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Abstract: With the advance of the Internet of things (IoT), localization is essential in varied services.
In urban scenarios, multiple transmitters localization is faced with challenges such as nonline-of-sight
(NLOS) propagation and limited deployment of sensors. To this end, this paper proposes the MT-
GCNN (Multi-Task Gated Convolutional Neural Network), a novel multiple transmitters localization
scheme based on deep multi-task learning, to learn the NLOS propagation features and achieve the
localization. The multi-task learning network decomposes the problem into a coarse localization
task and a fine correction task. In particular, the MT-GCNN uses an improved gated convolution
module to extract features from sparse sensing data more effectively. In the training stage, a joint
loss function is proposed to optimize the two branches of tasks. In the testing stage, the well-trained
MT-GCNN model predicts the classified grids and corresponding biases jointly to improve the overall
performance of localization. In the urban scenarios challenged by NLOS propagation and sparse
deployment of sensors, numerical simulations demonstrate that the proposed MT-GCNN framework
has more accurate and robust performance than other algorithms.

Keywords: multiple transmitters localization; deep learning; multi-task learning; nonline-of-sight
propagation; sparse sensors

1. Introduction

With the prevalence of wireless devices and the application of wireless sensor networks
(WSNs), the localization of transmitters has attracted extensive attention in the Internet
of things (IoT) era. Localization is important in commercial, industrial, and defense tasks,
such as activity monitoring, spectrum cognition, and target tracking in urban scenarios.
Generally, the measurements of sensors in WSNs are collected and processed for localization
in the form of time of arrival (TOA), time difference of arrival (TDOA), angle of arrival
(AOA), or received signal strength (RSS). Many valuable studies based on the above
measurements have focused on the single transmitter localization [1–4]. Notably, due to the
complex electromagnetic propagation conditions in urban scenarios, multiple transmitters
localization, a quite challenging issue, has been increasingly researched.

Some existing multiple transmitters localization approaches estimate the position of
each transmitter separately, depending on the distinguishability of signals [5,6]. Nonethe-
less, signals from different transmitters are intractable to separate, especially in non-
cooperative and spectrum-shared situations. Under conditions where only superimposed
measurements are accessible in WSNs, traditional range-based algorithms are unsuitable
for multiple transmitters localization. Without the need for signal separation, compressive
sensing (CS) methods have been utilized to transform the localization problem into a
sparse reconstruction problem in plenty of research [7,8]. The transmitters and sensors
are assumed to be located at the fixed grid center. Jiang et al. [7] presented a robust
CS-based localization scheme with the aid of Laplace prior, but in practice, the off-grid
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problem of transmitters can cause larger positioning errors. A grid evolution algorithm was
proposed to establish a more accurate sparse recovery framework for off-grid targets local-
ization in [8]. In addition, numerous algorithms were developed to improve the CS-based
localization [9,10].

Although widely applied for multiple transmitters localization, CS-based methods
implicitly assume an experiential or statistical electromagnetic wave propagation model.
In urban scenarios, nonline-of-sight (NLOS) propagation is unavoidable due to the dense
distribution of buildings, and results in extra errors for traditional propagation calculation.
Therefore, the experiential and statistical propagation models fail to effectively fit the urban
NLOS propagation [11,12].

Thanks to the marvelous development of artificial intelligence, deep learning (DL)
is proved effective in learning complex propagation features and improving localization
performance [13–15]. In the International Conference on Indoor Positioning and Indoor
Navigation (IPIN) Competition, which is highly relevant for the indoor positioning commu-
nity, many teams successfully profited from deep learning techniques and see a prospect
of more widespread adoption in indoor positioning in the near future [16,17]. One of the
contributions of the Naver Labs Europe (NLE) Team is that the magnetic sensing data were
encoded into 2D images, and then the deep neural networks were applied to capture the
hidden correlations in the inputs and predict the positions. Team KawaguchiLab utilized
Long Short-Term Memory (LSTM) to achieve the speed estimation of dead reckoning and
gained robustness to noisy data. The SZU-Mellivora Capensis team proposed a recurrent
neural network (RNN) framework to update the target’s position. In addition, Team Yai
trained six deep neural network (DNN) based classifiers and combined them to obtain
a more precise localization result. Other research teams are also interested in the deep
learning based localization. Designed for single-target localization, CellinDeep [18] divided
the study area into grids and adopted a classification DNN to predict the probability of
each grid. Then, the spatially weighted average was used to solve the off-grid problem
in localization. Practical experiments of CellinDeep in complex environments validated
its effectiveness in recognizing propagation features. In addition, some fingerprint-based
localization methods, which consist of fingerprint database construction and fingerprint
matching [19], also apply the DL framework to train fingerprints instead of storing all the
data. The wavefingerprints can be transformed into feature-based fingerprints to reflect
the propagation features, and the neural networks are capable of mapping the fingerprints
with the location features [20]. Essentially, the function of the neural networks among
the DL-based localization techniques is to learn the propagation features and look for the
mapping between the sensing data and the locations. In addition, driven by data, the
DL-based localization usually contains two phases as well, i.e., offline training phase and
online testing phase.

Regarding multiple transmitters localization, DL is still effective to capture the prop-
agation features and achieve the localization with no need for signal separation. Deep-
TxFinder [21] predicted the number of transmitters at first and then regressed the coordi-
nates directly. HMTLNet [22] aimed to transform the localization into a heatmap regression
problem. DeepMTL [23] solved the problem with convolutional neural network (CNN)
models from the view of computer vision. However, the regression-based or image-based
schemes require hundreds of sensors [24], and these methods have to predict the contin-
uous location variables in the solution space. Under the NLOS propagation and sparse
sensing conditions, it is intractable to achieve the comprehensive perception of the mapping
between the sensing data and the location variables [25].

To lower the difficulty of regressive mapping, this paper utilizes the classification
to narrow the solution space by dividing the continuous study area into grids at first.
Regarding the coordinates of grid centers as the coarse localization results, the discrete
classification leads to off-grid errors. To gain continuous and more accurate results, the
regression of the biases off the grid centers is expected to correct the localization. Therefore,
this paper proposes a multi-task gated convolutional neural network (MT-GCNN) to
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decompose the multiple transmitters localization problem into a coarse localization task
and a fine correction task. The two tasks in the proposed MT-GCNN complement each other.
More importantly, an improved gated convolution module is proposed as the backbone of
MT-GCNN to enhance the feature capture capacity. The fusion of features in the improved
gated convolution module and the parallel processing in the multi-task learning framework
facilitate a more accurate performance of multiple transmitters localization.

The main contributions in this paper can be summarised as follows:

1. In the proposed MT-GCNN, the multi-label classification and the bias regression are
combined to predict the coarse results and correct biases. A joint loss function is also
designed to train the two tasks simultaneously.

2. Considering the challenges of NLOS propagation and limited layouts of sensors, an
improved gated convolution module is applied for feature extraction in MT-GCNN.
The gated mechanism [26] and convolutional module are combined to fuse the multi-
dimensional features of sparse sensing data in complex environments.

3. With the aid of the simulation software Winprop, the proposed localization scheme
is validated based on the urban NLOS propagation datasets. Moreover, this paper
analyzes the localization performance of different factors, including the number
of transmitters, the number of sensors, the impact of measurement noise, and the
complexity of models.

The following contents are organized as follows: Section 2 presents the multi-task
localization framework’s problem formulation and data preparation, Section 3 introduces
the details of the proposed MT-GCNN model for multiple transmitters localization, and the
simulation results and performance evaluation are shown in Section 4. Finally, conclusions
are included in Section 5.

2. Problem Formulation

We suppose there are M transmitters and N sensors in a two-dimensional study area,
where the unknown position of the ith transmitter is denoted as LT,i = (xi, yi), i = 1, 2, . . . , M,
and each sensor is given by the known coordinate LS,i = (xi, yi), i = 1, 2, . . . , N. According
to the function of the deployed sensors, the superimposed signal measurements from
transmitters, such as RSS, TOA, TDOA, and AOA. RSS is easily accessible and is thus chosen
as the study measurements of sensors. Focusing on the sparse layouts of sensors, we denote
the RSS measurements from all sensors as a vector R = (r1, r2, . . . , rN), a sample of data-
driven neural network input. Notably, the sensing data are utilized to learn the propagation
characteristics in the study area. Therefore, the proposed localization scheme is not limited
to the type of RSS measurements and requires no propagation model assumption.

Multi-task learning (MTL) has been increasingly used to improve the overall perfor-
mance in many fields [27,28]. Generally, multiple tasks are conducted in a unified network
simultaneously and share in the representation of features in the bottom layers. In this
paper, the MTL framework is utilized to achieve the following coarse localization task and
fine correction task.

The typical multi-classification algorithms inspire the coarse localization branch for
single transmitter localization [18,29,30]. Based on the fact that the propagation features
are similar in a small block, the continuous study area is divided into K grids with the
length of a m and the width of b m. Each grid represents a category for the classifier. The
mentioned classification-based localization algorithms categorize the single transmitter
into a fixed grid, but they are unsuitable for multiple transmitter localization. In this
paper, the multi-classification is generalized into the multi-label classification to solve the
coarse-grained multiple transmitters localization. Assuming that transmitters are located
in different grids, this branch aims to determine which M categories (i.e., grids) correspond
with the RSS vector. Thus, the classification label Ycla of the training dataset is set as a
0–1 vector with the length of K, which means the transmitters are located in the M grids
with the value 1.
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Unavoidably, the coarse classification leads to off-grid errors, and the achievable
precision is limited to the discrete grids. The fine correction branch is designed to predict
the biases off the grids to gain continuous localization results. The bias label is expressed
as Ybias with the size of 2× K. In Ybias, the first row contains the x-coordinate biases off the
centers of grids marked with 1 in Ycla, whereas the second row denotes y-coordinate biases.
The Ybias values corresponding to those grids marked with 0 in Ycla are set to zeros. Finally,
the classification label Ycla and the bias label Ybias are stacked as

Y3×K =

(
Ycla,1×K
Ybias,2×K

)
.

The localization scheme based on deep multi-task learning is shown in Figure 1. Firstly,
the position of each transmitter and the aggregated RSS data are collected after dividing
the study area into grids. Next, the RSS data are processed into a vector of length as the
inputs. Then, the transmitters are categorized into grids, and the biases off the centers are
calculated to generate the classification and bias labels. Each dataset sample prepared for
the DL-based localization scheme consists of the RSS input vector and the stacked label. In
the training stage, transmitters are randomly deployed to collect sufficient samples. In the
testing stage, the well-trained MT-GCNN model jointly predicts the classified grids and
the corresponding biases. The final localization results are calculated by the sum of the
coarse results and the biases, whereas labels are only used to evaluate the performance of
the proposed localization scheme.

Figure 1. The localization scheme based on the deep multi-task learning.

3. MT-GCNN Model for Multiple Transmitters Localization

This section presents the detailed implementation and configuration of the proposed
MT-GCNN model. Firstly, we explain the design principle of core modules, including the
convolution module, the gated mechanism, and the multi-task module. Next, the joint loss
function and the localization procedure are illustrated.

3.1. The Design of MT-GCNN

As shown in Figure 2, MT-GCNN is a multi-task learning framework with the back-
bone of an improved gated convolution module. In many fields [31,32], the gated mecha-
nism empowers the features to flow through different levels, achieving the fusion of linear
and nonlinear features transformation. Considering the limited information in the inputs
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when the sensors are deployed sparsely, it is more difficult to learn the hidden NLOS
propagation features, and the performance of localization gets worse. In this section, an
improved gated convolution module is designed for sparse sensing data, resulting in a
richer capture and fusion for multi-dimensional features.

(a) (b)

Figure 2. The architecture of (a) the MT-GCNN framework and (b) the improved gated convolu-
tion module.

Specifically, the 1D convolutional layer with 256 channels and 5 × 5-sized kennels is
used to extract local features from the input R = (r1, r2, . . . , rN). Proper padding is applied
to keep the same length of feature maps. Generally, common activation functions, such as
ReLu, Sigmoid, and Tanh, are set to introduce the nonlinear relationships into the features.
Fewer original propagation features hidden in the inputs can be observed as the number of
sensors reduces. Thus, the output feature maps are possibly erroneous. An improved gated
unit is incorporated into the convolution module to perceive features under the sparse
sensing condition fully. Specifically, the feature maps with the size of (256, N) are evenly
divided into a linear path and a nonlinear path. The former is used to keep the standard
convolutional features, which contributes to alleviating the vanishing or exploding gradient
problem. The latter retains the nonlinear capabilities via Sigmoid activation function. The
output formula of this module is expressed as [26]:

OGC = Conv1D1(I)⊗ σ(Conv1D2(I)). (1)

Herein, I is the input of the gated convolution module, ⊗means the element-wise multi-
plication, and σ represents the Sigmoid activation function, constraining the value of the
nonlinear branch to be within [0, 1]. In addition, the output size OGC is changed into (128,
N) after the multiplication.

In particular, a skip connection of the residual structure is added to the 1D gated
convolution module to enhance the fusion of multi-dimensional features. The improved
output formula is as follows:

OGC = I + Conv1D1(I)⊗ σ(Conv1D2(I)). (2)
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From the view of information flow, the rewritten equation is derived as follows:

OGC = I + (Conv1D1(I)− I)⊗ σ(Conv1D2(I))

= I⊗ [1− σ(Conv1D2(I))] + Conv1D1(I)⊗ σ(Conv1D2(I)) (3)

= I⊗ (1− σ) + Conv1D1(I)⊗ σ,

where σ = σ(Conv1D2(I)). Due to the linear transformation of convolution, Conv1D1(I)− I
is equal to the Conv1D1(I) in Equation (2). Therefore, the information of features passes
directly with the probability of 1− σ, while flowing through layers with the probability
of σ after transformation. Integrating original, convolutional, and activated nonlinear
features, the improved gated convolution module ensures that the features flow through
different channels before they are fused.

In addition, batch normalization, a technique to train deep networks, is utilized for
feature scaling [33], accelerating the convergence and making it easier for the network
to learn the fusion features. Eventually, based on Equation (3), the final output of the
improved gated convolution module is updated as:

OGC = BN(OGC). (4)

In the proposed MT-GCNN model, four improved gated convolutional layers are
stacked to extract shared feature maps with the size of (128, N) based on the input
R = (r1, r2, . . . , rN). Then, a multi-label classification branch and a bias regression branch
are used to predict the located grids and the biases off the centers. Both consist of an
improved gated convolutional layer and two global average pooling layers. In the classifier,
the first pooling layer is applied to unify the 128 channels into 1, and the other layer trans-
forms the length of N into K to generate the output Ocla with the size of (1, K). Elements in
Ocla represent the scores of each class calculated by the network. In the regression branch,
the number of channels is changed into 2 to generate the (2, K) sized output Obias through
the global average pooling layers.

Consequently, the improved gated convolution module is expected to largely affect
the extraction and fusion of multi-dimensional features. Moreover, two output branches of
the MT-GCNN model are designed to conduct coarse localization and fine correction for
multiple transmitters localization.

3.2. Joint Loss Function

Design and minimization of loss functions are necessary to train deep networks. In
our MT-GCNN model, the joint loss function is set as the combination of each task’s loss,
which is explained in detail as follows.

(1) Multi-label Classification Loss: For a traditional classifier, the cross-entropy func-
tion is generally combined with the Softmax function to predict the class, which can be
expressed as:

Lcross−entropy = − log
est

K
∑

i=1
esi

= log(1 +
K

∑
i=1,i 6=t

esi−st), (5)

where si represents the score of the ith class (with a total of K classes), and the tth class is
referred to as the target class. Regarding the multiple transmitters localization as multi-
label classification, we can achieve M target and K−M non-target classes. Inspired by a
unified loss function proposed in [34], the target classes and the non-target classes can be
analogized as the intra-class similarity sp and the inter-class similarity sn in Equation (6):

Luni = log

(
1 + ∑

j
eγ(sj

n+m) ∑
i

eγ(−si
p)

)
, (6)

where γ and m are the scale factor and the interval for better similarity separation, respectively.
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Similarly, a loss function for the multi-label classification task is extended as follows
to maximize the scores of target classes and minimize the scores of non-target classes:

Lcla = log

(
1 + ∑

j∈ΩN

esj ∑
i∈ΩT

e−si

)
. (7)

Here, the set ΩT contains M target classes, and the set ΩN has K−M non-target classes.
Equation (5) is a special form of Equation (7).

(2) Masked Regression Loss: The output Obias predicts the biases off grids. A mean
squared error (MSE) function is applied to calculate the loss between the predicted output
Obias and the bias label Ybias. In addition, the 0-1 classification label Ycla is regarded as a
mask to concentrate on optimizing the bias prediction of target grids. Thus, the masked
regression loss for bias prediction in the fine correction task is expressed as:

Lbias =
1

Ns

Ns

∑
i=1
‖Ycla ⊗ (Obias − Ybias)‖2, (8)

where Ns is the number of samples, ⊗ represents the element-wise multiplication, and ‖·‖2

calculates the sum of squares.
Therefore, the joint loss function is expressed as the loss sum of each task:

Ljoint = Lcla + Lbias. (9)

3.3. Training and Localization

In the training stage, the backpropagation algorithm and the adaptive moment esti-
mation (Adam) optimizer are used to calculate gradients and minimize the joint loss to
train the MT-GCNN model end-to-end with an initial learning rate of 0.01. The exponential
decay rates of first-order and second-order moment estimation are 0.5 and 0.9, respectively.
The Adam optimizer is self-adaptive to tune the learning rate with the parameters update.

During the online localization, the trained MT-GCNN model depends only on the
sensing data R = (r1, r2, . . . , rN) from sensors to predict the positions of multiple transmit-
ters. The output of the coarse localization branch is Ocla = (s1, s2, . . . , sK), and the Softmax
function is employed to convert the scores into the joint probability of each grid:

P(si) =
esi

K
∑

j=1
esj

. (10)

The joint probability reflects grids where the transmitters are possibly located. The
centers of those grids with maximum M probability are selected as the coarse localization
results. It can be assumed that the set G = {g1, g2, . . . , gM} contains the indexes of the
selected grids and Lc,i = (xc,i, yc,i), i = 1, 2, . . . , K represents the center coordinate of the
grid i.

Meanwhile, the output

Obias =

(
a1, a2, . . . , aK
b1, b2, . . . , bK

)
is predicted as the biases of the grids to achieve continuous and accurate localization
through the fine correction branch. The final localization result L∗i = (x∗i , y∗i ), i = 1, 2, . . . , M
is calculated as follows:

x∗i = xc,gi + agi ,

y∗i = yc,gi + bgi .

(11)
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4. Numerical Evaluation

In this section, extensive simulations are conducted to evaluate the effectiveness
and robustness of the proposed MT-GCNN multiple transmitters localization framework.
Firstly, a more precise propagation calculation is used to generate simulated datasets
with the assistance of the Winprop software. Next, the performance of localization under
different conditions is discussed and compared.

4.1. Simulation Setup

Winprop [35] is a simulation software offering precise electromagnetic wave propa-
gation calculation based on the dominant path model (DPM) [36] and 3D building map.
This paper uses the Winprop software to simulate the actual urban electromagnetic wave
propagation and generate corresponding data to verify the proposed framework. As is
shown in Figure 3, a 480 m × 360 m-sized study area in Tsinghua University is selected to
construct the actual geographic model and conduct propagation simulations. The default
size of dividing grids is 120 m × 180 m, and the number of grids is K = 8. In this study
area, the default number of transmitters is set as M = 3. We assume that M transmitters
are randomly located in different grids with the same frequency of 1800 MHz and the
same transmitted power of 43 dBm. N sensors are uniformly deployed in the study area to
receive the RSS values from transmitters, with the maximum value being set into 12. In
the training datasets, 19,200 samples are collected to train the proposed MT-GCNN, and
2400 samples are prepared for validation and testing datasets to evaluate the localization
performance. The training epoch is 100, and other network parameters have been set as
the detailed configuration in Section 3. All numerical simulations are conducted on an
RTX2080ti GPU with 96 GB of RAM, and PyTorch is used as the DL algorithm basis.

Figure 3. The gridding of the study area in Tsinghua University.

4.2. Performance Comparison

To verify the effectiveness and robustness of the proposed MT-GCNN framework, we
adopt two existing methods and two classification-based network structures for compar-
ison, including DeepMTL [23] for multiple transmitters localization, CellinDeep [18] for
single transmitter localization, MLP [30] structure with full connection layers, and GCNN
structure only with the improved gated convolution. Since the DeepMTL relies on the
dense deployment of sensors, it fails in convergence to achieve multiple transmitters local-
ization under the sparse sensing condition of fewer than 12 sensors. In addition, another
regression-based DeepTxFinder [21] is incapable of localization on the same urban datasets.
CellinDeep applies the classification and the spatially weighted average. MLP and GCNN
structures are used for the coarse classification-based localization without the multi-task
learning framework.
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There are two performance indicators for comparing localization algorithms in this
paper. One is the grid-classification accuracy:

α=
nt

Ns ·M
× 100%, (12)

which shows the performance of the coarse localization task. nt is the number of the
correct classification for transmitters, and Ns ·M refers to the total number of transmitters
in all samples. The other indicator is the mean positioning error to evaluate the final
localization results:

ε =
1

Ns ·M

Ns ·M
∑
i=1

√
(x∗i − xi)

2 + (y∗i − yi)
2. (13)

The proposed MT-GCNN is compared with the algorithms from different transmitters,
sensors, and measurement noise conditions, and the complexity of models is also analyzed.
The results of the comparative experiments are as below:

(1) With a different amount of transmitters: The proposed MT-GCNN framework is
also suitable for single transmitter localization. Firstly, we test the performance of single
transmitter localization of N = 4 sensors. Table 1 compares grid-classification accuracy
and the mean positioning error with different algorithms. Compared with those regression-
based methods, the four classification-based algorithms are easier to converge. Limited
by the size of grids, the classification-based structures such as GCNN and MLP suffer
from the off-grid problem, and the spatially weighted average in CellinDeep is ineffective
in improving the localization. In contrast, the parallel processing of coarse classification
task and fine regression task in MT-GCNN is effective to improve the localization. The
grid-classification accuracy of MT-GCNN achieves 98.25%, and the mean positioning error
is significantly reduced by 90.45% from about 60 m to 5.73 m. In addition, the total number
of sensors is N = 4, which is an extremely sparse sensing condition.

Table 1. The comparison of grid-classification accuracy and mean positioning error with different
algorithms when M = 1 and N = 4.

Algorithms Grid-Classification Accuracy α (%) Mean Positioning Error ε (m)

MT-GCNN 98.25 5.73
GCNN 96.54 59.35

CellinDeep 93.00 59.95
MLP 93.21 62.75

Furthermore, Figure 4 illustrates the performance as the number of transmitters varies
from 1 to 5 when the total number of sensors is N = 12. Generally, the localization perfor-
mance degrades due to the increase of transmitters because more propagation information
is necessary for DL-based networks to detect and localize more transmitters. Nevertheless,
the proposed MT-GCNN achieves the best performance with the fusion of features and the
multi-task framework.

(2) With a different number of sensors: Figure 5 shows the localization results with
different amounts of sensors when the total transmitters are M = 3. As the amount of
sensors reduces, the grid-classification accuracy decreases, and the mean positioning error
increases. In terms of grid-classification accuracy in Figure 5a, the improved gated convolu-
tion module in MT-GCNN and GCNN is more effective in extracting NLOS propagation
features than full connection layers in the traditional MLP structure. The proposed multi-
task framework is slightly improved compared with GCNN in the coarse localization task.
Regarding the mean positioning error in Figure 5b, the bias prediction of the fine correction
task in MT-GCNN can improve the final localization performance under sparse layouts of
less than 12 sensors.
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(a) (b)

Figure 4. The localization results with a different number of transmitters. (a) grid-classification
accuracy and (b) mean positioning error.

With N = 8 sensors, Figure 6 presents a box-plot for the localization results as the
number of LOS sensors varies from 2 to 7. Compared with the MLP and GCNN structure, MT-
GCNN has the lowest median localization error of below 30 m and has superior interquartile
range performance, especially with more LOS sensors. The proposed MT-GCNN outperforms
the MLP and the GCNN despite the number of LOS sensors, suggesting the effectiveness and
robustness of the proposed localization framework under the NLOS propagation.

(a) (b)

Figure 5. The localization results with a different number of sensors. (a) grid-classification accuracy
and (b) mean positioning error.

Figure 6. The localization results with a different number of LOS sensors (a total of eight sensors).
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(3) The impact of noise: Inevitably, the measurements of sensors are prone to external
noise. Gaussian white noise N(0, σ2) is added to the testing data to evaluate the robustness
of the proposed MT-GCNN, where σ (dB) is the standard deviation. With the fixed number
of transmitters as M = 3 and a total number of sensors as N = 12, Figure 7 shows the
impact of noise on the localization performance and the comparative results of MT-GCNN,
GCNN, and MLP. As the standard deviation σ of noise varies from 1 to 6 (dB), the grid
classification accuracy decreases from 94% to 85% and the localization error of MT-GCNN
increases from 30 m to 50 m. However, the proposed MT-GCNN still achieves the superior
performance than GCNN and MLP under different noise conditions.

(a) (b)

Figure 7. The localization results with different σ (dB) of noise. (a) grid-classification accuracy and
(b) mean positioning error.

(4) The complexity of models: Mathematical complexity of models usually contains
the time and space complexity. Specifically, the time complexity reflects the Floating Point
Operations (FLOPs) of models, while space complexity represents the total amount of
parameters in layers and operational process. In the MLP, GCNN and MT-GCNN, the 1D
convolutional layers, the element-wise multiplication in the gated mechanism, the global
average pooling layers and the full connection layers are mainly considered to calculate the
complexity mathematically. For the 1D convolutional layers, the time and space complexity
are shown as Equations (14) and (15):

Time ∼ O

(
Nc

∑
i=1

li · ki · Ci−1 · Ci

)
, (14)

Space ∼ O

(
Nc

∑
i=1

ki · Ci−1 · Ci + ∑
i=1

ki · Ci

)
, (15)

where Nc represents the total amount of the convolutional layers in the networks. Nc = 6 in
MT-GCNN, while Nc = 5 in GCNN. i represents the ith layer, li is the length of the inputs,
and ki is the size of the kennels. C is the number of channels.

For the gated mechanism, the time and space complexity depend on the element-
wise multiplication:

Time ∼ O

(
Nc

∑
i=1

li · Ci

)
, (16)

Space ∼ O

(
Nc

∑
i=1

li · Ci

)
. (17)
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For the global average pooling layers, the time and space complexity depend on the
number of channels:

Time ∼ O

(Np

∑
i=1

Ci−1 · Ci

)
, (18)

Space ∼ O

(Np

∑
i=1

Ci−1 · Ci

)
. (19)

where Np represents the total amount of the global average pooling layers in the networks.
Np = 4 in MT-GCNN, while Np = 2 in GCNN.

For the full connection layers, the time and space complexity are shown as
Equations (20) and (21):

Time ∼ O

N f

∑
i=1

Di−1 · Di

, (20)

Space ∼ O

N f

∑
i=1

Di−1 · Di

, (21)

where N f is the total amount of the full connection layers in the networks. In MLP, N f = 4.
D is the flatten size of the features.

In addition, from the view of the experimental analysis, testing time reflects the time
efficiency, which is also calculated to compare MLP, GCNN, and the proposed MT-GCNN.

With the number of sensors N = 12 and the number of grids K = 8, Table 2 presents
the comparison of the mathematical complexity and testing time of MLP, GCNN, and
the proposed MT-GCNN. The results show that the gated convolution in GCNN, and
MT-GCNN results in higher complexity than MLP. However, the actual testing time is only
slightly different. It is attractive to yield an improvement in localization accuracy with
acceptable complexity.

Table 2. The comparison of the mathematical complexity and testing time.

Algorithms Time Complexity Space Complexity Testing Time (s)

MT-GCNN Time ∼ O
(

9.86× 106
)

Space ∼ O
(

8.38× 105
)

9.3447

GCNN Time ∼ O
(

7.89× 106
)

Space ∼ O
(

6.71× 105
)

8.8990

MLP Time ∼ O
(

2.74× 105
)

Space ∼ O
(

2.74× 105
)

2.1693

5. Conclusions

This paper proposes the MT-GCNN model, a novel multiple transmitters localization
scheme based on deep multi-task learning. The problem of multiple transmitters localiza-
tion in the scheme is transformed into a coarse multi-label localization task and a fine bias
correction task. Accordingly, the multi-label localization loss and the masked regression
loss are combined. The proposed MT-GCNN is trained end to end by minimizing the
joint loss function. Furthermore, an improved gated convolution module is applied in the
MT-GCNN framework to enhance the capture of NLOS propagation features of the sparse
sensing data. With the reliable simulations in Winprop, the numerical results validate the
effectiveness and robustness of the proposed algorithm from the aspects of transmitters,
sensors, measurement noise, and complexity. With the improved gated convolution and
parallel processing of multiple tasks, the proposed MT-GCNN framework achieves more
accurate localization than other DL-based algorithms in urban scenarios.



Sensors 2022, 22, 8674 13 of 15

Author Contributions: Conceptualization, W.W. and L.Z.; methodology, W.W. and Z.H.; software,
B.L.; validation, W.W. and L.Y.; formal analysis, W.W. and K.C.; data curation, W.W. and L.Z.;
writing—original draft preparation, W.W. and K.C.; writing—review and editing, L.Z. and Z.H.;
visualization, W.W. and B.L; project administration, L.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China Grant
No. 61971439 and 61702543.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study.

Abbreviations
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AOA Angle of Arrival
CNN Convolutional Neural Network
CS Compressive Sensing
DL Deep Learning
DNN Deep Neural Network
DPM Dominant Path Model
FLOPs Floating Point Operations
GCNN Gated Convolutional Neural Network
GPU Graphics Processing Unit
IoT Internet of Things
LOS Line of Sight
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
MSE Mean Square Error
MT-GCNN Multi-Task Gated Convolutional Neural Network
MTL Multi-Task Learning
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RNN Recurrent Neural Network
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TDOA Time Difference of Arrival
TOA Time of Arrival
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