below:

depth(P(i, j)) =
f B
cZ

(10)

where depth(P(i, j)) is the depth of P(i, j), c is the pixel size, B is the baseline, f is the
pre-calibrated focus length, and Z is the depth of the point from the camera. In this case,
we get a more intuitive depth of information instead of a disparity value.

3. Hardware Implementation

The hardware architecture in Figure 7, emphasizing post-processing disparity optimiza-
tion, consists of the initial aggregation costs and post-processing. The refined disparity map
and the corresponding depth map are expressed in single-precision floating point numbers.
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Figure 7. The hardware implementation for sub-pixel cost aggregation and five-direction
occlusion filling.

3.1. Sub-Pixel Interpolation

Figure 8 demonstrates the hardware architecture of the sub-pixel interpolation module.
(1): enter 32 aggregate values in the two directions, 0◦, and 135◦. To be able to port on
the hardware and ensure accuracy, this work innovatively proposed a processing idea
of regional optimization. The 128 initial (usual cases) costs are treated in groups of four,
and each group, the smallest generation value is considered the overall generation value
of the group. Take Figure 9 as an example. The 12-generation values are divided into
three groups. The minimum generation values of each group are found at 94, 102, and
107, and the relative positions of these three generation values in each group are 2, 3, and
0, respectively, so the minimum generation value is spliced with the relative position to
obtain three regional optimization values {94, 2}, {102, 3} and {107, 0}, through which the
algorithm resource consumption can be greatly reduced. Its advantages are reflected in the
process of resource utilization and subsequent cost aggregation.
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Figure 9. Example of region optimization.

In Figure 8a, adding aggregated values in all directions can accumulate the matching
costs for every pixel. The smallest regional generation value is found through 5 sets of
selectors. This minimum region of the minimum optimized cost output is disp_w1, and the
position flag output is disp_w2.

As shown in (b) of Figure 8, the difference between the value of the smallest region and
the value of the smallest adjacent region is calculated, and the two calculated differences
are recorded as leftDif and rightDif, respectively.

In (c) of Figure 8, the result, y, is obtained after division and moving the quotient
through the shift operation. Subsequently, using the cosine look-up-table, find out the
cosine value corresponding to y, and the result COS_half is obtained by shifting the cosine
value right by 1 bit.

Finally, in Figure 8d, the disp_w1 is used to determine whether the region is on edge.
If it is not an edge region, multiply the region with the minimum optimized cost by the
number of costs in a specific region and add it to the tag flag and the interpolation Equation
of intern fuction = 0.5 − COS_half to get the final subpixel disparity value.

3.2. Left-Right Check

Figure 10 demonstrates the hardware architecture of the left-right check module. The
left-right check module ensures the matching pixels’ effectiveness in accomplishing the
filling operation. Based on the inputs and the settlement of the disparity range, 2 SRAMs
whose depth is 256 bits are controlled for bit-level reading and writing. The current address
of the left disparity and the value are needed to determine the correct address index for the
right SRAM to search.
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Figure 10. The Left-right Check Architecture.

We find the disparity valid whether the absolute difference between left and right
disparities is within the threshold range and obtain the output disparity_LRC from the
combination of flag bits 2’b00 and the original left disparity. Reversely, on the condition that
the difference where the left disparity is numerically bigger than the right one (occlusion) is
beyond the threshold, the disparity is invalid, and disparity_LRC is set as a combination of
flags bits 2’b10, and the original left disparity. Otherwise, we meet the mismatch condition
where the disparity_LRC should be 2’b01 with the original left disparity.

3.3. Alignment Multi-Direction Occlusion Filling

Initially, if the output of the previous module’s left-right check is valid already, the
output disparity_filling is set at the same value as the input value. Otherwise, the final
disparity value should be gained through adjacent disparity values around the current
pixel under different cases. Here we name the process alignment multi-direction occlu-
sion filling described in Figure 11. The first two bits of inputs are cashed to determine
different conditions.

(1) On the condition that the input flag is invalid, the data flow first enters both a LIFO
and a FIFO, which hold the same resolution aligned all the time. Then, these pixel
coordinates begin to find 180◦ disparity, 45◦ disparity, and 90◦ disparity simulta-
neously. The value of 180◦ can be easily gotten through the next pixel coordinate
on the condition that the disparity value here is valid. However, the fetch of the
45◦ and 90◦ values is relatively tricky. Figure 12 shows a 45◦ disparity in the north-
west direction P (i − 1, j − 1), while the 90◦ disparity is gained through the absolute
above value P (i − 1, j). In the hardware framework, 90◦ disparity is achieved in the
southern direction because of the same length of the FIFO, where the previous pixel
will go further in this hardware architecture. Similarly, a 45◦ disparity is obtained
from the southeast direction through this principle.

(2) In the next clock cycle (the second yellow dashed line in Figure 8), on the one hand,
the 180◦ valid disparity value is cashed while the original reversed data flow is
retained as well. On the other hand, 135◦ disparity is obtained through the southwest
direction hierarchy.

(3) Disparity values enter another group of FIFO and LIFO, which is used for new line
buffers and data initiation, respectively. In hierarchy 3, all registers sustain their
values, while a 0◦ disparity valid value is also found according to adjacent pixels.

(4) Due to the high-standard alignment of the data stream, in the next cycle, five valid
disparity values from five directions ranging from 0◦ to 180◦ are attained in the select
value module. A high parallelism combinatorial logic bubble sort is designed to sort
the disparity values in five directions from small to large. Firstly, two adjacent indexes
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except five values are compared two by two with a result sequence from small to
large. Second, two adjacent indexes except index 1 of values are also compared with
the result sequence from small to large. After five loops of such logic combination, the
final sequenced output disparity value appears, where the median value is selected
for occlusion while the second minimum value is selected for mismatch as the final
disparity_filling output.

(5) Finally, the output is filtered with a resolution-dependent median filter for better
margin information.
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Figure 11. The alignment multi-direction occlusion filling module.
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3.4. Floating Point Operation Process

In this work, only a few meaningful bits of disparity are retained. The other extra bits
of disparity are filled with these meaningful bits repeatedly. In this case, there needs only a
small number of resources while confirm accuracy.

Figure 13 demonstrates the architecture of the floating-point operation process. When
performing multiplication and division of single-precision floating point numbers, we
propose a special floating point number pipeline multiplier and division device. Based on
the IEEE 754 format, the floating-point number of the 32-bit consists of a 1-bit symbol bit (S),
an 8-bit exponent bit (E), and a 23-bit mantissa bit (M). When multiplying the floating-
point numbers, the exponent bits of the multipliers are added first and multiplied by the
mantissa bit (1.M) of the same number of bits. When performing the division operation, the
same as the multiplication, the divisor’s exponent is first minus the exponential bit of the
divisor, and the decimal number (1.M) of the dividend is divided by the decimal number
(1.M) of the divisor. The result float number is represented in the single-precision format
after standardizing.
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Figure 13. The floating-point operation consists of division and multiplier.

3.4.1. Floating-Point Multiplier

In the design of this paper, the pipeline consists of several cells. A cell is responsible for
an addition operation, which outputs the cumulative sum with the shifted multiplier and
serve as the next cell’s input. The input for each cell is multiplier 1 and multiplier 2. First,
shift multiplier 1 to the left by one bit and multiplier 2 to the right by one bit. If the lowest
bit of multiplier 2 is 1, the left-shifted multiplier one is added to the previous cumulative
sum; if the lowest bit of multiplier 2 is 0, the cumulative sum does not change. After the
execution in this cell, the shifted multiplier 1, 2, and the new cumulative sum are output.

The first cell is first initialized with the original multiplier 1, 2. Since multipliers 1 and 2
have 24-bit, 24 addition operations and 24 cell modules are generated. The product of the
outputs is a fixed 48-bit in general, such as 10.M3, 01.M3, 11.M3.

Under the IEEE 754 standard, the leading number of the significand is always 1.
Consequently, a leading one can be implied, and the explicitly represented part of the
significand lies between 0 and 1. After normalization and rounding to the nearest value,
the 48-bit product represents in the standard format, e.g., 24-bit 1.M.
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3.4.2. Floating Point Divider

Similarly to the multiplier above, a cell is responsible for a single subtraction operation
and shift operation. If the divisor is less than or equal to the dividend, the dividend is
minus the divisor, and the quotient shifts left one place and added 1 to the lowest bit. If the
divisor exceeds the dividend, the quotient shifts left one place, and the dividend becomes
the remainder. The remainder of the last cell outputs and shifts left one place, then serves
as the input dividend of the next cell.

The first cell is initialized with the original divisor and dividend. Since both the
divisor and the divisor are 24-bit, 24 subtraction operations will be performed, and 24 cell
modules will be generated. The final quotient is fixed 24-bit in general, either 1.M3 or 0.M3.
Furthermore, the quotient will be represented in the standard IEEE 754 format, e.g., 1.M,
like the product’s rounding and normalization.

4. Results and Discussion

The proposed algorithm is implemented on Intel Stratix IV (EP4SGX230) and Stratix V
(5SGXEA7N2F45C2N) FPGA in Verilog HDL. We leverage the simulation results on the
KITTI 2015 data sets to validate the accuracy. The hardware resource usage and power
dissipation can be found in the synthesis results from the FPGA EDA tool, namely Quartus
Prime. In this work, the disparity range is set to 128 because it is a typical value in the
previous works for both VGA and XGA video input. Besides, we take VGA resolution for
the fare comparison with the convincing hardware resources in [12,13].

The simulation results in Figure 14 show the gray disparity map, pseudo-color dispar-
ity map, and error map of NO.110 and NO.128 images in KITTI 2015. Figure 15 shows the
proposed gray disparity map of NO.174 image in KITTI 2015 compared with only 0 and
180-angle directions filling with the original disparity map without post-processing. From
error rates of 7.27% in two-direction single-row filling and 6.04% in presented five-direction
spanning multiple rows, the filling efficacy increases, especially in the red box. The quality
of the disparity map is enhanced through five-direction spanning multiple rows, where the
boundaries are more refined and less affected by the surroundings.
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Figure 14. (a) No.110; (b)No.128; (c) Grayscale disparity of (a); (d) Grayscale disparity of (b);
(e) Pseudo-color disparity of (a); (f) Pseudo-color disparity of (b); (g) Error of (a) (noc:2.77%,
occ:4.48%); (h) Error of (b) (noc:3.80%, occ:6.06%).
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Figure 15. Disparity map comparison of (a) original No.174 image in KITTI 2015; (b)The disparity
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(d) use proposed five-direction filling with error rate 6.04%.

In Table 1, considering this work aims at disparity refinement, we only compare the
hardware resources of the post-processing module in previous works since this part of the
contribution is relatively scarce in the current study.

Table 1. Comparison of FPGA resources (-: not mentioned).

This Work [12] [13]

Resolution 640 × 480 640 × 480 640 × 480 640 × 480
Disparity Range 128 128 64 128
FPGA Platform Stratix-IV Stratix-V Xilinx XST J.33. Stratix-IV

LUTs 5.6 K 5.76 K 60 K 12.6 K
Registers 12.8 K 12.9 K - 9.1 K

On-Chip Memories (bits) 2.5 M 2.5 M 2.06 M 2.8 M
Frame per Second (fps) 320 375 302 -

Frequency (MHz) 98.28 115.3 93 -
Power Dissipation (W) 1.459 0.876 - -

In Table 2, these compared works propose an entire system where the inputs are camera
streams and outputs are disparity videos. Unlike them, this work contributes to disparity
refinement; therefore, we only compare the output error rate of the proposed work with
plentiful advanced works from journals and conferences under non-occlusion and occlusion
situations. We take the 20 best error rates of images from the KITTI 2015 dataset and obtain
their average. Generally, this work has achieved an accuracy of 4.61% in the non-occlusion
situation and 6.04% in the occlusion situation. The presented work offers more precise
results than the experimental measurements in [9,18,19] for non-occlusion conditions,
whose error rates are 6.54%, 5.66%, and 6.58%, respectively. Meanwhile, for occlusion
consideration, our work has a lower error rate than the error rate of 7.52% from [20], 6.88%
from [21], and 7.27% from [9], but performs worse than [19]. This work reduces the error
rate of 2% in non-occlusion and 1% in occlusion conditions.
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Table 2. Comparison of the error rate.

Work
KITTI2015

Noc (Error Rate) Occ (Error Rate)

JSSC 2019 [20] - 7.52%
TCSVT 2019 [21] - 6.88%
TCSVT 2021 [18] 6.54% 7.44%
TCSVT 2021 [19] 5.66% 5.84%
TCAS-I 2021 [9] 6.58% 7.27%

This work 4.61% 6.04%

Meanwhile, this work aims at stereo vision post-processing with high-precision in-
frared speckle structured light in future work. The infrared camera ignores dark back-
grounds and weakly textured backgrounds, providing a more accurate match to the original
image. The real-world infrared speckles stereo image and obtained disparity map are shown
in Figure 16. Figure 17 shows that the five-direction occlusion filling method proposed in
this work has improved the edges of the image by FPGA implementation with MT9V034
global-shutter CMOS Image Sensors.
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The hardware architecture based on our optimization algorithms is completed and
implemented on the Stratix-IV platform, and it consumes about 5.6 K LUTs, 12.8 K
registers, and 2.5 M bits of on-chip memory. The maximum working frequency can
reach up to 98.28 MHz for the 640 × 480 resolution and 128 disparity range with a
power dissipation of 1.459 W and a processing speed of 320 frames per Second. Com-
pared with work [12] and [13], although our post-processing module consumes more than
4000 registers, it only uses less than 1/10 LUTs of their work and presents high disparity
accuracy. Meanwhile, the memory usage in our work has been reduced to less than about
1/9 in [13] and even more than [12]. In addition, Stereo MATLAB Calibration Toolbox is
used in the proposed hardware solution, meaning that it is a very general solution to be
adopted after calculating the calibration parameters with the software tool most widely
used for camera calibration.

5. Conclusions

In conclusion, this paper proposes a high-accuracy hardware-friendly architecture for
post-processing a typical stereo vision Semi-Global Matching algorithm to improve dispar-
ity precession on FPGA platforms through subpixel interpolation and five-direction occlu-
sion filling, after which the depth information is obtained as well through a floating-point
operator. The proposal aims to enhance the accuracy of the disparity map for real cases.

The overall purpose of this disparity refinement processing is concluded as the fol-
lowing. (1) Initially, this paper proposes an interpolation algorithm obtaining a fractional
disparity value with subpixel information instead of an integer pixel accuracy by adding
a divided cosine look-up table and Newton’s division operator. Accuracy is massively
promoted by adding these essential fraction parts and copying the three decimal places
after the decimal point according to the best precision. (2) Secondly, the left-right check
module is utilized to correct the effects of both left and right disparity maps. (3) Then, to
obtain an optimized disparity map with relatively low hardware resources, a five-direction
occlusion filling considering pixel coordinates around the center is presented with different
real situations. Based on that, according to the overlapping bubble ordering framework, we
propose a parallel combinatorial logic that can efficiently get the arrangement permutations
from small to large in those five directions simultaneously. (4) Consequently, the final
disparity value is converted into more direct depth information for real sense by using a
single precession floating operation, including floating-point multiplier and division.

This work has been verified on the FPGA platforms and compared with several
advancing kinds of research, which are adequately hardware-friendly and convincing
with the error rate of the output disparity map of nearly 4.61%, apparently superior to
other work.

The deep neural network (DNN) often produces good depth estimation in the lit-
erature [22,23], while the hardware usage of an accelerator is incompatible with the re-
quirement of real-time and low power. In the future, we may take advantage of the DNN
method only for disparity refinement.
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