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Abstract: Substance use disorder (SUD) is a dangerous epidemic that develops out of recurrent use
of alcohol and/or drugs and has the capability to severely damage one’s brain and behaviour. Stress
is an established risk factor in SUD’s development of addiction and in reinstating drug seeking.
Despite this expanding epidemic and the potential for its grave consequences, there are limited
options available for management and treatment, as well as pharmacotherapies and psychosocial
treatments. To this end, there is a need for new and improved devices dedicated to the detection,
management, and treatment of SUD. In this paper, the negative effects of SUD-related stress were
discussed, and based on that, a few significant biomarkers were selected from a set of eight features
collected by a chest-worn device, RespiBAN Professional, on fifteen individuals. We used three
machine learning classifiers on these optimal biomarkers to detect stress. Based on the accuracies, the
best biomarkers to detect stress and those considered as features for classification were determined to
be electrodermal activity (EDA), body temperature, and a chest-worn accelerometer. Additionally,
the differences between mental stress and physical stress, as well as different administrations of
meditation during the study, were identified and analysed. Challenges, implications, and applications
were also discussed. In the near future, we aim to replicate the proposed methods in individuals
with SUD.
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1. Introduction

A rapidly growing epidemic afflicting 40.3 million adults (Substance Abuse and
Mental Health Services Administration (SAMHSA) 2020 [1]) and having increased 6% from
2018 to 2019 [2], substance use disorder (SUD) is a dangerous disease with the capability
of drastically affecting an individual’s brain and behavior. Additionally, the treatment of
homeless individuals with SUD by the American Society of Addiction Medicine (ASAM)
was incredibly challenging not only because these individuals dealt with immunocom-
promised systems, but also because of the COVID-19 pandemic [3]. According to the
National Institute on Drug Abuse (NIDA), the rise in healthcare costs and job losses, which
were especially augmented during the pandemic, resulted in the total expenditure of drug-
related complications to exceed 500 billion dollars [4]. Even with the intense and expansive
consequences of SUD, ranging from costs to the well-being of a large population, there
are limited management and treatment options, pharmacotherapies [5], and psychosocial
treatments available for SUD. The few devices addressing this issue, some examples being
ReSET by Pear Therapeutics [6], A-CHESS [7], and NSS-2 Bridge by Massimo [8], mainly
use cognitive behavioural therapy (CBT) [9] that are self-determined or used in accordance
with a medical professional to guide patients on their next steps to managing SUD. While
its integration into daily life and different formats make it effective for some, CBT generally
falls short of achieving its goal in patients who lack the emotional strength to confront their
addiction or are not mentally willing to incorporate changes into their current lifestyles. To
address this epidemic, NIDA emphasized the importance of developing new and improved
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strategies to detect, treat, and manage SUD through their mission and strategic plan of
improving individual and public health [4].

Currently, measurements of stress are usually conducted through self-reports [10],
but this has several practical limitations as the symptoms reported can be exaggerated or
under reported based on the patient’s mindset towards seeking help and their desire to be
cleansed of substances. However, with the advent of wearable biomedical sensors in the
form of smart watches or bracelets in everyday life [8], society has started to become more
aware of and receptive to the integration of technology and health. The use of sensors in
similar forms to measure physiological signals, such as electrodermal activity (EDA) [10-12]
in the skin and electroencephalography (EEG) [13-15] from the scalp, is anticipated to be
widely used. A greater incorporation of these sensors, particularly in everyday wearable
technologies, is already evident through the recent upgrades made by Fitbit [14]. In a
pilot study by Carreiro et al., a portable biosensor was embedded in smart watches that
could continuously monitor changes in EDA, and thus, track stress levels over a period
of time [10,16].

While there are gold standard electrochemical sensors to detect stress, EDA sensors
have the unique ability to provide continuous and independent measurements of a subject’s
stress and emotion levels with convenience and comfort. Since previous research indicates
that there is a strong causal relationship between stress and emotion [17], EDA sensors are
particularly useful instruments in determining SUD-related stress levels in patients strug-
gling to manage related symptoms. However, the data from these sensors are only useful
when the measurements are quick and accurate. This requirement makes using this data a
grueling and challenging process, as EDA sensors typically generate enormous amounts of
data and need tremendous computing power for subsequent processing. Therefore, it is
crucial to identify and design efficient detection and estimation algorithms using machine
learning and artificial intelligence. Through the identification of changing emotions, the
varying instances of stress, although measured as acute throughout the experiments, will
also be applicable to chronic stress in those with SUD. Additionally, it is possible that
adding emotions into the analysis would allow for stress to be measured more accurately;
however, more studies are required to measure the accuracy and reliability of this technique.
Other physiological features, such as heart rate and respiration, also undergo significant
changes when individuals experience stress. These features can be presented as good
indicators for identifying stress.

When under stress, a series of psychological and physiological changes occur in the
body as a result of the activation of the body’s sympathetic nervous system [4]. However,
these changes are multiplied in those suffering from SUD. Additionally, the parasym-
pathetic nervous system is unable to function properly and cannot regularly maintain
homeostasis in the bodies of substance users. However, psychological changes tend to
provide subjective results, since they cannot be well-tracked using external devices or
treatments and are mainly measured through self-reports. Therefore, the optimal way to
monitor SUD-related stress is by measuring physiological changes, such as an increase in
heart rate, greater electrodermal activity, and higher rates of respiration, among others.
Identifying the point of these changes will allow for the onset of SUD-related stress or
relapse to be detected in an objective manner.

In collaboration with psychiatrists and clinicians, our group at UMBC is dedicated
to researching and developing devices with the ability to swiftly and accurately detect,
manage, and eventually treat SUD and its related symptoms. Our research draws on the
results of the publicly available WESAD dataset [18], which contains measurements of
physiological biomarkers tracked throughout various emotional states. The study induced
two types of stress, mental and social, which are also induced by SUD, making this dataset
a good choice. In order to identify the best combination of biomarkers that indicate stress,
all of the features tracked in the WESAD dataset were collectively analyzed through a
multi-way classification, reflecting the various emotional and stress levels that one may
experience in daily life. Additionally, we have been able to train our models to identify
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whether a mental or social stressor is being experienced by the subject at a given moment.
This differentiation will prove to be useful in the further stages of this project, as the type
of stress can dictate which prevention or intervention method will be the most efficient and
effective. Preliminary results from this work were published in [19].

In the following sections, this paper expands upon the experimental design through
materials and methods used (Section 2), an analysis of the data collected, different clas-
sification methods, different features (Section 3), and how this information shapes our
knowledge of what data can be used for better SUD detection, prevention, and treatment,
along with future alternatives and solutions (Section 4).

2. Materials and Methods

This section describes the protocol of the original WESAD study (Section 2.1), pre-
processing and preparation (Section 2.2), and the types of classifications used for different
combinations of data (Section 2.3).

2.1. Experimental Protocol

The publicly available multimodal dataset for Wearable Stress and Affect Detection
(WESAD) was used to study the physiological changes and responses to stress induced
by SUD. These changes in the body were tracked using two wearable devices: RespiBAN
Professional, which is worn around the chest, and Empatica E4, which is worn around the
wrist. Embedded in these devices were sensors to track three axis accelerometers on the
chest (X, Y, Z), electrodermal activity (EDA), electromyograph (EMG), respiration (RESP),
electrocardiogram (ECG), and body temperature (TEMP); depicted in Figure 1. However,
for the purpose of a computational analysis on identifying the features that would best
indicate stress, only the recordings of RespiBAN Professional were used. This was chosen
over Empatica E4 due to its larger volume of data points available (over 2 million data
points per subject versus 20,000-50,000 data points per subject).

3

Figure 1. RespiBAN Professional’s placement of electrodes. 1. RespiBAN Professional with tempera-
ture, EDA, and control module. 2. Three ECG electrodes. 3. Two EMG electrodes on the back where
the shoulder meets the neck. Adapted from [19].

The original data collection was conducted for 17 subjects in total, but due to sensor
malfunction, the data was only available for 15 subjects. Out of these remaining subjects,
12 were male and 3 were female, and they had a mean age of 27.5 £ 2.4 years. According to
the study protocol, four emotional states—baseline, stress, amusement, and meditation—were
induced in stages within all participants (Figure 2). Descriptions of these states and how they
were induced are detailed below.

o Baseline: A neutral state was induced as subjects sat or stood at a table and read
neutral material.

e  Stress: A highly strenuous state was induced in which subjects were exposed to both
parts of the Trier Social Stress Test:

O Mental stress: a mental arithmetic task.
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O Social stress: a public speaking task.

Amusement: An amusing state was induced as subjects were shown funny video clips.
Meditation: A de-excited state was induced as subjects were guided through medita-
tion exercises.

First Version

Baselinefl Amusement ] Med I | Stress JRest | Med II

Second Version

Baselinel| Stress Rest | Med I § Amusement ] Med 11

Figure 2. The two protocols tested under this study. The blue bars indicate the times when the study
participants filled out questionnaires for self-report. Adapted from [18].

At the end of each state, the participants filled out a questionnaire that asked them
to rate different emotional states. The questionnaire for all states included the Positive
and Negative Affect Schedule (PANAS), the State-Trait Anxiety Inventory (STAI), and
Self-Assessment Manikins (SAM) tests. The stress state had an additional Short Stress State
Questionnaire (S55Q). The ratings assigned within each of these tests were utilized as a
standard ground truth to assess the validity of the stress detection models proposed.

2.2. Preprocessing and Analysis

To perform the exploratory and predictive analyses on the data, we used MATLAB®
Machine Learning Toolbox and Python. The Python libraries used included pandas, sklearn,
matplotlib, and numpy. Specifically, the sklearn library provided the tools to implement
various algorithms. The integrated development environment (IDE) used was Jupyter Lab
in combination with the Anaconda platform.

In order to preprocess the missing values in the dataset, values were first substituted
based on the mean or mode of the distribution. Then, the data was normalized to have
optimal distribution, so that no value drove the model’s performance in one direction or
skewed the prediction. All values had equal weightage and statistical importance in the
dataset as a result of this.

The physiological biomarkers that were the best indicators of accurate stress detection
were identified from the dataset through logistic regression, linear regression, and principal
component analysis (PCA). Additionally, sequential forward feature selection utilizing
quadratic discriminant analysis was conducted for the purpose of a feature analysis, as
presented in Table 1.

Table 1. Significance of the features.

ECG EDA EMG Resp Temp X Y z
S2 2 5 1 3 6 0 4 6
S3 2 5 3 6 0 4 6
S4 2 4 3 1 6 0 5 6
S5 2 6 3 1 4 0 5 6
) 2 6 1 3 4 0 5 6
S7 1 5 2 3 6 0 4 6
S8 1 5 3 2 4 0 6 6
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Table 1. Cont.

ECG EDA EMG Resp Temp X Y Y4

S9 2 6 1 3 5 0 4 6
510 2 6 1 3 4 0 5 6
511 0 4 1 3 5 2 6 6
513 1 6 3 2 4 0 5 6
S14 2 4 1 3 5 0 6 6
515 2 6 1 3 0 4 5 5
516 1 6 2 3 4 0 5 6
517 3 6 4 2 5 0 4 6

2.3. Classification

In our preliminary work [19], we performed three types of classification. They were
as follows:

(@) 2-way: stress vs. amusement;
(b) 3-way: stress vs. amusement vs. meditation;
(c) 4-way: stress vs. amusement vs. meditation vs. baseline.

In contrast to our preliminary work [19], three different types of classification were
performed in order to differentiate social stress and mental stress, and to also explore the
effects of meditation on stress:

(a) 3-way: baseline vs. meditation before stress vs. meditation after stress;

(b) 3-way: baseline vs. social stress vs. mental stress;

(c) 6-way: baseline vs. social stress vs. mental stress vs. amusement vs. meditation before
stress vs. meditation after stress.

These classifications for predictive analysis were performed using three approaches:
(a) logistic regression;
(b) decision trees;
(c) XGBoost (gradient-boosted decision trees).

K-fold cross-validation was implemented and the results of the predictive analysis
were measured using accuracy and area under the curve as performance metrics. While
accuracy is a standardized and commonly-used metric, it is also crucial to meticulously
calculate the accuracy that could not be achieved. This will help to minimize false positives.
Hence, for binary classification, we also analyzed the area under the curve to check the
degree of separation between true positives and false positives. The ratio of trained and
test data split was 4:1.

Here, we have described the three types of classifications we performed and the
rationale behind these classifications.

(a) 3-way: baseline vs. meditation before stress vs. meditation after stress.

There are two versions of this classification, depending on the time of occurrence of
rest. In the first version, the sequence of events is as follows:

Baseline -> meditation before stress -> rest -> meditation after stress.

For the second version, the sequence of events is as follows:

Baseline -> rest -> meditation before stress -> meditation after stress.

In the study, different subjects were subjected to different versions and no subject was
subjected to both versions. The aim of this classification was to compare how meditation
before and after stress affects the human body. For the first version, the technique to find
the exact data point where the meditation before stress begins was by finding the data
point for the last occurrence of amusement and first occurrence of stress. The data points in
between these two conditions represent meditation before stress, or ‘Med I, as shown in
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Figure 2. Meditation after stress was computed by locating the last data point for stress and
then picking up the remaining data points for stress. Thereafter, the data points for both
these types of meditation were combined with the data points for baseline to form a new
dataset, which was then used for predictive analysis using the aforementioned algorithms
and metrics in Python for each subject. To attain a better understanding of the features that
contributed the most, a forward feature selection technique using quadratic discriminant
analysis was implemented and the top three contributing features were extracted for each
subject. These were then used as inputs to the predictive analysis algorithms used to study
the results.

Similarly, the data points for meditation before and after stress for version 2 were
extracted. To find the data points for meditation before stress, the last data point repre-
senting rest was located and the first data point representing amusement was located. The
data points in between these represent meditation before stress for version 2, as shown in
Figure 2. The data points representing meditation after the last occurrence of amusement
were labeled as meditation after stress. These extracted data points were then combined
with baseline data to form a new dataset, which was then subjected to predictive analy-
sis using the above three algorithms for classification, and independently judged using
accuracy and area under the curve as metrics for all subjects. Thereafter, using forward
feature selection and quadratic discriminant analysis, the top three contributing features
were extracted, and the same predictive analysis procedure was implemented.

(b) 3-way: baseline vs. social stress vs. mental stress

All the subjects that participated in this experiment were subjected to two types of
stress: mental stress and social stress. Mental stress was observed while computing a
mathematical problem or counting down numbers, whereas social stress was observed
during public speaking. The WESAD dataset represents these stress types with only one
label. However, every subject was first subjected to social stress first and then mental stress.
The duration of the two types of stress, and therefore, the number of data points for each
of these stress types, was the same. This allowed us to correctly label the first half of the
stress data points as social stress and the second half as mental stress. After extracting
these data points, a new dataset was formed that consisted of baseline, social stress, and
mental stress. This dataset was then used as an input to a predictive analysis model for
classification using logistic regression, decision trees, and XG-Boost algorithms, and then
this performance was judged using accuracy and area under the curve as the classification
metrics for each subject. Furthermore, using forward feature selection and quadratic
discriminant analysis, the top three features were extracted from the above-formed dataset
and then independently subjected to the same classification for every subject as above.

() 6—way: baseline vs. social stress vs. mental stress vs. amusement vs. meditation
before stress vs. meditation after stress

For this predictive model, we combined the above two datasets in accordance with
the versions that the subjects were exposed to. Additionally, the amusement labels were
also appended to the dataset. The sequence of events for the first type of classification (or
version 1) are as follows:

Baseline -> Amusement -> Meditation before stress -> Social Stress -> Mental Stress ->
Rest -> Meditation after stress.

The sequence of events for the second version are as follows:

Baseline -> Social Stress -> Mental Stress -> Rest -> Meditation 1 -> Amusement ->
Meditation 2.

First, a simple classification was performed using predictive analysis that was im-
plemented using logistic regression, decision trees, and XG-Boost algorithms, and then
the performance was measured using accuracy and area under the curve for each subject
separately. Thereafter, the top three contributing features were extracted using forward
feature selection and quadratic discriminant analysis. Again, these features were used by
the same three algorithms and measured using the same classification metrics.
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3. Results

In this section, the analysis for choosing the top biomarkers, as well as the biomarkers
themselves, were identified. The accuracies produced by each statistical test and combina-
tion of features were specified and accordingly ordered.

To calculate the most significant combination of physiological features, our first step
was to implement sequential forward feature selection using quadratic discriminant analy-
sis. For every candidate, we assessed which would be the most significant 2, 3, 4, 5, 6, and
7 features. Table 1 depicts the findings from this analysis, as well as all the features plotted
against the corresponding candidates. The numerical value signifies the number of times
the features were chosen in combination with other features for the same subject. On a
scale of zero through six, zero implies the non-existence of that feature in any combination
conducted for that subject (least relevant), while six indicates the occurrence of that feature
in all combinations carried out for that subject (most relevant). A total of six iterations were
performed with various feature counts ranging from a combination of two features to a
combination of eight features. This selection process was different for different subjects.

We observed that the most used and considered feature in every combination for all
but one of the 15 subjects was the accelerometer Z-axis (Z), due to its direct association to
heartbeat. The feature that was second-most used and included in all six cases for four of
the candidates was EDA. On the other end of the spectrum, the least used and the least
significant feature used in none of the combinations for 13 subjects was the accelerometer
X-axis (X). However, since the accelerometer, as a whole, contributed to the classification
accuracy, this variable cannot be ignored for any of the future studies. Furthermore, to
identify and validate features that could best predict stress, a feature analysis with logistic
regression and PCA was performed for every subject. This helped us discover several
other features that emerged as being more important than the rest. The features that had a
strong association to a subjects’ mental and emotional states were EDA and temperature,
along with the accelerometer (z-axis). The outcomes attained from logistic regression with
2- (stress vs. amusement), 3- (stress vs. amusement vs. meditation), and 4-way (stress vs.
amusement vs. meditation vs. baseline) multivariate classification are displayed in Table 2.
In general, logistic regression had an average accuracy (ACC) of 0.969 and an average
AUC-ROC of 0.985 in all the subjects.

Table 2. Classification accuracy using logistic regression with top three features.

Top 3 Features
AUC-ROC ACC
ECG EDA EMG Resp Temp X Y V4
2-way 1 X X X
52 3-way 0.999 X X X
4-way 0.999 0.997 X X X
2-way 0.89 0.82 X X X
S3 3-way 0.945 0.949 X X X
4-way 0.965 0.886 X X X
2-way 1 X X X
54 3-way 0.999 0.996 X X X
4-way 0.999 0.994 X X X
2-way 1 X X
S5 3-way 0.999 0.996 X X X
4-way 0.999 0.994 X X X X
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Table 2. Cont.

AUC.ROC ACC Top 3 Features
ECG EDA EMG Resp Temp X Y z
2-way 0.997 1 X X X
S6 3-way 0.982 0.996 X X
4-way 0.948 0.994 X X X
2-way 1 1 X X X X
S7 3-way 0.999 0.995 X X X
4-way 0.947 0.803 X X
2-way 0.999 0.998 X X
S8 3-way 0.999 0.996 X X X
4-way 0.999 0.999 X X X
2-way 0.993 0.982 X X X
S9 3-way 0.995 0.981 X X X X
4-way 0.982 0.971 X X X
2-way 1 1 X X X
510 3-way 0.999 0.999 X X
4-way 0.999 0.997 X X X
2-way 1 1 X X X X
511 3-way 0.997 0.971 X X
4-way 0.988 0.929 X X X
2-way 1 1 X X X X
S13 3-way 0.998 0.981 X X X
4-way 0.998 0.981 X X X
2-way 0.919 0.903 X X X
S14 3-way 0.873 0.819 X X
4-way 0.932 0.886 X X X X
2-way 1 1 X X
S15 3-way 0.999 0.998 X X X X
4-way 0.998 0.992 X X X
2-way 1 1 X X X
S16 3-way 0.999 0.998 X X X
4-way 0.999 0.998 X X X
2-way 1 1 X X X
S17 3-way 0.999 0.995 X X X
4-way 0.999 0.997 X X X

In addition to logistic regression, similar classification was repeated using the Decision
Tree method. Not only did the Decision Tree choose the same features discovered from the
logistic regression (EDA, temperature, and the accelerometer z-axis), but it also worked
slightly better, with an average AUC-ROC of 0.998 and an average accuracy of 0.968. To
validate the results, another classification algorithm, XGBoost, was used. This classifier also
chose the EDA, temperature, and the accelerometer z-axis features, and it outperformed
both the logistic regression and the Decision Tree classification algorithms in the classifica-



Sensors 2022, 22, 8703

9o0f 16

tion accuracies. In all, a total of 135 individual tests were run—45 test runs with each of the
3 classifiers. Of these 135 tests, EDA was chosen as one of the top three features 121 times,
making it the most significant feature. The second-most significant feature was temperature,
as it was chosen 106 times as a top feature. Finally, the accelerometer z-axis was chosen
as the third-most significant feature, due to being one of the top three features 76 times.
These features, along with others, are depicted in Figure 3. Detecting whether the subject is
stressed depends on a combination of various factors, so finding a relevant combination of
pertinent features was a vital task. Selecting only one feature would probably not provide
relevant and generalizable results.

EMG

Figure 3. Significance of the features based on how frequently they were used in three different
classifiers for best accuracies. EDA, temperature, and accelerometer Z (and Y) stand out as the
important features.

In summary, we found that the predictive models performed better when supplied
with the top three contributing features as inputs, instead of all the features. Logistic
regression yielded lower accuracy and AUC score as compared to Decision Trees and XG-
Boost. XG-Boost showed an overall excellent performance in most of the subjects. We were
able to successfully achieve high performance even after considering six types of labels
(6-way classification) by selecting the best combination of parameters for the predictive
analysis models. In our limited experience with the data, the accelerometer was the most
common feature in all subjects for all three types of classifications. Furthermore, we were
able to effectively distinguish between mental stress and social stress, and thereby, create
two new sub-labels which will be very useful in future studies.

Table 3 shows accuracies and AUC for all types of classifications for all subjects using
three algorithms and all features:

Table 3. Classification accuracy using all features.

Accuracy AUC
Logistic Regression ~ Decision Trees XG-Boost  Logistic Regression = Decision Trees = XG-Boost

Med 1 vs. Med 2 0.999 1.0 0.999 0.999 1.0 0.999

S2  Social vs. mental stress 0.967 0.988 0.933 0.991 0.998 0.999
6-way 0.972 0.993 0.999 0.996 0.999 0.999

Med 1 vs. Med 2 0.986 0.999 0.999 0.998 0.999 0.998

S3 Social vs. mental stress 0.937 0.996 0.999 0.950 0.999 0.999
6-way 0.628 0.983 0.998 0.842 0.998 0.999
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Table 3. Cont.

Accuracy AUC
Logistic Regression = Decision Trees XG-Boost  Logistic Regression  Decision Trees =~ XG-Boost

Med 1 vs. Med 2 0.999 1.0 1.0 0.999 0.999 0.999
5S4 Social vs. mental stress 0.989 0.993 0.995 0.999 0.999 0.999
6-way 0.984 0.993 0.996 0.997 0.999 0.999
Med 1 vs. Med 2 0.980 0.999 0.997 0.997 0.997 0.997
S5 Social vs. mental stress 0.928 0.979 0.988 0.957 0.990 0.997
6-way 0.743 0.983 0.990 0.939 0.996 0.999
Med 1 vs. Med 2 0.884 1.0 0.999 0.963 1.0 0.999
S6 Social vs. mental stress 0.979 0.995 0.999 0.957 0.990 0.997
6-way 0.642 0.986 0.995 0.923 0.998 0.999
Med 1 vs. Med 2 0.999 0.999 0.999 0.999 0.999 0.999
57 Social vs. mental stress 0.995 0.997 0.998 0.999 0.999 0.999
6-way 0.918 0.998 0.998 0.992 0.999 0.999

Med 1 vs. Med 2 0.999 1.0 0.999 1.0 1.0 1.0
S8 Social vs. mental stress 0.912 0.973 0.983 0.955 0.994 0.998
6-way 0.943 0.9821 0.989 0.99 0.998 0.999
Med 1 vs. Med 2 1.0 1.0 0.999 1.0 1.0 0.999
S9 Social vs. mental stress 0.982 0.992 0.994 0.998 0.999 0.999
6-way 0.973 0.989 0.995 0.996 0.999 0.999

Med 1 vs. Med 2 1.0 1.0 1.0 1.0 1.0 1.0
S10  Social vs. mental stress 0.888 0.971 0.979 0.928 0.991 0.997
6-way 0.875 0.999 0.999 0.951 0.999 0.999
Med 1 vs. Med 2 0.875 0.999 0.999 0.951 0.999 0.999
S11  Social vs. mental stress 0.947 0.988 0.988 0.993 0.999 0.999
6-way 0.858 0.977 0.985 0.981 0.999 0.999
Med 1 vs. Med 2 0.999 1.0 0.999 0.999 0.999 0.999
S13  Social vs. mental stress 0.864 0.983 0.994 0.888 0.995 0.999
6-way 0.907 0.984 0.994 0.966 0.997 0.999
Med 1 vs. Med 2 0.971 0.999 0.999 0.995 0.999 0.999
S14  Social vs. mental stress 0.963 0.992 0.995 0.972 0.999 0.999
6-way 0.841 0.967 0.981 0.973 0.992 0.999

Med 1 vs. Med 2 1.0 1.0 0.999 1.0 1.0 1.0
S15  Social vs. mental stress 0.991 0.998 0.998 0.997 0.999 0.999
6-way 0.991 0.997 0.999 0.999 0.999 0.999
Med 1 vs. Med 2 0.923 0.997 0.999 0.963 0.999 0.999
S16  Social vs. mental stress 0.992 0.993 0.994 0.999 0.999 0.999
6-way 0.934 0.989 0.994 0.989 0.999 0.999

Med 1 vs. Med 2 1.0 1.0 0.999 1.0 1.0 1.0
S17  Social vs. mental stress 0.947 0.982 0.989 0.994 0.997 0.999
6-way 0.956 0.980 0.993 0.994 0.997 0.999

Table 4 shows accuracies and AUC for all types of classifications for all subjects using

three algorithms and the top three features:
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Table 4. Classification accuracy using the top three features.

Accuracy AUC
Logistic Regression = Decision Trees XG-Boost  Logistic Regression  Decision Trees =~ XG-Boost

Med 1 vs. Med 2 0.999 1.0 0.999 0.999 1.0 0.999
S2 Social vs. mental stress 0.966 0.988 0.988 0.991 0.998 0.991
6-way 0.979 0.992 0.993 0.998 0.999 0.998
Med 1 vs. Med 2 0.997 0.999 0.998 0.999 0.999 0.999
S3 Social vs. mental stress 0.936 0.996 0.998 0.974 0.999 0.974
6-way 0.720 0.983 0.993 0.912 0.998 0.912
Med 1 vs. Med 2 0.999 1.0 1.0 0.999 0.999 0.999
S4 Social vs. mental stress 0.990 0.991 0.991 0.997 0.997 0.997
6-way 0.964 0.988 0.985 0.993 0.999 0.993
Med 1 vs. Med 2 0.988 0.999 0.997 0.998 0.998 0.998
S5 Social vs. mental stress 0.967 0.974 0.972 0.988 0.991 0.988
6-way 0.24 0.959 0.971 0.973 0.993 0.973
Med 1 vs. Med 2 0.995 1.0 0.998 0.999 1.0 0.999
S6 Social vs. mental stress 0.978 0.995 0.996 0.996 0.999 0.996
6-way 0.629 0.979 0.977 0.941 0.998 0.941
Med 1 vs. Med 2 0.999 0.999 0.999 0.999 0.999 0.999
S7 Social vs. mental stress 0.996 0.997 0.997 0.999 0.999 0.999
6-way 0.946 0.998 0.997 0.995 0.999 0.995
Med 1 vs. Med 2 0.999 1.0 0.999 0.999 0.999 0.999
S8 Social vs. mental stress 0.920 0.975 0.973 0.971 0.993 0.971
6-way 0.922 0.982 0.979 0.977 0.998 0.977

Med 1 vs. Med 2 0.999 1.0 0.999 1.0 1.0 1.0
59 Social vs. mental stress 0.983 0.991 0.988 0.998 0.999 0.998
6-way 0.975 0.989 0.991 0.996 0.999 0.996

Med 1 vs. Med 2 1.0 1.0 0.999 1.0 1.0 1.0
S10  Social vs. mental stress 0.944 0.970 0.968 0.983 0.991 0.983
6-way 0.910 0.961 0.965 0.979 0.995 0.979
Med 1 vs. Med 2 0.999 0.999 0.999 0.999 0.999 0.999
S11  Social vs. mental stress 0.989 0.989 0.985 0.998 0.999 0.998
6-way 0.831 0.977 0.982 0.968 0.998 0.968

Med 1 vs. Med 2 1.0 1.0 0.999 1.0 1.0 1.0
S13  Social vs. mental stress 0.864 0.970 0.973 0.903 0.992 0.903
6-way 0.909 0.978 0.977 0.976 0.996 0.976
Med 1 vs. Med 2 0.971 0.999 0.999 0.995 0.999 0.999
S14  Social vs. mental stress 0.963 0.992 0.995 0.972 0.999 0.999
6-way 0.841 0.967 0.981 0.973 0.992 0.999

Med 1 vs. Med 2 1.0 1.0 1.0 1.0 1.0 1.0
S15  Social vs. mental stress 0.993 0.998 0.995 0.997 0.999 0.997
6-way 0.993 0.995 0.995 0.999 0.999 0.999
Med 1 vs. Med 2 0.994 0.996 0.994 0.999 0.999 0.999
S16  Social vs. mental stress 0.991 0.993 0.993 0.999 0.999 0.999
6-way 0.926 0.988 0.987 0.987 0.999 0.987
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Table 4. Cont.

517

Accuracy AUC
Logistic Regression = Decision Trees XG-Boost  Logistic Regression  Decision Trees =~ XG-Boost
Med 1 vs. Med 2 1.0 1.0 0.999 1.0 1.0 1.0
Social vs. mental stress 0.941 0.982 0.981 0.973 0.995 0.973
6-way 0.995 0.979 0.985 0.994 0.997 0.994

4. Discussion
4.1. Optimal Biomarkers for Detection of Stress

Our objective in this paper was to identify optimal biomarkers that can best assist in
the accurate detection of stress. We found that EDA, body temperature, and chest-worn
accelerometers are important features in stress detection, as corroborated by other related
studies [20-22]. We aimed not to find just one best feature, but a combination of multiple
features that can help in precise detection as the fusion of multimodal features improves
the detection of accuracy [22]. As shown in Table 2, optimal features change from subject to
subject, and this enabled us to build personalized models that were unique to individuals.
Additionally, we were able to train our models to identify which type of stressor, mental
or social, was being experienced based on the various administrations of the experiment.
This analysis can help researchers better identify the triggers for relapse and recommend
informed and appropriate treatments.

Our study builds on research already conducted by using data provided through
a multi-way classification to identify the fusion of sensors that would provide the best
indication of stress. We also analysed and identified the stressor type, but we only limited
it to mental and social stress, since physical stress does not fit our goal of treating and
managing stress induced by SUD. Additionally, our group used various administrations
of the tests, with varying orders of states in which the subjects were in, which allows for
us to identify which states the person must be in order for the classifier to most accurately
identify stress. Together, these goals allowed our group to focus on the aspects most
prevalent in SUD-related stress and information potentially useful for treatment.

The WESAD dataset, having been openly available online since 2018, has been used in
many other studies with similar goals—the detection of stress. Research closest to the one
that our group conducted involved the identification of stress and stressor type through
various machine learning classifiers and models. A study conducted by Igbal et al. [20]
conducted a two-way classification of the baseline and stressed states. Since the dependent
variable of the state of the participants was binary, a logistic regression model was used over
a linear regression model. This model identified respiration rate as the strongest indicator
of stress, along with the combination of respiration rate, heart rate, and heart rate variability,
providing an accuracy of 85.70%. Another study conducted by Elzeiny et al. [21] used the
interbeat interval and blood volume pulse features from the photoplethysmography (PPG)
with convolutional neural network (CNN) to achieve a stress detection rate of 98.10%, and
average pixel intensity data to achieve an accuracy of 99.18%. Additionally, the type of
stressor, categorized into physical, cognitive, and social, achieved an identification accuracy
of 98.5% using CNN and 96.5% using extra trees.

4.2. Significance and Rationale for Detection of Stress in SUD and Other Disorders

Even though our aim was to detect stress as a trigger in the context of substance
abuse, the methods outlined and developed in this paper have several applications in
various domains, as stress can lead to multiple other complications. Stress negatively
affects cognitive functions, weakens memory, increases blood pressure, and causes cardiac
disorders and diabetes, to list a few, especially as instances of acute stress begin to build
up in degree and instance, and can eventually develop into chronic stress among other,
even more dangerous illnesses [17,23,24]. In each of these diseases and disorders, stress
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manifests in different ways, reiterating the benefit of the multimodal fusion of features in
improving the detection accuracy across domains.

Decades of research have shown that stress increases risk of substance abuse, and could
be a hindrance to effective treatment of substance abuse [25-27]. The use of substances is
known to stimulate the release of the neurotransmitter dopamine, providing an intense
pleasurable feeling which creates a positive feedback loop within the user. This leads to the
uncontrolled use of illicit drugs, alcohol, excessive use of legal drugs, or other addictive
behaviours [28]. Further negative effects of SUD can manifest themselves in substance
users in the form of stress, among other symptoms. The detrimental cycle of addiction has
the power to significantly impair the lives of users in terms of their decision-making skills,
ability to meet responsibilities at school and /or work, personal relationships, and internal
well-being. One’s physical dependence on a substance to get through these daily activities
and experiences makes stepping away from a certain substance psychologically stressful.
This may lead to relapse or Post-Acute Withdrawal Syndrome [3], a prolonged experience
of withdrawal symptoms. When these instances of stress begin to add up or when their
symptoms are prolonged, the acute stress measured in the experiment can develop into
chronic stress. Additionally, any instance of acute stress can provoke a heart attack or a
stroke. This connection between the two forms of stress provides for a better analysis for
stress detection and management in substance users, since the physiological symptoms are
likely to appear in the same way:.

4.3. Limitations and Future Directions

The small number of participants (15 subjects) in this study may make the results
appear less significant. In future, this will be addressed by repeating the WESAD admin-
istration with a greater number of participants; in particular, in individuals with SUD.
However, as observed in the data analysis section, each individual presented a diverse set
of biomarkers. The data analysis outlined in this paper can also be expanded to predict
different levels of stress based on the scores that the subjects assigned to different emotional
states. Additionally, since the test was administered in two different orders of emotional
states, the correlation between stress levels before and after the meditation period can
be examined, as this can also improve management and treatment options for SUD. Fur-
thermore, the analysis in this paper considers personalized models with the data being
trained for each individual participant. These specific models provide greater accuracy in
the prediction of stress, as the effects of the various mental and social tasks are experienced
and handled in different ways by different people, as evidenced by the questionnaire data.
However, the information from the questionnaires was not included in the analysis, as our
goal was to keep the method of prediction as objective as possible and not let the perception
of stress be influenced by the individual. In future studies, we will consider measures
to tightly tie the questionnaires in with the experimental biomarkers. It is important to
acknowledge that the non-invasive neurophysiological features considered in this study for
stress detection could be modulated due to other disorders unrelated to stress or SUD, thus
confounding prediction of stress. In such circumstances, pharmacological interventions
to cross validate may be deemed necessary. Lastly, the algorithms and methods proposed
in this paper need to be validated in individuals with SUD. The methods proposed here
serve only as a preliminary demonstration of proof of concept. Because we depended on a
publicly available dataset, we had limited information about the study participants, nor
did we have any information about the inclusion and exclusion criteria. Nevertheless, with
the encouraging results obtained in this paper, we will repeat similar studies in individuals
with SUD in the near future.

4.4. Towards Development of a Wearable Device for Detection and Management of Stress in SUD

Despite the scientific and technological advances in the areas related to brain and
behaviour, there are limited devices and interventions available to help individuals with
SUD. The goal of our multidisciplinary team is to develop an integrated portable system
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that is capable of detection and management of SUD using wearable biosensors, including
EDA and EEG sensors. This system will have four major components: (1) based on well
documented negative effects of stress in SUD [25-27], detection of stress and emotional
states recorded using EEG and EDA sensors; (2) the use of machine-learning (ML) and
artificial intelligence (AI) algorithms for improving the detection of stress, emotion, and
behaviour; (3) provide neurofeedback using EEG sensors to measure, manage, and modify
brain activity, and thus, associated behaviour; and (4) develop a smartphone app that can
provide a user-friendly and personalized graphical user interface. The proposed technology,
with its unique ability to influence the brain and behaviour, will impact individuals with
this serious condition in a more immediate and personal manner. In collaboration with
psychiatrists and clinicians, our group at UMBC is in the preliminary stages of developing
a wearable device that can help in the detection, management, and eventual treatment of
SUD in an efficient and effective way:.

5. Conclusions

In an attempt to find better ways to address the detrimental effects of stress elicited by
SUD, this study researched relevant biomarkers in the form of physiological signals tracked
by RespiBAN, a chest-worn device. Extensive data analysis indicated that EDA, body
temperature, and chest-worn accelerometer contributed the most to the accurate detection
and classification of stress, along with other emotional states. We also separately analysed
the detection of mental and social stress in the case of different situational triggers, as well
as the first and second meditation states. In the near future, we hope to further our analysis
of the type of stress and current emotional states, and how these pertain to better forms of
treatment for individuals with SUD. As EDA can be detected across various physiological
disorders unrelated to SUD, we will consider multimodal features for accurate detection of
stress in SUD. We will also look at unique optimal physiological features in individuals
to customize detection models. Although this paper highlights detecting stress and other
emotional states in different contexts, we aim to research how to detect different levels of
stress itself. We aim to test the proposed methods in individuals with SUD soon.
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