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Abstract: We propose a robust RGB-Depth (RGB-D) Visual Odometry (VO) system to improve the
localization performance of indoor scenes by using geometric features, including point and line
features. Previous VO/Simultaneous Localization and Mapping (SLAM) algorithms estimate the low-
drift camera poses with the Manhattan World (MW)/Atlanta World (AW) assumption, which limits
the applications of such systems. In this paper, we divide the indoor environments into two different
scenes: MW and non-MW scenes. The Manhattan scenes are modeled as a Mixture of Manhattan
Frames, in which each Manhattan Frame in itself defines a Manhattan World of a specific orientation.
Moreover, we provide a method to detect Manhattan Frames (MFs) using the dominant directions
extracted from the parallel lines. Our approach is designed with lower computational complexity
than existing techniques using planes to detect Manhattan Frame (MF). For MW scenes, we separately
estimate rotational and translational motion. A novel method is proposed to estimate the drift-free
rotation using MF observations, unit direction vectors of lines, and surface normal vectors. Then, the
translation part is recovered from point-line tracking. In non-MW scenes, the tracked and matched
dominant directions are combined with the point and line features to estimate the full 6 degree of
freedom (DoF) camera poses. Additionally, we exploit the rotation constraints generated from the
multi-view dominant directions observations. The constraints are combined with the reprojection
errors of points and lines to refine the camera pose through local map bundle adjustment. Evaluations
on both synthesized and real-world datasets demonstrate that our approach outperforms state-of-the-
art methods. On synthesized datasets, average localization accuracy is 1.5 cm, which is equivalent to
state-of-the-art methods. On real-world datasets, the average localization accuracy is 1.7 cm, which
outperforms the state-of-the-art methods by 43%. Our time consumption is reduced by 36%.

Keywords: SLAM; localization; mapping

1. Introduction

Visual simultaneous localization and mapping (Visual SLAM) and Visual Odometry
(VO) estimate the 6 DoF camera pose from a sequence of camera images. They have various
applications, such as autonomous robots and virtual and augmented reality (VR/AR).

Indoor environments contain low-texture surfaces such as the floor, walls, and ceiling,
which leads to performance degradation for pure point-based methods [1]. Robust pose
estimation performance can be improved by adding geometric structural features present
in indoor scenes, such as lines and planes, to the systems [2–7]. These works extend the
working scenarios to low-textured environments.

A technique to leverage the structural regularity in indoor scenes is based on the
MW/AW assumption, which can reduce the rotation drift. This technique has been em-
ployed by [8–13]. These systems benefit from the MW/AW assumption to the rotation
estimation. They decouple the rotational and translational motion estimation and estimate
drift-free rotational motion from structural regularities in man-made environments, which
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reduces the rotation error in the whole trajectory. However, the MW/AW assumption
does not strictly hold in indoor scenes, which makes the range of applications limited.
Zhou et al. [14] proposed using a single mean shift iteration algorithm to estimate the Man-
hattan dominant direction by a set of normal vectors. In [8], the absolute, drift-free rotation
is estimated by tracking the MF from surface normal vectors. The translational motion is
recovered by minimizing the de-rotated reprojection error with available depth point fea-
tures. These approaches only use planes to search MF, which means that we at least need to
detect two orthogonal planes in each frame. However, in practice, detecting two orthogonal
planes is not very easy. To address this problem, Line and Plane based Visual Odometry
(LPVO) [9] uses all tracked points (with and without depth) to estimate translation. They
combine lines and planes to estimate drift-free rotation by a mean shift algorithm. To tackle
the drift in translation estimation, Linear RGB-D SLAM (L-SLAM) [10] adds orthogonal
planar features within a linear Kalman Filter framework based on LPVO. Atlanta Frame
SLAM (AF-SLAM) [11] extends L-SLAM to cover more general structural environments
with the AW assumption while maintaining linear computational complexity. [13] estimates
the translation part by using point-line-plane tracking and adds parallel and perpendicular
planar constraints to improve the tracking accuracy. [15] designed a short-term tracking
module to track the clustered line features. In addition, a long-term searching module
is designed to generate abundant sets of vanishing points (VPs) candidates and retrieve
the optimal one. To optimize the model, [15] constructs a least square problem to provide
refined VPs with the clusters of structural line features in each frame. To cope with dynamic
scenarios, [16] uses a 2D tracker to track the moving object in bounding boxes. This method
can effectively exclude the dynamic background and remove the outlier point and line
features. [17] presents a semantic planar SLAM system to improve pose estimation and
mapping by using cues from an instance planar segmentation network. [18] eliminates
line features that are consistent with the motion direction. The structural line features are
selected according to the direction information of vanishing points for a stronger geometric
constraint on the pose estimation.

However, the decoupled scheme needs the MW assumption for every frame, which
is very limiting. The indoor environments are not strictly conforming to the assumption,
leading to performance degradation or even tracking failures. To address this issue, [19]
uses planes to distinguish whether the scenes conform to the MW assumption, and then
it chooses a decoupled or a non-decoupled tracking strategy to obtain the camera motion
pose. Additionally, [5] proposes directly adding parallel and perpendicular constraints of
planes to reduce drift errors in indoor environments without the MW assumption. [20]
incorporates the MW assumption at the local map optimization stage instead of the tracking
stage. Then, a local map optimization approach is proposed to combine the point and line
reprojection error, the Manhattan Axes (MA) alignment, and the structural constraints of the
scene. This method reduces the influence of punctual dissatisfaction with some constraints.

This paper proposes an RGB-D VO algorithm using points and lines to achieve robust
pose features and good performance. We leverage the structural regularities in indoor
scenes to improve tracking performance. The proposed method automatically recognizes
whether the scene conforms to the MW assumption and chooses different tracking strategies.
Moreover, we model the MW scenes as a Mixture of Manhattan Frames (MMF) [21], which
consists of multiple independent MFs. We detect MFs with dominant directions extracted
from parallel lines. Finally, we use dominant directions in local map bundle adjustment
(BA) to improve rotation estimation. The proposed RGB-D VO system is shown in Figure 1.
In summary, the main contributions of this work are as follows:



Sensors 2022, 22, 8644 3 of 17Sensors 2022, 22, x FOR PEER REVIEW 3 of 18 
 

 

 

Figure 1. The proposed RGB-D VO system. Top Left: Structured scene. Top Right: Cluttered scene. 

Bottom Left: Sparse map in a structured scene. Bottom Right: Sparse map in a cluttered scene. 

• A robust and general RGB-D VO framework for indoor environments is proposed. It 

is more suitable for real-world scenes because it can choose different tracking meth-

ods (decoupled and non-decoupled pose estimation methods) for different scenes. 

• A novel drift-free rotation estimation approach is proposed. We detect the dominant 

directions for every frame by clustering the parallel lines. These dominant directions 

are tracked to detect MFs. Then, we use a mean-shift algorithm to obtain rotation 

estimation. 

• An accurate and efficient local map bundle adjustment strategy combines points and 

lines reprojection errors with the rotation constraints from the multi-view dominant 

directions observations. 

We compare the proposed method with other works in the literature, as shown in 

Table 1. All works are open source. To verify the effectiveness of the proposed method, 

we evaluate the proposed method on synthetic and real-world RGB-D benchmark da-

tasets. 

Figure 1. The proposed RGB-D VO system. Top Left: Structured scene. Top Right: Cluttered scene.
Bottom Left: Sparse map in a structured scene. Bottom Right: Sparse map in a cluttered scene.

• A robust and general RGB-D VO framework for indoor environments is proposed. It
is more suitable for real-world scenes because it can choose different tracking methods
(decoupled and non-decoupled pose estimation methods) for different scenes.

• A novel drift-free rotation estimation approach is proposed. We detect the dom-
inant directions for every frame by clustering the parallel lines. These dominant
directions are tracked to detect MFs. Then, we use a mean-shift algorithm to obtain
rotation estimation.

• An accurate and efficient local map bundle adjustment strategy combines points and
lines reprojection errors with the rotation constraints from the multi-view dominant
directions observations.

We compare the proposed method with other works in the literature, as shown in
Table 1. All works are open source. To verify the effectiveness of the proposed method, we
evaluate the proposed method on synthetic and real-world RGB-D benchmark datasets.
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Table 1. Comparison of the proposed method with other works in the literature.

Method Year Feature Types Assumption Pose Estimation Method

Ours 2022 Point, Line, direction MMF decoupled
MSC-VO 2021 Point, Line MW non-decoupled

ManhattanSLAM 2021 Point, Line, Plane MMF decoupled
RGB-D SLAM 2021 Point, Line, Plane MW decoupled

SP-SLAM 2019 Point, Plane × non-decoupled
ORB-SLAM2 2017 Point × non-decoupled

× represents no assumption.

2. Materials and Methods
2.1. System Overview

In this work, we use {Rkw, tkw} to represent the camera pose of the kth frame, where
Rkw ∈ SO(3) and tkw ∈ R3 denote the rotation and translation from the world frame to the
camera frame, respectively. We also use a set of unit vectors

{
dw

i
}

to represent the dominant
directions in the global map, and these vectors constitute all MFs saved in the Manhattan
map G. Each MF contains the three mutually orthogonal dominant directions. These
concepts are visualized in Figure 2. In addition, we use

{
dck

i
}

to represent the dominant
directions in kth frame. The rotation matrix Rckmj ∈ SO(3) represents the orientation from
jth MF to kth camera frame.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 18 
 

 

Table 1. Comparison of the proposed method with other works in the literature. 

Method Year Feature Types Assumption Pose Estimation Method 

Ours 2022 Point, Line, direction MMF decoupled 

MSC-VO 2021 Point, Line MW non-decoupled 

ManhattanSLAM 2021 Point, Line, Plane MMF decoupled 

RGB-D SLAM 2021 Point, Line, Plane MW decoupled 

SP-SLAM 2019 Point, Plane × non-decoupled 

ORB-SLAM2 2017 Point × non-decoupled 

× represents no assumption. 

2. Materials and Methods 

2.1. System Overview 

In this work, we use {𝑅𝑘𝑤 , 𝑡𝑘𝑤} to represent the camera pose of the 𝑘th frame, where 

𝑅𝑘𝑤 ∈ 𝑆𝑂(3) and 𝑡𝑘𝑤 ∈ 𝑅𝟛 denote the rotation and translation from the world frame to 

the camera frame, respectively. We also use a set of unit vectors {𝑑𝑖
𝑤} to represent the 

dominant directions in the global map, and these vectors constitute all MFs saved in the 

Manhattan map 𝐺. Each MF contains the three mutually orthogonal dominant directions. 

These concepts are visualized in Figure 2. In addition, we use {𝑑𝑖
𝑐𝑘} to represent the dom-

inant directions in 𝑘th frame. The rotation matrix 𝑅𝑐𝑘𝑚𝑗
∈ 𝑆𝑂(3) represents the orienta-

tion from 𝑗th MF to 𝑘th camera frame. 

 

Figure 2. The dominant directions in the proposed method. The direction0 to direction5 constitute 

a set of unit vectors {𝑑𝑖
𝑤}. The direction0 to direction2 constitute the 𝑀1. 

With the RGB-D camera as the sensor input, the proposed system is built on top of 

the tracking and local mapping components of Oriented FAST and Rotated BRIEF SLAM2 

(ORB-SLAM2) [22]. The overall framework is shown in Figure 3. We then describe each 

module of the proposed VO system. 

Figure 2. The dominant directions in the proposed method. The direction0 to direction5 constitute a
set of unit vectors

{
dw

i
}

. The direction0 to direction2 constitute the M1.

With the RGB-D camera as the sensor input, the proposed system is built on top of
the tracking and local mapping components of Oriented FAST and Rotated BRIEF SLAM2
(ORB-SLAM2) [22]. The overall framework is shown in Figure 3. We then describe each
module of the proposed VO system.

The tracking thread is used to estimate the pose of each frame and select appropriate
keyframes as input to the local mapping thread. In the tracking thread, for each frame, we
extract point and line features from the RGB image and surface normals from the depth
image, which are performed in parallel. Then, we extract the dominant directions from
parallel lines to estimate the MFs in the current frame. The points, lines, and dominant
directions are tracked and matched to estimate the camera pose. We divide the scenes into
MW scenes and non-MW scenes. For MW scenes, we use a decoupled method to estimate
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the rotational and translational motion. For non-MW scenes, we combine point and line
features with the dominant direction observations to estimate the whole 6 DoF camera
pose. Based on the initial pose estimation, the camera motion is refined with the matched
landmarks from the local map. Finally, the results on the keyframe are inferenced. We take
both point and line features into account to decide whether a new keyframe should be
inserted. Instead of a fixed reasonable threshold, the ratio-based method is use to create a
new keyframe [20].
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Figure 3. Overview of the proposed method.

Map points, map lines, dominant directions, a set of keyframes, a covisibility graph,
and a spanning tree jointly make up the stored map. The covisibility graph is maintained to
link any two keyframes observing common landmarks. Whenever a keyframe is inserted,
the local mapping thread is implemented to process the new keyframe and update the
covisibility graph by the number of covisible landmarks. The map point culling and
the map line culling are performed to improve tracking performance by retaining the
high-quality map points and map lines. Furthermore, we merge the dominant directions
to maintain the orientation difference between any two directions. Besides, a local map
bundle adjustment procedure is performed to estimate keyframes poses, together with
map points, map lines, and dominant directions observed by these keyframes. Finally, a
keyframe culling procedure is conducted to remove the redundant keyframes. A keyframe
is considered to be removed when more than 90% of map points can be observed by other
keyframes (usually at least 3).

2.2. Feature Detection and Matching

In this paper, we use ORB features [23] to address the rotation, scale, and illumination
changes. They can be extracted and matched quickly. The lines are extracted by Line
Segment Detector (LSD) [24] and represented by Line Band Descriptor (LBD) [25]. The
unit surface normal vectors are extracted from the depth image [9]. These procedures are
conducted in parallel.

After extracting 2D features in the frame Fk, we use pi = (ui, vi) to represent the 2D
point feature and lj =

(
sj, ej

)
to represent the line segment in image coordinates. Let sj and ej
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denote the start point and end point in the line segment lj, respectively. The normalized line

function of the observed 2D line segment is denoted as lobs =
[
l1 l2 l3

]T , formally:

lobs =
sj × ej∣∣sj
∣∣∣∣ej
∣∣ . (1)

Once the 2D features have been detected and described, it is easy to obtain the 3D
positions in camera coordinates according to the camera intrinsic parameters and the depth
image. The 3D points and lines are denoted as Pc

i and Lc
j =

(
Pc

j,start, Pc
j,end

)
, respectively. To

match point features, we still use the same strategy as ORB-SLAM2 to match. We jointly
use both the LBD descriptor and geometric constraints to match line features between
consecutive frames.

2.3. Dominant Direction

After obtaining the 3D position of lines, we classify the 3D line vectors to obtain
parallel line clusters. The dominant directions are extracted from the parallel lines. The
dominant directions are tracked and matched to detect the MFs and estimate the camera
pose. We solve a least square problem for every parallel line cluster to determine its
dominant direction:

STd = 0, (2)

where S = si1≤i≤n ∈ R3×n and n is the number of lines in this parallel line cluster. Each
column sj represents a unit direction vector of the line in this cluster. Then, we obtain the
initial set of dominant directions

{
dck

i
}

of the current frame Fk, and each dominant direction
is a unit vector.

Unlike point and line features, the dominant directions are matched directly in the
global map. To match the ith dominant direction dck

i of the kth frame and the jth dominant
direction dw

j in the global map, we formulated it as:

cos
(

dck
i , dw

j

)
=

∣∣∣∣∣∣
dck

i ·
(

Rckwdw
j

)
∣∣∣dck

i

∣∣∣∣∣∣Rckwdw
j

∣∣∣
∣∣∣∣∣∣ =

∣∣∣dck
i ·
(

Rckwdw
j

)∣∣∣ (3)

We choose those pairs
(

dck
i , dw

j

)
whose absolute values of cosine satisfy a given thresh-

old (3◦ in this letter) as the candidate matches. As a result, we choose the dominant direction
whose angular difference between dck

i and dw
j is the closest to 1 as the correct match.

Sometimes, the angular difference between two dominant directions in the global
map may be smaller than the threshold after the local map BA. In that case, we merge the
two dominant directions by an iterative to maintain the orientation difference between any
two directions.

2.4. Manhattan Frame Detection

For MF Mi in the kth frame, it can be represented by three mutually perpendicular
dominant directions

{
dck

i,1, dck
i,2, dck

i,3

}
. To detect an MF Mi in Fk, we compute the angular

difference between two different dominant directions in
{

dck
i
}

. We think the two dominant
directions are orthogonal if the angular difference meets the orthogonal threshold (at least
87◦ in this work). Any three dominant directions, which are mutually orthogonal, constitute
an MF. If only two perpendicular dominant directions are found, the third direction can be
obtained by taking the cross-product between the two dominant directions. At the same
time, we add the newly created third dominant direction to the current frame’s dominant
direction set

{
dck

i
}

. The rotation matrix from this MF Mi to the current frame is represented

as Rckmi =
{

dk
i,1, dk

i,2, dk
i,3

}
.
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Like the method in [19], we save the MFs in the scene to a Manhattan map G. Through
the Manhattan map G, we can obtain the full and partial MF observations and the corre-
sponding frames that observe the MF first.

2.5. Pose Estimation

Two different strategies are used to estimate the camera pose Tcw = {Rcw, tcw} from
world coordinates W to camera coordinates C, depending on whether the scenes conform
to the MW assumption. For non-MW scenes, we directly estimate the 6 DoF camera pose
with a feature tracking method. In MW scenes, we decouple the camera pose to separately
estimate the rotational and translational motion.

2.5.1. Non-MW Scenes

In non-MW scenes, the tracked dominant directions are used to estimate the camera
motion by combining the point-line tracking. The dominant directions only provide the
orientation constraints, independent of translation. Then, the full camera pose is estimated
by minimizing the following cost function:

{Rcw, tcw} = arg min
R,t

[
∑
i∈P

ρ
(
‖ep

i ‖
2
)
+ ∑

j∈L
ρ
(
‖el

j‖
2)

+ ∑
k∈D

ρ
(
‖ed

k‖
2)]

, (4)

where P, L, and D are the set of all point, line, and dominant direction matches, respectively.
Let ρ denote the robust Huber cost function. The point reprojection error between observed
2D features and corresponding matched 3D features is defined as

ep
i = pi − π(RcwPw

i + tcw), (5)

where Pw
i ∈ R3 is the 3D map point in world coordinates corresponding to the 2D point

feature pi ∈ R2 in the image plane. The projection function π transforms a 3D point Pc in
camera coordinates into the image plane:

π(Pc) = π

Px
Py
Pz

 =

[
fx

Px
Pz

+ cx

fy
Py
Pz

+ cy

]
, (6)

where the focal length fx, fy and principal point cx, cy belong to camera intrinsic parameters.
The line reprojection error is formulated based on the point-to-line distance between the 2D
line segment lj and the 3D endpoints Pw

j,start and Pw
j,end from the matched 3D line Lw

j . The
error function is formulated as

el
j =

[
lT
obsπ

(
RcwPw

j,start + tcw
)

, lT
obsπ

(
RcwPw

j,end + tcw
) ]

. (7)

We define the dominant direction observation errors based on the 3D–3D correspon-
dence, formally:

ed
k = 1− |cos((Rcwdw

k ) · d
c
k)| (8)

where dw
k , dc

k are the dominant directions in world coordinates and camera coordinates,
respectively. Then these data associations are employed to optimize the current camera
pose using the Levenberg Marquardt (LM) algorithm implemented in g2o [26].

2.5.2. MW Scenes

Compared to estimating the camera pose directly from frame-to-frame tracking, the
pose estimation can be decoupled in MW scenes. To reduce the drift caused by frame-to-
frame tracking, we leverage the structural constraints in scenes to estimate the drift-free
rotation. The translation estimation is recovered from the feature tracking. The process is
shown in Figure 4.
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Figure 4. Rotation estimation in MW scenes. The proposed method first extracts the dominant
directions from parallel lines and matches them in the global map. Secondly, we detect the MF M2

by using dominant directions to obtain the initial rotation from MF to the current frame. The frame
Fj first observed this MF. Then, we use a mean shift-based tracking strategy to refine the rotation.
Finally, we obtain the drift-free rotation using Fj as the reference frame. The green dashed arrow
indicates the virtual dominant direction created by the cross-product between the two extracted
dominant directions.

For the rotation estimation, the set of dominant directions can be obtained using the
method described in Section 2.3. Then, all MFs in the current frame can be detected using
the method described in Section 2.4. To check whether an MF Mi =

{
dck

i,1, dck
i,2, dck

i,3

}
in the

current frame Fk is present in the Manhattan map G, we match the dominant direction
in the current frame with the dominant direction in the global map using the method
described in Section 2.3. For three dominant directions that constitute the MF Mi, if we can
find that at least two directions are matched with the dominant directions in the global
map and Mi has been present in G, then we obtain the corresponding frame Fj in which
Mi was first observed. If Fk does not contain any previously observed MF, then we use
the feature-tracking method (Section 2.5.1) instead of a decoupled method to solve the
camera pose.

We use the popular mean shift algorithm [8,9,14] for MF tracking to estimate the
rotation matrix. Firstly, we calculate the initial relative rotation Rinit

ckmi
from MF Mi to the

current frame Fk with the reference frame Fj and the last frame Fl :

Rinit
ckmi

= Rclmi = Rcl wRT
cjwRcjmi . (9)

Secondly, we transform the unit direction vectors of lines and the surface normal
vectors in the current frame to MF Mi using the transposed initial rotation matrix Rinit

mick
.

We project the unit direction vectors of lines and the surface normal vectors onto tangent
planes to compute a mean shift. Then, the mean shift result is transformed back to the
unit sphere from the tangential plane. Finally, we obtain the updated rotation matrix
Rckmi =

[
r1 r2 r3

]
. However, to make Rckmi still satisfy the orthogonality constraint, we

transform Rckmi onto SO (3) manifold using singular value decomposition (SVD):

Rckmi = UDVT = SVD
([

r1 r2 r3
])

, (10)

R̂ckmi = UVT . (11)
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Then, we can obtain the rotation matrix Rckw from world coordinates to the current
camera frame Fk using the reference frame Fj:

Rckw = R̂ckmi R
T
cjmi

Rcjw. (12)

More details on the sphere mean-shift method can be found in [8,9,14].
Once we obtain the drift-free rotation estimation, the 3 DoF translation estimation

can be calculated by using the point-line reprojection errors. Note that we do not use the
dominant direction observation errors in this process since they only provide rotational
constraints. Furthermore, we simplify the original non-linear optimization problem into a
linear one:

tcw = arg min
t

[
∑
i∈P

ρ
(
‖e′i

p‖2
)
+ ∑

j∈L
ρ

(
‖e′j

l‖
2
)]

. (13)

where e′i
p and e′j

l are the rotation-assisted point and line errors, respectively:

e′i
p
=


[(

RcwPw
i
)(3)

+ t(3)cw

]
(ui−cx)

fx
−
[(

RcwPw
i
)(1)

+ t(1)cw

]
[(

RcwPw
i
)(3)

+ t(3)cw

]
(vi−cy)

fy
−
[(

RcwPw
i
)(2)

+ t(2)cw

]
, (14)

e′j
l = l1 fx

[(
RcwPw

j,x

)(1)
+ t(1)cw

]
+ l2 fy

[(
RcwPw

j,x

)(2)
+ t(2)cw

]
+
(
l1cx + l2cy + l3

)[(
RcwPw

j,x

)(3)
+ t(3)cw

]
.

(15)

where we refer [·](k) as the kth row of a vector. Pw
j,x, x = { start, end} represents the

endpoints of the 3D line Lw
j . Then, we solve this BA problem using the LM algorithm.

After estimating the camera pose, we project the points, lines, and dominant directions
in the local map to the current frame to obtain more correspondence. The current camera
pose is optimized again with the resulting matches.

2.6. Local Map Bundle Adjustment

When a new keyframe K is inserted, the next step is to perform a local map BA
procedure, which refines the camera poses and landmarks in the local map.

Γ =
{

Pw
i , Lw

j , dk, Rl , tl

∣∣∣i ∈ P , j ∈ L, k ∈ D, l ∈ Kc

}
is the definition of the variable set

to be optimized. Kc represents all keyframes to be optimized, including the newly inserted
keyframe and all local keyframes that are connected to it in the covisibility graph. P , L,
and D represent all the map points, map lines, and dominant directions observed by these
keyframes, respectively. We also fix some keyframes that observe these points, lines, and
dominant directions but do not belong to Kc, denoted by K f . We minimize the following
cost function to estimate Γ:

Γ = arg min
Γ

 ∑
K∈{Kc∪K f }

(
∑
i∈P

ρ
(
‖ep

i ‖
2
)
+ ∑

j∈L
ρ
(
‖el

j‖
2)

+ ∑
k∈D

ρ
(
‖ed

k‖
2)). (16)

3. Results

To evaluate the performance of the proposed method, we conduct experiments in
synthesized and real-world sequences. Additionally, we compare it with other state-of-
the-art approaches. All the experiments have been performed on an Intel Core i5-10400
CPU @ 2.90 GHz/16 GB RAM, without GPU parallelization. Additionally, we disable the
bundle adjustment and loop closure modules of ORB-SLAM2 and SP-SLAM to make a
fair comparison.

ORB-SLAM2 [22] is a feature-point based RGB-D SLAM system, and our method is
based on it. MSC-VO is an RGB-D VO system using point, line, MW constraints, and a
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non-decoupled pose estimation method. ManhattanSLAM is an RGB-D SLAM system
using point, line, plane, MMF constraints, and decoupled pose estimation methods. RGB-
D SLAM is a SLAM system using point, line, plane, MW constraints, and decoupled
pose estimation methods. SP-SLAM is an RGB-D SLAM system using point, plane, and
non-decoupled pose estimation method. This information is also shown in Table 1.

3.1. ICL-NUIM Dataset

Imperial College London and National University of Ireland Maynooth (ICL-NUIM) [27]
dataset is a synthesized dataset containing two low-texture scenes with ground truth trajecto-
ries: living room and office, as shown on the left side of Figure 1. The scenes are rendered
based on a rigid Manhattan World model. Furthermore, this dataset contains large structured
areas and low-textured surfaces such as floors, walls, and ceilings.

Table 2 shows the performance of our method based on the translation root mean
square error (RMSE) of the absolute trajectory error (ATE). We compared the proposed
method with the state-of-the-art systems, including MSC-VO, ManhattanSLAM, RGB-
D SLAM, SP-SLAM, and ORB-SLAM2. The comparison of the RMSE is also shown in
Figure 5. Figure 6 shows the percentage of MFs detected from each sequence in the
ICL-NUIM dataset.

Table 2. Comparison of ATE RMSE (M) for ICL-NUIM sequence.

Sequence Ours MSC-VO ManhattanSLAM RGB-D SLAM SP-SLAM ORB-SLAM2

Ir-kt0 0.006 0.006 0.007 0.006 0.016 0.014
Ir-kt1 0.013 0.010 0.011 0.015 0.018 0.011
Ir-kt2 0.014 0.009 0.015 0.020 0.017 0.021
Ir-kt3 0.017 0.038 0.011 0.012 0.022 0.018
of-kt0 0.025 0.028 0.025 0.041 0.031 0.049
of-kt1 0.018 0.017 0.013 0.020 0.018 0.029
of-kt2 0.015 0.014 0.015 0.011 0.027 0.030
of-kt3 0.015 0.010 0.013 0.014 0.012 0.012

Average 0.015 0.017 0.014 0.017 0.020 0.023

The best result for each sequence is shown in bold.
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3.2. TUM RGB-D Dataset

Technical University of Munich (TUM) RGB-D Benchmark [28] is a popular dataset to
evaluate RGB-D VO/SLAM systems. Unlike the ICL-NUIM dataset, it consists of several
real-world camera sequences, which contain different indoor scenes such as cluttered
scenes, and different structure and texture scenes, as shown in Figure 7. Based on this, it
can evaluate our system’s robustness and accuracy in both MW and non-MW scenes.

Table 3. Differences between sequences in TUM RGB-D dataset.

Group Sequence Texture Structure Plane Strict Follow the MW Assumption

1

fr1/xyz

high middle low middle
fr1/desk
fr2/xyz
fr2/desk

2

fr3/s-nt-far
low

high high low
fr3/s-nt-near

fr3/s-t-far high
fr3/s-t-near
fr3/cabinet low high

3
fr3/l-cabinet high middle middle middlefr3/longoffice
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We selected 11 sequences in the TUM RGB-D dataset and divided them into three
groups. Then we distinguished them according to the number of textures, structures and
planes and whether they strictly follow the MW assumption. Table 3 shows the differences
between sequences.

Table 4 shows the performance comparison of our method based on the translation
RMSE (ATE), and other systems, including MSC-VO, ManhattanSLAM, RGB-D SLAM,
SP-SLAM, and ORB-SLAM2. Local map for the fr3-longoffice sequence is shown in Figure 8.
Relevant data are shown in Figures 9–11.

Table 4. Comparison of ATE RMSE (M) for TUM RGB-D sequence.

Group Sequence Ours MSC-VO ManhattanSLAM RGB-D SLAM SP-SLAM ORB-SLAM2

1

fr1/xyz 0.009 0.010 0.010 × 0.010 0.010
fr1/desk 0.015 0.019 0.027 × 0.026 0.022
fr2/xyz 0.004 0.005 0.008 × 0.009 0.009
fr2/desk 0.010 0.023 0.037 × 0.025 0.040

Average 0.010 0.014 0.021 * 0.018 0.020

2

fr3/s-nt-far 0.021 0.077 0.040 0.022 0.031 ×
fr3/s-nt-near 0.020 × 0.023 0.025 0.024 ×

fr3/s-t-far 0.010 - 0.022 0.010 0.016 0.011
fr3/s-t-near 0.010 - 0.012 0.015 0.010 0.011
fr3/cabinet 0.036 - 0.023 0.035 × ×

Average 0.019 * 0.024 0.021 * *

3
fr3/l-cabinet 0.045 0.120 0.083 0.071 0.074 ×

fr3/longoffice 0.011 0.022 0.046 - - 0.021

Average 0.028 0.071 0.065 * * *

× represents tracking failure—means result is not available. * represents that at least one sequence tracking failure
or not available. The best result for each sequence is shown in bold.
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dataset fr3-longoffice sequence.



Sensors 2022, 22, 8644 13 of 17

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 8. Left: Local map for the fr3-longoffice sequence. Right: Estimated trajectories with our 

method (blue) and ManhattanSLAM (green), and the ground truth (dashed grey) in TUM RGB-D 

dataset fr3-longoffice sequence. 

 

Figure 9. Left: Comparison of ATE RMSE (M) for sequence fr1/xyz, fr1/desk, fr2/xyz, fr2/desk. 

Right: The percentage of MFs detected from each sequence. Figure 9. Left: Comparison of ATE RMSE (M) for sequence fr1/xyz, fr1/desk, fr2/xyz, fr2/desk.
Right: The percentage of MFs detected from each sequence.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 10. Left: Comparison of ATE RMSE (M) for sequence fr3/s-nt-far, fr3/s-nt-near, fr3/s-t-far, 

fr3/s-t-near, fr3/cabinet. Right: The percentage of MFs detected from each sequence. 

 

Figure 11. Left: Comparison of ATE RMSE (M) for sequence fr3/l-cabinet, fr3/longoffice. Right: The 

percentage of MFs detected from each sequence. 

3.3. Time Consumption 

The average running time of each operation of the proposed method and Manhat-

tanSLAM can be found in Table 5. We obtained the average results by running on seven 

different sequences in the TUM RGB-D benchmark. 

Table 5. Mean execution time (TUM RGB-D benchmark). 

Method Tracking Local Mapping 

Ours 
Feature Extrac. Pose Estim. Total (Hz) Local Map BA 

24.39 12.59 25 183.34 

ManhattanSLAM 

superpixel extraction and 

surfel fusion 
Total (Hz) - 

37.8 16 - 

3.4. Drift 

We evaluated our system on the Texas A&M University (TAMU) RGB-D dataset [29] 

to test the amount of accumulated drift and robustness over time. Unlike the ICL-NUIM 

and TUM RGB-D datasets, the TAMU dataset does not provide ground-truth poses and 

Figure 10. Left: Comparison of ATE RMSE (M) for sequence fr3/s-nt-far, fr3/s-nt-near, fr3/s-t-far,
fr3/s-t-near, fr3/cabinet. Right: The percentage of MFs detected from each sequence.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 10. Left: Comparison of ATE RMSE (M) for sequence fr3/s-nt-far, fr3/s-nt-near, fr3/s-t-far, 

fr3/s-t-near, fr3/cabinet. Right: The percentage of MFs detected from each sequence. 

 

Figure 11. Left: Comparison of ATE RMSE (M) for sequence fr3/l-cabinet, fr3/longoffice. Right: The 

percentage of MFs detected from each sequence. 

3.3. Time Consumption 

The average running time of each operation of the proposed method and Manhat-

tanSLAM can be found in Table 5. We obtained the average results by running on seven 

different sequences in the TUM RGB-D benchmark. 

Table 5. Mean execution time (TUM RGB-D benchmark). 

Method Tracking Local Mapping 

Ours 
Feature Extrac. Pose Estim. Total (Hz) Local Map BA 

24.39 12.59 25 183.34 

ManhattanSLAM 

superpixel extraction and 

surfel fusion 
Total (Hz) - 

37.8 16 - 

3.4. Drift 

We evaluated our system on the Texas A&M University (TAMU) RGB-D dataset [29] 

to test the amount of accumulated drift and robustness over time. Unlike the ICL-NUIM 

and TUM RGB-D datasets, the TAMU dataset does not provide ground-truth poses and 

Figure 11. Left: Comparison of ATE RMSE (M) for sequence fr3/l-cabinet, fr3/longoffice. Right: The
percentage of MFs detected from each sequence.



Sensors 2022, 22, 8644 14 of 17

3.3. Time Consumption

The average running time of each operation of the proposed method and Manhat-
tanSLAM can be found in Table 5. We obtained the average results by running on seven
different sequences in the TUM RGB-D benchmark.

Table 5. Mean execution time (TUM RGB-D benchmark).

Method Tracking Local Mapping

Ours
Feature Extrac. Pose Estim. Total (Hz) Local Map BA

24.39 12.59 25 183.34

ManhattanSLAM
superpixel extraction and surfel fusion Total (Hz) -

37.8 16 -

3.4. Drift

We evaluated our system on the Texas A&M University (TAMU) RGB-D dataset [29]
to test the amount of accumulated drift and robustness over time. Unlike the ICL-NUIM
and TUM RGB-D datasets, the TAMU dataset does not provide ground-truth poses and
contains long indoor sequences. Due to the camera trajectory being a loop, we can calculate
the Trajectory Endpoint Drift (TED) [29], which computes the Euclidean distance between
the starting and end points of the trajectory, to represent the accumulated drift. The output
trajectory is shown on the right side of Figure 12.
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4. Discussion
4.1. Localization Accuracy
4.1.1. ICL-NUIM Dataset

The results are shown in Figure 5 and Table 2. Since there are rich structural regu-
larities (enough lines and planes) and the highly present MW assumption in ICL-NUIM
dataset, these are beneficial to the MW-based approaches. ManhattanSLAM shows the best
quantitative results on average. Our method shows the second-best quantitative results on
average, with a difference of 0.001 m. MSC-VO combines the structural constraints and
MA alignment with the point line reprojection errors to optimize camera poses and shows
the best quantitative results in four sequences. However, in sequence lr-kt3, it contains a
perspective very close to the wall, which highly affects the MW detection, leading to the
performance degradation of MSC-VO. Our method and ManhattanSLAM are more robust,
as they can switch tracking strategies and adaptively estimate the camera motion.



Sensors 2022, 22, 8644 15 of 17

Figure 6 shows the percentage of MFs detected from each sequence in the ICL-NUIM
dataset. In ICL-NUIM dataset, it contains large structured areas. Since ManhattanSLAM
uses plane features, it can detect MFs on 88% of all frames in sequence. The number of our
method is 42%. However, it also leads to a 23 ms increase in time consumption. However,
the average accuracy is only 0.001 m (6.6%) different. Time consumption data is described
in Section 3.3.

4.1.2. TUM RGB-D Dataset

The results are shown in Table 4. In the TUM RGB-D dataset, our method shows the
best quantitative results. Only our method and ManhattanSLAM can obtain results in
all sequences.

As shown in Table 4, in fr1 and fr2 sequences, the environments are cluttered and
can be detected with few or no MFs using planes, which makes RGB-D SLAM, using a
decoupled pose estimation method, track failure. ManhattanSLAM can robustly estimate
a pose in these scenes by switching it to a feature-tracking method and performing an
equivalent result to feature-based ORB-SLAM2 and SP-SLAM. However, the scenes also
have a few structural characteristics such as lines, which makes our method achieve higher
accuracy by using the dominant directions extracted from parallel lines.

For the fr3 sequence, the scenes contain different degrees of structure and texture. The
proposed method can obtain the highest performance in six of seven except for cabinet.
Only a few textures existed in four of seven sequences—the point-based method, ORB-
SLAM2, is not able to find enough corresponding points, which results in tracking failure.
As shown in Figure 8, after the camera runs a loop, the trajectory of our method does not
drift significantly and achieves higher accuracy compared to other methods.

Next, we will further discuss the reason why our method is more accurate than
ManhattanSLAM on the TUM RGB-D dataset. Relevant data are shown in Figures 9–11.

The sequences of group 1 record a typical office scene, including desks, a computer
monitor, a keyboard, a telephone, chairs, etc. The environments are cluttered and can be
detected with few or no MFs using planes, as shown in Figure 9, less than 1%. Our method
can still extract few structural characteristics such as lines, which means our method can
achieve higher accuracy by using the dominant directions extracted from parallel lines.

The sequences of group 2 consist of multiple planes and can detect large MFs us-
ing planes, as shown in Figure 10. Our method can achieve higher accuracy. Although
ManhattanSLAM can extract enough MFs, the planes in the first four sequences do not
strictly follow the parallel or orthogonal relationship, and the forced use of the MW as-
sumption will introduce redundant errors. Our method filters out non-orthogonal lines by
line direction, making the real situation consistent with the assumption.

As shown in Figure 11, sequence fr3/l-cabinet contains some planes, but Manhat-
tanSLAM does not extract enough MFs. With these sequences containing much texture
and structure, our method can extract enough MFs, which makes our method achieve
higher accuracy.

4.2. Time Consumption

Although the extraction of lines and surface normals is time-consuming for the pro-
posed method, using multiple threads reduces the overall system time consumption, and
we only need an average of 24.39 ms for the feature extraction. The local map BA procedure
takes 183.34 ms on average, but it runs in a parallel thread. The whole tracking thread works
at around 25 Hz. ManhattanSLAM takes 40 ms for superpixel extraction and surfel fusion
and 67 ms for tracking on average. The whole tracking thread works at around 15 Hz.

The proposed method can work in real time. Our time consumption has decreased by
36%, and the accuracy has been maintained at the same level or beyond.
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4.3. Drift

We employ Corridor-A and Entry-Hall sequences to evaluate the final trajectory drift.
This dataset contains noisy depth data and low-texture floors and walls, as shown on
the left side of Figure 12, which highly affect the camera pose estimation. As shown in
Table 6, ManhattanSLAM achieved the best estimation results by adding plane features in
the tracking process. The improvements of our method over the whole trajectory lengths of
Corridor-A and Entry-Hall are 74.4% and 65.8%, respectively, compared to ORB-SLAM2.
Compared with MSC-VO, which also uses point and line features, the improvements of
our method are 12.1% and 29.0%.

Table 6. Comparison of the accumulated drift (m) in TAMU RGB-D sequence.

Sequence Ours MSC-VO ManhattanSLAM ORB-SLAM2 Length (m)

Corridor-A 0.80 0.91 0.53 3.13 82
Entry-Hall 0.76 1.07 0.39 2.22 54

5. Conclusions

In this letter, we propose an accurate and efficient RGB-D Visual Odometry system
leveraging the structural regularity in indoor environments, which can robustly run in
general indoor scenes. This is achieved by leveraging the dominant directions extracted
from parallel lines in scenes to improve localization accuracy. On the one hand, the
dominant directions can be used to solve the drift-free rotation estimation in MW scenes.
On the other hand, they can also provide a rotation constraint to incorporate point and
lines reprojection errors to optimize the camera pose. All these contributions can improve
the accuracy of the computed trajectory for our method, as shown in our experiments.
Furthermore, our pipeline is designed to address the different scenes: MW scenes and
non-MW scenes, which means our system can work in a wider range of environments.

The estimation accuracy of the line affects the calculation of the dominant direction.
If the uncertainty of the 3D coordinates of the recovered line is too large, the calculation
and matching of the dominant direction will be affected, and the relative MF cannot be
matched. In the future, we would like to add a loop closure module and improve the
dominant direction detection to further discard unstable observations. We will also try to
implement the proposed method with a monocular camera and IMU, which is beneficial
for the Manhattan Frame detection, and possibly extend it to outdoor environments.
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