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Abstract: Not only for radio frequency but also for optical communication systems, knowledge of
the signal-to-noise ratio (SNR) is essential, e.g., for an adaptive network, where modulation schemes
and/or error correction methods should be selected according to the varying channel states. In the
current paper, this topic is discussed for a bandlimited optical intensity link under the assumption that
the data symbols are known to the receiver unit in form of pilot sequences. This requires a unipolar
signal design regarding the symbol constellation, but also a non-negative pulse shape satisfying
the Nyquist criterion is necessary. Focusing on this kind of scenario, the modified Cramer–Rao
lower bound is derived, representing the theoretical limit of the error performance of the data-
aided SNR estimator developed in this context. Furthermore, we derive and analyze a maximum
likelihood algorithm for SNR estimation, which turns out to be particularly simple for specific values
of the excess bandwidth, among them the most attractive case of minimum bandwidth occupation.
Numerical results confirming the analytical work conclude the paper.

Keywords: SNR estimation; optical wireless communications; intensity modulation

1. Introduction

In a series of papers recently published by the author [1–3], parameter estimation
and synchronization for a bandlimited optical intensity link have been discussed. In this
context, a unipolar waveform design is indispensable with respect to pulse shaping and
symbol constellation [4,5]. Furthermore, it is most helpful that pulse shapes satisfy the
Nyquist criterion, which allows for a simple detection process in the receiver unit [6].

However, not only for radio frequency (RF) but also for optical wireless communication
(OWC) solutions [7–10], the relevant transmission parameters have to be recovered reliably,
because otherwise subsequent receiver stages, such as error correction algorithms, cannot
be operated in an efficient way [11,12]. In particular, recovery of the symbol timing is of
paramount importance in this respect, since this is a prerequisite for many other estimation
and detection procedures. In [1–3], it has been shown how this might be achieved for a
bandlimited optical intensity link under different conditions, e.g., whether data are known
to the receiver unit or not in the form of pilot sequences, or if the estimator or synchronizer
module is to be implemented in a feedforward or feedback manner.

Usually, the estimation of the signal-to-noise ratio (SNR) requires that the symbol
timing has been established before by a properly selected algorithm. It is to be recalled
that knowledge of the SNR is normally needed for adaptive communication systems to
select modulation and coding schemes according to the given channel conditions [13],
but also powerful error correction methods—such as turbo or LDPC algorithms—need
this sort of information [14]. Scanning the open literature, numerous papers are available
about SNR estimation in RF channels, e.g., the frequently cited overview by Pauluzzi and
Beaulieu [15], but little or no information is published for OWC systems. This has been
the main motivation of the current contribution addressing data-aided SNR estimation
for a bandlimited optical intensity channel. Finally, it is to be noticed that the article was
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prepared for a Special Issue of Feature Papers 2022 in the Communications Section of
MDPI Sensors.

The rest of the paper is organized as follows: the signal and channel model for
analytical and simulation work is introduced in Section 2, whereas Section 3 focuses on
the derivation of the Cramer–Rao lower bound (CRLB) as the theoretical limit of the jitter
performance for any algorithm discussed in the context of SNR estimation. In Section 4, we
derive a maximum likelihood (ML) algorithm and analyze it in terms of mean value and
variance. Numerical results are shown in Section 5, and Section 6 concludes the paper.

2. Signal and Channel Model

As already mentioned in the introductory section, properly selected pulse shapes and
modulation schemes are necessary to satisfy the non-negativity as well as the Nyquist
constraints required for a bandlimited optical intensity channel. In this respect, it is
assumed that the real-valued data symbols ak, k ∈ Z, are independent and identically
distributed (i.i.d.) elements of an M-ary PAM alphabet A. It makes sense to organize
the alphabet such that the symbols are normalized to unit energy, i.e., E[a2

k ] = 1, where
E[·] denotes the expectation operator. Then, with ηM = 1

6 (M − 1)(2M − 1), we have
ak ∈ A = 1√

ηM
{0, 1, . . . , M− 1}. This means that the average value is given by

µa = E[ak] =
1
√

ηM

M− 1
2

=

√
3 (M− 1)

2 (2M− 1)
(1)

On the other hand, the signal at the output of the opto-electrical receiver module is
obtained as

r(t) = A ∑
k

ak h(t− kT − τ) + w(t) (2)

where A > 0 is the channel gain, h(t) describes the pulse shape, T and τ symbolize the symbol
period and the propagation delay between receiver and transmitter station, respectively.
We assume that A is a constant regarding the observation interval used for estimation
purposes, because variations of the channel state are normally slow enough so that fading
effects need not be taken into account. As already required previously, h(t) must satisfy the
non-negativity as well as the Nyquist criterion, e.g., achieved by a squared raised cosine
function [1,6]. In line with the investigations carried out in [1–6], the receiver signal in (2) is
also assumed to be distorted by additive white Gaussian noise (AWGN), in the following
expressed by w(t), with zero mean and variance σ2

w.
In addition, we introduce the average optical power as P0 = µa h, where

h =
1√
T

∞∫
−∞

h(t) dt (3)

so that the average electrical SNR at the receiver can be defined as

γs =
A2P2

0
σ2

w
(4)

However, before being treated in further stages of operation, the signal in (2) has to
pass the receiver filter q(t), whose output is given by z(t) = q(t)⊗ r(t), where ⊗ denotes
the convolutional operator. For convenient reasons, this is summarized in Figure 1.
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Since there exists no simple solution for a matched filter structure in the context of
a bandlimited optical intensity link [6], it is suggested that q(t) exhibits a flat behavior
over the spectrum occupied by the user component in (2). This straightforward approach
guarantees that the waveform will not be distorted, but the price to be paid is an increased
amount of noise the subsequent receiver stages have to cope with. In particular, this means
that the transfer function of the filter performs a rectangular shape in the frequency domain,
i.e., Q( f ) = F [q(t)] =

√
T for | f | ≤ (1 + α)/T and Q( f ) = 0 elsewhere, with α as the

roll-off factor (excess bandwidth) of the selected pulse shape; recall that α = 0 indicates
the minimum bandwidth scenario. The related impulse response is then furnished by
application of the inverse Fourier transform [16], i.e.,

q(t) = F−1[Q( f )] =
2(1 + α)√

T
sinc[2(1 + α)t/T] (5)

with sinc(x) = sin(πx)/(πx). Of course, the noise signal at this flat filter output develops
as n(t) = w(t) ⊗ q(t) representing a zero-mean non-white Gaussian process. Assuming in
the next step that the symbol timing has been reliably recovered and corrected, e.g., by
the algorithm proposed in [1], the T-spaced samples at the output of the receiver filter are
obtained as

zk = z(kT) = A · ak + nk (6)

where E[nk] = 0 and E[ni nk] = 2(1 + α) σ2
w sinc[2(1 + α)(i− k)].

3. Cramer–Rao Lower Bound
3.1. Derivation of the Log-Likelihood Function

The Cramer–Rao lower bound (CRLB) is a major figure of merit when it comes to the
estimation of a parameter [17]. The reason behind this is the fact that the bound represents
the theoretical limit of the jitter (error) variance of any estimator developed in this context.

According to the signal model specified previously, we have to consider the parameter
vector u = (u1, u2) = (A, σw). The CRLB for ui is determined by

CRLB(ui) = [J−1(u)]i (7)

where [·]i indicates the i-th diagonal entry of the inverted Fisher information matrix (FIM)
expressed by J(u). In the case that no nuisance parameter needs to be taken into account,
the FIM entries are computed as

Ji,k ≡ [J(u)]i,k = −E
[

∂2Λ(z; u)
∂ui ∂uk

]
(8)

with z as the given vector of observables, Λ(z;u) denotes the log-likelihood function (LLF)
characterizing the communication link, and E[·] symbolizes expectation with respect to the
noise model.

By inspection of (8), it is clear that the computation of the CRLB requires the knowledge
of the LLF describing the subject of investigation. To this end, we assume that a sequence
of L receiver samples (6) forms the vector z expressed by

z = A · a + n (9)

The vector a of known data symbols specifies the pilot sequence, which is to be used for
estimation purposes in the sequel, and n denotes the noise vector with covariance matrix

R = E[n · nT ] = 2(1 + α) σ2
w Ω (10)
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where the entries for line i and column k of Ω are given by ωik = sinc[2(1+ α)(i− k)] = ωki
forming this way a symmetric Toeplitz matrix [18]. As a result, the likelihood function for
our estimation problem can be written as [19,20],

Pr(z; u) =
1√

(2π)Ldet(R)
e−

1
2 (z−A a)TR−1(z−A a) (11)

However, instead of using u = (A, σw), it is easier to concentrate in the following on the
average electrical SNR normalized by P2

0 , i.e., ρs = γs/P2
0 = A2/σ2

w. Then, by introduction
of Pn = σ2

w, we have that u = (ρs, Pn) and the related LLF is furnished by

Λ(z; u) = log Pr(z; u) ∼ − L
2

log Pn −
zTΨ z− 2

√
ρsPn zTΨ a + ρsPn aTΨ a
4(1 + α)Pn

(12)

which has been achieved by Ψ = Ω−1 as well as omitting all immaterial constants and
factors not depending on u.

3.2. Modified Cramer–Rao Lower Bound

In the next step, the FIM entries are obtained by computing the second-order deriva-
tives according to (8), the results of which have then to be averaged with respect to the
noise vector n. However, this approach means that the CRLB will be a function of the
selected pilot sequence a. Therefore, it is suggested to extend the averaging procedure to a
as well, which creates the so-called modified Cramer–Rao lower bound (MCRLB) [21–23].
Doing so, we get after some algebra:

J11 = −E
[

∂2Λ(z; u)
∂ρ2

s

]
=

1
8(1 + α)ρs

Ea[aTΨ a] (13)

J22 = −E
[

∂2Λ(z; u)
∂P2

n

]
= − L

2P2
n
+

ρs

8(1 + α)P2
n
Ea[aTΨ a] +

1
2(1 + α)P3

n
En[nTΨ n] (14)

J12 = J21 = −E
[

∂2Λ(z; u)
∂ρs∂Pn

]
=

1
8(1 + α)Pn

Ea[aTΨ a] (15)

Evaluating (7) for u1 = ρs, the corresponding MCRLB is given by

MCRLB(ρs) =
J22

J11 J22 − J2
12

(16)

Substituting (13)–(15) into (16) and scaling the result with respect to ρ2
s , we obtain the

normalized MCRLB expressed as

NMCRLB(ρs) = MCRLB(ρs)

ρ2
s

= 2(1 + α)
(

Pn
En[nTΨ n]−L(1+α)Pn

+ 4
ρs Ea[aTΨ a]

) (17)

Introducing the auxiliary terms

Ψ0 =
1
L

L−1

∑
i=0

ψii, Ψ1 =
1
L

L−1

∑
i=0

L−1

∑
k=i+1

ψik, Ψ2 =
1
L

L−1

∑
i=0

L−1

∑
k=0

ωik ψik (18)
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where ψik is the entry of Ψ indicating line i and column k, the expected operations in (17)
can be written as

Ea[aTΨ a] =
L−1
∑

i=0

L−1
∑

k=0
E[ai ak] ψik

=
L−1
∑

i=0
E[a2

i ] ψii +
L−1
∑

i=0

L−1
∑

k=0,k 6=i
E[aiak] ψik

= ηa
L−1
∑

i=0
ψii + 2µ2

a
L−1
∑

i=0

L−1
∑

k=i+1
ψik = L(Ψ0 + 2µ2

aΨ1)

(19)

and

En[nTΨ n] =
L−1
∑

i=0

L−1
∑

k=0
E[nink] ψik

= σ2
n

L−1
∑

i=0

L−1
∑

k=0
ωik ψik = 2L(1 + α)Pn Ψ2

(20)

Finally, by plugging (19) and (20) into (17), we have that

NMCRLB(ρs) =
2
L

(
1

2Ψ2 − 1
+

4(1 + α)

ρs(Ψ0 + 2µ2
aΨ1)

)
(21)

Nevertheless, the relationship might be simplified for α ∈
{

0, 1
2 , 1

}
, because in

this case ωik = sin c[2(1 + α)(i − k)] = 1 for i = k and zero elsewhere. This means that
Ω = Ω−1 = Ψ = IL, with IL as the L-dimensional identity matrix, which means also that
Ψ0 = Ψ2 = 1 and Ψ1 = 0. Hence, the normalized bound boils down to

NMCRLB(ρs) =
2
L

(
1 +

4 (1 + α)

ρs

)
(22)

4. Maximum Likelihood Estimation
4.1. Derivation of the Estimator Algorithm

By means of the LLF in (12), we are basically in the position to derive a maximum
likelihood (ML) algorithm for SNR estimation. However, the SNR parameter is composed
of two ingredients—channel gain A and the noise power Pn—the estimates of which are
needed to compute the SNR estimate. This is simply achieved by substituting ρs = A2/Pn
into (12), deriving the resulting LLF with respect to A and Pn, equating both relationships
to zero and solving them analytically. Doing this, we obtain for u = (A, Pn)

∂Λ(z; u)
∂A

∣∣∣∣
u=

^
u
=

zTΨ a− Â aTΨ a
2(1 + α)P̂n

= 0 (23)

and
∂Λ(z; u)

∂Pn

∣∣∣∣
u=

^
u
= − L

2P̂n
+

zTΨ z− 2Â zTΨ a + Â2aTΨ a
4(1 + α)P̂2

n
= 0 (24)

Then, by introduction of Maa = aTΨ a, Maz = zTΨ a, and Mzz = zTΨ z, we find the
estimates for channel gain and noise power in closed form:

Â =
zTΨ a
aTΨ a

=
Maz

Maa
(25)

P̂n =
zTΨ z− 2Â zTΨ a + Â2aTΨ a

2(1 + α)L
=

1
2(1 + α)L

(
Mzz −

M2
az

Maa

)
(26)
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By inspection of (25) and (26), it is clear that a viable solution is only achievable for
Maa > 0, i.e., a pilot sequence consisting of zero symbols only would not work. Finally,
according to the invariance principle for ML estimates [24], the SNR solution is given by

ρ̂s =
Â2

P̂n
(27)

4.2. Probability Analysis

In this subsection, we want to derive the probability density function (PDF) of the
SNR estimate in (27) and analyze it in terms of bias and variance. It turns out that this is
possible in closed form for Ψ = IL, i.e., α ∈

{
0, 1

2 , 1
}

, whereas for other values of α, it is
verified in Section 5 that the analytical results achieved with Ψ = IL are very close to the
true ones obtained by numerical means.

By plugging Ψ = IL into (25), the estimate for the channel gain develops as

Â =
zTa
aTa

=
(A a + n)Ta

aTa
= A +

nTa
aTa

= A +
1

Maa

L−1

∑
k=0

aknk (28)

which means that Â is a zero-mean Gaussian variate. Computing the variance of the
latter, we have to consider that the noise samples nk are zero-mean and i.i.d. in case that
Ψ = IL. Therefore,

σ2
A = E[(Â− A)

2
] =

1
M2

aa
E

(L−1

∑
k=0

aknk

)2
 =

1
M2

aa
E
[

L−1

∑
k=0

a2
kn2

k

]
=

σ2
n

Maa
(29)

where σ2
n = E[n2

k ] = 2(1 + α) σ2
w. The related PDF is then straightforwardly given by

fA(Â) =
1√

2πσA
e−(Â−A)

2/2σ2
A (30)

On the other hand, Y = Â2 corresponds to a non-central Gamma variate [19] charac-
terized by the distribution

fY(y) =
1√

2πy σA
e−(y+A2)/2σ2

A cosh

(
A
√

y
σ2

A

)
, y > 0 (31)

If we consider in the next step the estimate of the noise power for Ψ = IL, we have

P̂n =
zTz− 2Â zTa + Â2aTa

2(1 + α)L
(32)

With z = A · a + n and Â determined by (28), the numerator in (32) simplifies to

(A a + n)T(A a + n)− 2Â (A a + n)Ta + Â2aTa = nTn− (nTa)2

aTa
(33)

which represents a central Gamma variate with variance σ2
n and L—1 degrees of free-

dom [20,25]. Hence, by introduction of X = P̂n, the PDF of (32) can be written as

fX(x) =
1

(2σ2
x)

L−1
2 Γ( L−1

2 )
x

L−1
2 −1e−x/2σ2

x , x ≥ 0 (34)
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where σ2
x = σ2

n
2(1+α)L = σ2

w
L . Employing in the following the PDFs in (31) and (34), the

distribution of the SNR estimate is determined by (A2) derived in the Appendix A, i.e.,

f (ρ̂s) =
K0√

ρ̂s(ρ̂s + β)L
e−λ

1F1

(
L
2

,
1
2

;
λ ρ̂s

ρ̂s + β

)
, ρ̂s > 0 (35)

Regarding (A3) and (A4), the parameters β, λ, and K0 are functions of the true SNR
value denoted by ρs, the roll-off factor α, the observation length L, as well as the selected
pilot sequence a.

By means of the relationships (A9) and (A10) detailed in the Appendix A, we can
specify the first- and second-order moments of (35) as follows:

E[ρ̂s] =

∞∫
0

ρ̂s f (ρ̂s) dρ̂s =
L

L− 3

(
ρs +

2(1 + α)

Maa

)
(36)

E[ρ̂2
s ] =

∞∫
0

ρ̂2
s f (ρ̂s) dρs =

L2

(L− 3)(L− 5)

(
ρ2

s +
12(1 + α)ρs

Maa
+

12(1 + α)2

M2
aa

)
(37)

Therefore, bias and variance of ρ̂s, normalized by ρs and ρ2
s , respectively, are given by

NBias(ρ̂s) =
E[ρ̂s]− ρs

ρs
=

L
L− 3

(
1 +

2(1 + α)

Maaρs

)
− 1 (38)

and
NVar(ρ̂s) = E[ρ̂2

s ]−E2[ρ̂s ]

ρ2
s

= 2L2

(L−3)2(L−5)

(
1 + 4(1+α)(L−2)

Maaρs
+ 4(1+α)2(L−2)

M2
aaρ2

s

) (39)

Via Maa, it is obvious that (38) and (39) depend on the selected pilot sequence. In order
to avoid this drawback, we could average the relationships with respect to a. The problem
in this context is that there exists no closed form solution. A way out of this dilemma is
Jensen’s inequality [26] (Appendix 1B), which provides us with

E[ 1
Maa

] ≥ 1
E[Maa]

=
1

LE[a2
k ]

=
1
L

(40)

and
E[ 1

M2
aa
] ≥ 1

E[M2
aa]

=
1

LE[a4
k ] + L(L− 1)E2[a2

k ]
=

1
Lκa + L(L− 1)

(41)

where κa denotes the symbol kurtosis of the PAM alphabet, which is given by

κa = E[a4
k ] =

6
5
· 3M(M− 1)− 1
(2M− 1)(M− 1)

(42)

By taking into account the auxiliary results in (40) and (41), we finally obtain

NBias(ρ̂s) =
L

L− 3

(
1 +

2(1 + α)

Lρs

)
− 1 (43)

and

NVar(ρ̂s) =
2L2

(L− 3)2(L− 5)

(
1 +

4(1 + α)(L− 2)
Lρs

+
4(1 + α)2(L− 2)

[L κa + L(L− 1)] ρ2
s

)
(44)

as lower bounds for the relationships in (38) and (39), respectively.
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5. Numerical Results

The analytical results achieved for SNR estimation in Sections 3 and 4 will be verified
by Monte Carlo (MC) simulations. In the following, the former are indicated by lines,
whereas the latter are shown by markers. Each point in the diagrams below has been
obtained by averaging a number of 105 estimates, which turned out to be large enough to
verify the analytical results with sufficient accuracy.

Assuming a 4-PAM constellation operated with ρs = 0 dB and a roll-off factor α ∈ {0.0, 1.0},
Figure 2 illustrates the evolution of the normalized bias as a function of the observation
length L. It is to be noticed that the lines in different colors represent the lower bound given
by (43); verified by simulation results, we observe that the lower limit is very tight over
the full range of L. We observe that the bias decreases rapidly with increasing values of L,
which is also confirmed by (43). In addition, the diagram depicts the results obtained for
16-PAM, ρs = 10 dB, and α ∈ {0.2, 0.8}. In the strict sense, the relationship in (43) applies
only to values of α ∈ {0.0, 0.5, 1.0}, but the 16-PAM scenario in Figure 2 demonstrates that it
represents also a very good approximation for other values of the excess bandwidth.
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Figure 2. Evolution of the normalized bias. Figure 2. Evolution of the normalized bias.

The evolution of the normalized bias has been simulated and verified for modulation
schemes other than 4-PAM and 16-PAM, e.g., 2-PAM and 8-PAM, as well as for roll-off
factors different to those exemplified in Figure 2. It turned out that the bias of the estimator
algorithm is reflected accurately enough by the formula in (43), disappearing for very large
values of L irrespective of the selected values of M or α.

Using a 4-PAM scheme with L = 10 and the same roll-off factors as before, Figure 3
illustrates the evolution of the normalized variance as a function of the true SNR value
in dB. For comparison purposes, the normalized MCRLB expressed by (22) is shown in
dashed style. We observe that the latter is fairly loose for such small observation windows,
whereas the lower bound of the variance in (44) appears to be very tight as confirmed by
simulation results, in particular at larger SNR values. However, the diagram illustrates
also that the MCRLB is more and more approximated by the jitter variance of the related
estimator algorithm, when we increase the observation length in Figure 3, verified for 16-
PAM, L = 100, and α ∈ {0.2, 0.8}; it is to be recalled that for α /∈ {0.0, 0.5, 1.0}, the NMCRLB
is furnished by (21). Finally, we see that the MC output is very close to (44) over the full
SNR range, although the relationship is, in a strict sense, only applicable to roll-off factors
α ∈ {0.0, 0.5, 1.0}. These observations also hold true for modulation schemes and roll-off
factors other than those used in Figure 3; especially, one can see that for L� 1 and ρs � 1,
the normalized variance is simply given by 2/L.
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6. Concluding Remarks

Assuming a data-aided situation, i.e., data symbols are known to the receiver in the
form of a pilot sequence, SNR estimation for a bandlimited optical intensity link has been
investigated in the current paper. This requires a signal design achieved by an M-ary PAM
scheme and a non-negative pulse shape also satisfying the Nyquist criterion. By means of a
flat receiver filter, it is avoided that the waveforms of the user signal are distorted, but the
price to be paid is an additional amount of noise which the subsequent receiver stages are
suffering from.

Conditioned on reliable recovery and correction of the symbol timing, the modified
CRLB could be derived as the theoretical limit of the jitter variance produced by the SNR
estimator developed in the context of this paper. With respect to the latter, an ML solution
has been obtained in closed form, which turned out to be particularly simple from a
computational point of view for specific values of excess bandwidth, among them being
the minimum bandwidth scenario. For these values, the analytical relationships for bias
and jitter variance have been obtained in closed form as well.

Verified by simulation results, it could be shown that—irrespective of the chosen PAM
constellation and the value of the excess bandwidth—the bias effect vanishes more and
more with increasing values of the true SNR value and the observation length L the link is
operated with. This is also confirmed in view of jitter performance insofar as the CRLB is
successively approached by increasing values of L.
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Appendix A

Using the identities introduced in Section 4, i.e., X = P̂n as well as Y = Â2, together
with Z = ρ̂s = Y/X, the PDF of the SNR estimate can be expressed as [27]

fZ(z) =
∞∫

0

fZ|X(z
∣∣∣x) fX(x) dx =

∞∫
0

x fY(x z) fX(x) dx (A1)
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Substituting in the sequel the PDFs given by (31) and (34), we obtain by means of [28]
(3.462/1) and (9.240) after some lengthy but straightforward manipulations,

fZ(z) =
K0√

z(z + β)L
e−λ

1F1

(
L
2

,
1
2

;
λz

z + β

)
(A2)

where 1F1(·) denotes the confluent hypergeometric (Kummer) function [29] and the param-
eters β, λ, and K0 are specified as follows:

λ =
A2

2σ2
A
=

Maaρs

4(1 + α)
, β =

σ2
A

σ2
x
=

2(1 + α)L
Maa

(A3)

K0 =
Γ( L

2 )√
π Γ( L−1

2 )

(
σ2

A
σ2

x

)(L−1)/2

=
Γ( L

2 )√
π Γ( L−1

2 )
β(L−1)/2 (A4)

Deriving the m-th order moment of (A2), we first express the confluent hypergeometric
function by its Meijer G-equivalent [30] (8.4.45/2), i.e.,

1F1(a, b; z) =
Γ(b)
Γ(a)

G1,1
2,1

(
− 1

z

∣∣∣∣ 1, b
a

)
(A5)

Applying then the integration rules for Meijer G-functions [30] (2.24.2/6), we get

Mm =
∞∫
0

zm fZ(z) dz , m ∈ N0

=
K0 Γ( 1

2 )

Γ( L
2 )

e−λ
∞∫
0

zm−1/2

(z+β)L/2 G1,1
2,1

(
− z+β

λz

∣∣∣ 1, 1
2

L
2

)
dz

= K0
Γ( 1

2 ) Γ( L−2m−1
2 )

Γ( L
2 )

β(2m+1−L)/2e−λG2,1
3,2

(
− 1

λ

∣∣∣ 1, 1
2 , L

2
m + 1

2 , L
2

) (A6)

Employing the integral definition for Meijer G-functions [30] (8.2.1/1) as well as the
identity in (A5), which means that

G2,1
3,2

(
− 1

λ

∣∣∣∣ 1, 1
2 , L

2
m + 1

2 , L
2

)
= G1,1

2,1

(
− 1

λ

∣∣∣∣ 1, 1
2

m + 1
2

)
=

Γ(m + 1
2 )

Γ( 1
2 )

1F1

(
m +

1
2

,
1
2

; λ

)
(A7)

the relationship in (A6) might be simplified to

Mm = K0
Γ(m + 1

2 ) Γ( L−2m−1
2 )

Γ( L
2 )

β(2m+1−L)/2e−λ
1F1

(
m +

1
2

,
1
2

; λ

)
(A8)

Finally, by taking into account the properties of confluent hypergeometric functions,
the first- and second-order moments are provided as

M1 =

√
πK0

2
Γ( L−3

2 )

Γ( L
2 )

β−(L−3)/2(2λ + 1) (A9)

and

M2 =

√
πK0

4
Γ( L−5

2 )

Γ( L
2 )

β−(L−5)/2(4λ2 + 12λ + 3) (A10)
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