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Abstract: Today, integration into automated systems has become a priority in the development of
remote sensing sensors carried on drones. For this purpose, the primary task is to achieve real-time
data processing. Increasing sensor resolution, fast data capture and the simultaneous use of multiple
sensors is one direction of development. However, this poses challenges on the data processing
side due to the increasing amount of data. Our study intends to investigate how the running time
and accuracy of commonly used image classification algorithms evolve using Altum Micasense
multispectral and thermal acquisition data with GSD = 2 cm spatial resolution. The running times
were examined for two PC configurations, with a 4 GB and 8 GB DRAM capacity, respectively, as
these parameters are closer to the memory of NRT microcomputers and laptops, which can be applied
“out of the lab”. During the accuracy assessment, we compared the accuracy %, the Kappa index
value and the area ratio of correct pixels. According to our results, in the case of plant cover, the
Spectral Angles Mapper (SAM) method achieved the best accuracy among the validated classification
solutions. In contrast, the Minimum Distance (MD) method achieved the best accuracy on water
surface. In terms of temporality, the best results were obtained with the individually constructed
decision tree classification. Thus, it is worth developing these two directions into real-time data
processing solutions.

Keywords: UAV multispectral images classifications; decision rules; CTA analysis; PCA analysis;
classification’s running time; GIS data NRT processing “out of the lab”

1. Introduction

Today, the enormous development of remote sensing sensors carried on drones [1] has
made it possible to record areas with cm spatial resolution. This can help research areas re-
lated to precision farming [2–6], such as crop protection and nutrient supply, but can also be
involved in Industry 4.0 developments [7–9], such as self-driving technology. On the other
hand, this research development increasingly requires real-time data processing, allowing
their integration into the development of automated “out of the lab” solutions [10–12].

However, due to the characteristic of orthorectified, multi-channel images, the size of
a single file can easily reach 5–10 GB [13–15]. This makes image processing and decision
making challenging, especially if we eventually want to perform it all in near-real-time.

For this reason, we primarily wanted to examine image classification algorithms on
two configurations closer to the NRT environment, comparing which of them achieves
higher accuracy and which can be operated with less running time. In addition to the most
used image classification algorithms, two other directions were investigated.

One is the possibility of Principal Component Analysis (PCA) since PCA is a commonly
used solution for both field spectroradiometer and hyperspectral data processing due to a
large amount of data [16–18]. In addition, the results of PCA can be managed more simply
in further steps, while the descriptive nature of the differences remains.
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On the other hand, there are novel solutions for processing large amounts of data [19–21].
Machine learning [22–24] or deep learning [25–27] analyses are also receiving increasing
attention. Therefore, we included them in the study. In addition, object-oriented analysis
based on the combination of different features is also a novel approach [28–32], but several
other studies [33–36] have published solutions for so-called classification tree analysis
(CTA). These CTA solutions can be easily developed, especially in a Python environment,
so in QGIS as well, according to the NumPy ‘where array’ syntax; however, it can also be
integrated into the Scikit-learn environment at any time (the Random Forest classification
is also based on this principle). That is why we decided to investigate image classification
based on individual decision rules, whereby we have developed a rule framework for
classification by linking layers representing different measurement units.

Our primary goal was to assess the above algorithms on a centimeter spatial resolution
drone image and then evaluate the best runtime algorithms in terms of accuracy. These can
help future “out of the lab” developments based on UAV near-real-time data processing.

2. Materials and Methods
2.1. Study Area

The field study was conducted on 8 September 2021 with a DJI Matrice 210 v2 RTK
drone equipped with a Micasense Altum 6-channel multispectral camera. The location
(Figure 1) was a sport fishing area in Lake Tisza, Hungary. The total surveyed area
(centroid’s coordinates: Lat = N47.659, Lon = E20.717, EPSG = 4326) was 25.5 ha, which was
recorded with three battery replacements (DJI TB55 battery: 7660 mAh/piece; they must be
used in pairs for one flight). The flight was performed at an altitude of 70 m, with which
the Ground Sampling Distance (GSD) value of the resulting image reached a resolution of
2 cm, which was necessary to meet research purposes.
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Figure 1. Study area on Lake Tisza, Hungary: (a) True color composite of Sentinel MSIL2A satellite
image at the same time after preprocessing. (b) True color composite of the Micasense Altum
5 band stacked orthophoto after preprocessing (the centroid’s coordinates of the surveyed area:
Lat = N47.659, Lon = E20.717, EPSG = 4326).

2.2. Processing Workflow and the Examined Algorithms

The acquired UAV images were radiometrically calibrated and orthorectified using
Pix4D S.A., Prilly, Switzerland software. To give a sense of the size of this data volume:
the raw image file of the flight was 6 times 918 images, of which the pixel count of the
single-channel orthophotos produced amounted to more than 612 million pixels. For a



Sensors 2022, 22, 8629 3 of 14

6-channel image, this translates into 6 times 612 million data points for processing. Using
the QGIS SCP plugin [37], the spectral values of the sensor bands were adjusted to produce
multichannel stacked images in several versions: a 4-band (RGB + NIR, 6 GB in size), a
5-band (RGB + RedEdge + NIR, 8 GB in size) and a 6-band (5band + thermal, 10 GB in
size) version.

For all three, we ran the following three most used algorithms for supervised im-
age classification: Minimum Distance (MD), Maximum Likelihood (ML), Spectral An-
gle Mapper (SAM). The Minimum Distance (MD) classification calculates the Euclidean
distance d(x, y) between spectral signatures of image pixels and training spectral signatures,
according to the following equation:

d(x, y) =
√

∑n
i=1(xi − yi)

2 (1)

where x is the first spectral signature vector, y is the second spectral signature vector and n
is the number of image bands.

The Maximum Likelihood calculates the probability distributions for the classes,
related to Bayes’ theorem (Equation (2)):

gk(x)= ln p(Ck)−
1
2

ln|Σk| − 1
2
(x− yk)t ∑−1

k (x− yk) (2)

where Ck is the land cover class, x is the spectral signature vector of an image pixel, p(Ck) is
the probability that the correct class is Ck, |Σk| is the determinant of the covariance matrix
of the data in class Ck, ∑−1

k is the inverse of the covariance matrix and yk is the spectral
signature vector of class k.

The SAM algorithms can be written as Equation (3):

θ(x, y) = cos−1

 ∑n
i=1 xi yi(

∑n
i=1 x2

i
) 1

2 ×
(
∑n

i=1 y2
i
) 1

2

 (3)

where x is the spectral signature vector of an image pixel, y is the spectral signature vector
of a training area and n shows the number of image bands.

Since there was no significant difference in time between the versions of 4 and 5-band
(but a drastic increase in time for the 6-band version), we are focusing on the 5-band image
results in this paper. On this image we ran the additional machine learning and deep
learning algorithms (see later in Table 1), collecting their runtimes.

We examined from machine learning algorithms the Random Forest (RF), the Artificial
Neural Network (ANN), and the Support Vector Machine (SVM) algorithm. The Random
Forest was based on decision trees and used the Gini index (Equation (4)) as a background
of the calculations.

Gini index = 1−∑n
i=1(pi)

2 (4)

where pi is the fraction of items labelled with class i in the set. We ran the algorithms with
QGIS SCP plugin with ESA SNAP [38] with setting: number of training samples = 5000,
number of trees = 10 and with evaluate classifier option. The plugin creates a confidence
raster too, where we can see the classification errors, if pixels have low confidence value.

For running ANN classification, we used ORFEO Toolbox [39]. ANN is a nonparamet-
ric method of classification with multi-layer perceptron (MLP) using back-propagation [40].
The mathematical background of the process can be seen in Equations (5)–(7).

Sj = ∑i wji pi (5)

Oj= f (Sj) (6)

f (Sj) =
1

1 + e−S (7)
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where pi represents the ith input to the jth neuron in a specific layer, wij represents the
weight of the synaptic connection from ith input from the previous layer to jth neuron in
the current layer, Oj is the output from the jth neuron in the current layer and f represents
the transformation function. We ran in ORFEO with the following setting: train method
type was back-propagation, the neuron activation function type was symmetrical sigmoid
and all other settings were used as default.

Table 1. Running times (in hours) of the represented classification methods.

Classification Method
8 GB DRAM 4 GB DRAM

Running Times (h)

unsupervised
classification Clustering (ISODATA) 9.7 >24 h

deep learning Convolutional Neural Networks
(CNN) >24 h -

Object-based classification >24 h -

machine learning

Random Forest 7.4 >24 h

Support Vector Machine (SVM) 10.6 >24 h

Artificial Neural Networks (ANN) 10.2 >24 h

supervised
classification

Minimum Distance 1.2 6.5
Maximum Likelihood 1.2 6.5

Spectral Angle Mapper 1.2 6.5

PCA 3.5 8.5

Decision rules 0.5 2

The SVM uses a kernel-based method to find a nonlinear projection of the data where
the classes are linearly separable. We used the LibSVM method [41–44], which implements
Sequential minimal optimization (SMO) algorithm for kernelized SVM. Along SVM classi-
fication, we set the SVM kernel type as polynomial for model type csvc and we checked in
the parameters optimization option; all other settings were used as default.

ORFEO-TensorFlow environment was used for the deep learning solution. We built
up and ran the CNN model as recommended by Cresser R. in his study [25].

In addition, we ran an unsupervised classification, with clustering ISODATA method,
which means an Iterative Self-Organizing Data Analysis Technique [45,46]. It uses spectral
distance between image pixels in feature space to classify pixels into a specified number
of unique spectral groups. For running this, we used a QGIS-SCP plugin, with settings:
distance threshold was 0.01, the number of classes was 6, the max number of iterations
was 10, the standard deviation was0.2 and the minimum class size in pixel was 10. We ran
this with the ‘seed signature from band values’ option and for the distance algorithm we
chose the SAM algorithm. For example, the object-oriented classification is a bit similar to
clustering and also begins with large-scale segmentation (in ORFEO).

After running the above classifications, we assess the accuracy of the ones with better
running time against the reference vegetation cover from the field survey (Figure 2). The
classes of vegetation cover were class 1.—water chestnut (Trapa natans), class 2.—common
reed (Phragmites australis), class 3.—cattail (Typha angustifolia), class 4.—water surface,
class 5.—fairy rose (Nymphaea alba) and class 6.—sedge (Carex acutiformis). For the supervised
classifications, 60% of the field survey vegetation cover was used for the validation training.

As the machine learning and deep learning algorithms took significantly longer time
to run and are now less or similar accurate (their Kappa indexes were between 0.55–0.68
for the overall model) than the supervised classifications, their accuracy test results are not
detailed in this paper, only their runtime or their estimated memory for full processing.
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The results of the three algorithms were compared by an accuracy assessment, ex-
amining the overall accuracy in percentage and the Kappa index values. In addition, we
examined the spatial evolution of the correct and incorrect pixels using cross-classification.

As the dominant plant in the whole area was water chestnut, which is artificially cut
for navigability and water traffic, and there were also larger patches of reeds and cattails,
we were also able to use a relatively small area for the training of sedge and fairy rose.
In the case of the fairy rose, moreover, it is typical to find it scattered. This is difficult to
manage during training, so two larger “patches” were used for fairy rose (class 5) and only
one for the sedge (class 6).

In addition to the above, we also examined whether excluding the other two smaller
classes from the analysis would increase accuracy for the main four classes.

We have also examined the results of PCA analysis on these images, as in this case we
are also working with a larger amount of data due to the spatial resolution. The results of
this visual evaluation showed a correlation with the reference data of classes 2, 3, 4, and 5,
so we also present an accuracy check of these results.

Due to the previously mentioned characteristics of the fairy rose (class 5), we looked
for other methods, examining in which case the predictability of this class can be increased.
Thus, a unique decision structure was developed based on the properties of the first
5 classes. During this process, we incorporated into the development of the rule system the
thermal properties (after pre-processing, converting the thermal data to Celsius degree),
the NDVI features and some single band reflectance data and the specific layers of the
PCA analysis. Using different visualizations and band composition layers, we looked for
different properties specific to the class of data we were examining, such as the thermal
layer, the NDVI layer, the single reflectance layers and the PCA layers. The experience
was that if these layers were examined separately with the solutions of the classifications,
they did not always achieve sufficient accuracy, whereas if we constructed the rule set
from these features individually, combining several features, we achieved better results at
the class level. For example, if the Celsius value was within a given range but the NDVI
was also within a given range, and we observed some class-specific property in one of
the layers of the PCA or the single reflectance layer, we combined them with a Python
operator; this provided the basis for the classification. This is similar to the zonal statistical
approach, where we can gather statistical data from several raster files in a vector layer, but
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in our experience the average or minimum/maximum value feature is not always sufficient.
Additionally, particular layers may show uniqueness only in some classes and not for all
and in different ranges, but if some uniqueness was observed, we linked them together (at
least 4–5 unique properties gave a single rule of any class).

We ran the analysis in the Decision Rules menu of the Band calculator module of the
QGIS SCP plugin, using Python operators. Then, we assessed its accuracy and whether
this solution could be used to increase the proportion of correct pixels for the fairy rose.

The schematic flowchart of the above-detailed workflow is summarized in Figure 3.
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All classification runs were performed on two machines in parallel, collecting run-time
data. The two used configurations differed mainly in DRAM memory, with 4 GB in one
case and 8 GB in the other (the I5 CPU capacity, the Win10 operation system, and the
used 3.22 version of the QGIS software were the same). These parameters characterize
the memory of the micro- and minicomputer units used by the ‘common’ users and the
industrial applications in the widest range (especially in the Central European region). The
Raspberry Pi 4 microcomputers are available with 2, 4 or 8 GB of RAM, with industrial
units also reaching 4–8 GB or recently starting to exceed this. The requirements of GIS
software may differ slightly from this, Python version 3.9 requires a minimum of 4 GB of
RAM, QGIS 3.22 or 3.24 recommends 4–8 GB (depending on the used plugins), while ESRI
ArcGIS Pro 3.0 at least 8 GB but preferably 16 GB or higher.

Therefore, we wanted to use these two configurations to represent the “out of the lab”
computing units.

3. Results
3.1. Running Time

Table 1 shows the running times by the algorithms used in the study. In each case, we
can only see the running time of the given algorithm after the appropriate settings of the
same orthorectified, the 5-band stacked image.
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The fastest runtime was for ‘Decision rules’, followed by supervised classifications.
Although this step requires preparation of the training areas (which will increase the overall
runtime, especially for spectral data collection), if we want to automate the same area over
time with the same sensor, this step should also be performed only the first time. According
to the results, machine learning, object-based or deep learning solutions currently require
too much runtime for real-time data processing. To provide a better impression, one of
the big advantages of ORFEO is its approach to estimating the total memory required and
then dividing the task into parts based on the memory set. For the tested machine learning
algorithms, this has now resulted in an average of 23,350 MB of memory for the entire
run. In addition, e.g., the first large-scale segmentation step of object-based classification,
required 10 h.

3.2. Accuracy Assessment Results of the Supervised Classification Algorithms

First, we examined the spatial accuracy of the resulting classified images by cross-
classification, from which the spatial sum of the correct pixels by classes is shown in
Figure 4.
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Overall, of the three algorithms, the Spectral Angle Mapper (SAM) algorithm was able
to perform the classification with proportionally higher accuracy. For the more dominant
vegetation classes (class 1, 2, 3), the SAM and Maximum Likelihood algorithms performed
significantly better. In the case of class 1, the difference is explained by changes in the
density of the water chestnut, so the increasing number of water pixels leads to an increasing
error of the algorithms. On the other hand, it can be observed that, while the Minimum
Distance function for the plant cover classes is basically below the accuracy of the other
two algorithms, it is characterized by the highest spatial accuracy for the water surface.
Therefore, it is recommended to use this algorithm in future analyses of water surfaces.

The results of the accuracy assessment are shown in Figure 5. This shows how ac-
curately our spectral classes trained during the training process (validation) were able to
estimate the correct class for the other pixels (verification), i.e., we compared the classifica-
tion results with the original reference layer (Figure 2).

It can be seen that for the main classes (1, 2 and 4) our model with Maximum Likelihood
and Spectral Angle Mapper behaves with reliable accuracy (Kappa index also shows
excellent results over 0.75), while for the classes 3, 5 and 6 the overall accuracy of the
model is not satisfactory. This is likely not caused by the size of the study areas, but their
spectral values being very similar to classes 1 and 2 (especially for class 2 (reed), which is
supposed to cover the inside area with mixed vegetation), which made it difficult to predict
accurately. Additionally, in the case of the fairy rose (class 5), the plant characteristics
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mentioned earlier also make it difficult to train. For the overall model, we can see good
Kappa index results produced by the Maximum Likelihood and Spectral Angle Mapper
algorithm, which provided the best accuracies.
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For this reason, we investigated whether it would improve accuracy if we removed
classes 5 and 6 from the test; the results are shown in Figure 6.
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Except for class 2, the accuracy increased for all three other classes. We did not expect
an improvement for the entire model, since in this case using the same reference, the
missing classes worsen the overall accuracy.

In summary, however, for studies where the analysis is focused on one class, it is
preferable to include as few other classes as possible in the training, thus increasing the ac-
curacy of the focused class or parameter. On the other hand, if we analyze vegetation cover,
the Spectral Angle Mapper algorithm gives the most accurate results for the multispectral
UAV images.

3.3. Results of Principal Component Analysis (PCA)

The PCA analysis can be used to facilitate the analysis of larger amounts of data. The
visual evaluation of the results showed the appearance of the classes investigated in this
study (Figure 7).
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Figure 7. Images of the results of PCA analysis: (a) PCA level 1. (b) PCA level 2. (c) PCA level 3.
(d) PCA level 4. (e) PCA level 5.

In (a), the intense yellow color shows the water’s surface (class 4), while dark blue
shows the dense cover of the water chestnut (class 1). In addition, it can be used later to
help in studies of the density of aquatic vegetation covering the water surface. In (b), the
intense yellow corresponds to class 2 (reed); in (c) the dark blue is reed, while the yellow
is cattail (class 3). The latter (class 4) is emphasized even more intensely in (d). The (e) is
mostly no longer used, although the most intensive yellow (in the middle of the first third
of the image) corresponds to the main area of fairy rose.

Given this experience, we have run the previously tested algorithms for supervised
image classification by stacking these layers together and comparing the accuracy analysis
with the reference (Figure 8) and with the UAV ‘original’ classification results (Figure 9).
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Kappa index of the PCA analysis and the reference layer.

We can see in the results that the accuracy of the Spectral Angle Mapper algorithm
has deteriorated significantly, but the Minimum Distance has improved for all classes
except class 6 (e.g., from 48% to 91% for class 2). The highest accuracy was achieved by
Maximum Likelihood. Compared to the class results of the previous image classification,
the accuracy was the same or slightly lower. For the most dominant class 1, the accuracy of
both Maximum Likelihood and Spectral Angle Mapper improved minimally. The overall
model accuracy decreased.

If we take the original classification results as a reference for the accuracy analysis, we
find high accuracy for Minimum Distance and Maximum Likelihood. Additionally, for the
overall model accuracy we arrived at the highest values.
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3.4. Results of the Decision Rules

Besides the fastest runtime, the big advantage of the method is that it allows us
to assess many different parameters at the same time. As we increase the number of
parameters, we obtain a more accurate prediction solution.

It is worth paying attention to the focus of the analysis during the runs. The order of
the rules can be changed accordingly. For example, if we want to examine the fairy rose
more closely, we could improve the results by changing the order of our set of rules for the
first five classes. If this rule was examined in 5th place, the system would have selected
863.34 m2, while in 3rd place it would have selected 876 m2, and if in 1st place it would
have selected 915.75 m2. The latter was used to perform an accuracy analysis, both against
the sorted UAV images and against the reference layer (Figure 10).
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index of the decision rules for fairy rose.

If we compare these results with the accuracy of the original supervised image classifi-
cation with the reference layer (Figure 4), we obtained results that are as good or better for
nearly all classes (except for the reed—class 2). This may be because the polygonal-mapped
training area assumes that the reed reference is complete, whereas, in reality, it is more
likely that the inner parts of the reed reference are covered by mixed vegetation. The deci-
sion rule system can likely separate more realistically than the polygon-based supervised
classification methods.

Generally, the overall accuracy (in %) and the Kappa index for classes 1, 3 and 4 show
good prediction reliability, especially in relation to the reference layer; especially for class 5,
while the most accurate result for this class was achieved by the Spectral Angle Mapper
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algorithm against the reference (overall accuracy 22.4%), the same value has now increased
to 67.7%.

For the overall model, however, we do not see the high values that are typical for each
class. Derived from our results, this is due to the absence of class 6 and to the fact that, in
this case, we obtained the highest number of unclassified pixels. When pixels do not match
any of the rules they remain in a separate class, which can be further investigated or used
to develop additional rules. For example, in the present study, where the water chestnut
(class 1) has become sparse, these pixels are not included in class 1 after the classification.
Consequently, in the future, we can use this method to map the density of plant cover more
easily. However, the vegetation cover on the water surface (also subtracted now) will also
be able to be examined separately and its changes over time tracked.

Another major advantage of this method for real-time image processing is that it can
be used to develop a complex set of rules for simple layers (for example, we developed the
rules for simple layers with file sizes either below 1 GB (NDVI, thermal band) or between
1–2 GB for single layers (Red, Green, NIR, PCA) as opposed to the 8 GB 5-channel stacked
image used in the other analyses. The latter could also explain the drastically lower runtime,
while we could see that the accuracy did not necessarily deteriorate.

4. Discussion

In image classification, we can find many new approaches that provide good results
by incorporating machine learning or deep learning algorithms. At the same time, they
require increasing computing capacity, as pointed out by several studies, especially the [25];
which can also draw attention. Therefore, in our research work, we examined the accuracy
and the running time of the most important algorithms with configurations that are closer
to the NRT environment.

According to our results, although the machine learning and deep learning algorithms
achieved adequate accuracy (their Kappa index became 0.55–0.68 for the overall model),
their running time was significantly higher; thus, they currently do not allow for their
application in the NRT environment. The Spectral Angle Mapper algorithm in supervised
classification proved to be the most accurate in this study when working with multispectral
data and its running time proved to be significantly better than that of machine learning or
deep learning solutions.

However, since PCA analysis (especially after visual evaluation) mapped our most
interesting surface cover classes surprisingly well, it is worth further research in UAV
image processing. Its running time is slightly longer than the supervised classifications,
but it can help in the selection of other complex strategies (e.g., changes in plant cover
density) and the resulting, simplified dataset makes other algorithms based on it faster.
According to our results, the Minimum Distance and Maximum Likelihood algorithms are
recommended for classifications based on PCA results.

In addition, we would like to further investigate Python-based solutions for Deci-
sion Rules to create more versatile models (e.g., by mapping changes in the density of
vegetation cover on a given surface or by incorporating additional parameters into the
model to create a more diverse set of rules). Short runtime, good class-level overall ac-
curacy, and versatile integration into GIS or other systems should be aimed for future
near-real-time developments.

With each runtime, we would like to draw attention to the fact that the data processing
of UAV images requires further development in the future because these products do not
yet allow near-real-time “out of the lab” data processing and automated intervention. In
addition, such data processing can only be started after calibration, orthorectification, and
other pre-processing solutions, of which orthorectification also takes 12–24 h with similar
machine configurations. Of course, it can be accelerated with cloud-based fast data transfer
or with larger memory capacity, or with analysis divided into smaller territorial units;
however, in terms of runtimes, it requires further development in the future.
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The future collection and evaluation of ORFEO data, which will be generated by
dividing large amounts of data, could help to define more optimal territorial units. In this
case, the log files also record the number of pixels of tasks performed in smaller memory
units. Thus, future statistical analyses of these can be used to develop a more optimal size
for near-real-time data processing.

One possibility to reduce the running time is either to divide the entire task into
subtasks, as ORFEO does, or to simplify the input datasets, as in the case of decision rules
(where instead of a multi-channel, 8–10 GB image, containing millions of data points at the
same time, we combined simpler data structures).

5. Conclusions

In this paper, we highlighted that UAV remote sensing technology, with its fast
and increasingly accurate imaging solutions and increasingly versatile sensor systems.
These days, this technology allows for more complex data analysis, which enables the
development of more versatile forecasting solutions. At the same time, we would like
to point out that the increasing number of sensor data may already face data processing
difficulties, mainly regarding time, which do not really allow linking them to near-real-time
systems (while this is a growing expectation). Thus, more emphasis should be put on
the development of this direction or more attention should be devoted to further “out of
the lab” research on methods (e.g., PCA, Decision Rules) that, through their simpler data
representation, achieve faster runtimes with sufficient accuracy. On the other hand, further
research should be conducted towards more optimal data sizes (tiling, sub-tasking, optimal
data and image size), which will help near-real-time data processing in the future.
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