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Abstract: Intelligent reflecting surfaces (IRS) and mobile edge computing (MEC) have recently
attracted significant attention in academia and industry. Without consuming any external energy,
IRS can extend wireless coverage by smartly reconfiguring the phase shift of a signal towards the
receiver with the help of passive elements. On the other hand, MEC has the ability to reduce latency
by providing extensive computational facilities to users. This paper proposes a new optimization
scheme for IRS-enhanced mobile edge computing to minimize the maximum computational time
of the end users’ tasks. The optimization problem is formulated to simultaneously optimize the
task segmentation and transmission power of users, phase shift design of IRS, and computational
resource of mobile edge. The optimization problem is non-convex and coupled on multiple variables
which make it very complex. Therefore, we transform it to convex by decoupling it into sub-
problems and then obtain an efficient solution. In particular, the closed-form solutions for task
segmentation and edge computational resources are achieved through the monotonical relation of
time and Karush–Kuhn–Tucker conditions, while the transmission power of users and phase shift
design of IRS are computed using the convex optimization technique. The proposed IRS-enhanced
optimization scheme is compared with edge computing nave offloading, binary offloading, and
edge computing, respectively. Numerical results demonstrate the benefits of the proposed scheme
compared to other benchmark schemes.

Keywords: mobile edge computing; intelligent reflecting surfaces; latency; optimization

1. Introduction

The future networks will support ultra-reliable and low latency communications
and connect billions of devices [1]. These networks will consume very low energy and
support high-speed data applications [2]. These networks will merge various technolo-
gies and systems such as intelligent reflecting surfaces (IRS) [3], mobile edge computing
(MEC) [4], backscatter communications [5], blockchain [6], artificial intelligence [7], non-
orthogonal multiple access [8], and a new spectrum [9]. These networks connect ground to
air and space for global coverage [10]. However, significant research efforts are required
to transition these technologies and systems smoothly to the existing networks. In this
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regard, researchers are actively investigating the above-mentioned technologies and their
performance and integration into the existing networks.

As we enter the era of the “Internet of Things” (IoT), countless devices such as sensor
nodes are expected to be linked together [11,12]. However, these devices cannot easily
support resource-intensive applications because of the excessive computational latency
resulting from their limited computing capabilities. To address this challenge, central
computing nodes can be placed near the network’s edge (typically in close proximity to
the access points, or APs) [13]. The use of local and edge computing resources for the
processing of these computational tasks has the potential to lower the computational time
of resource hungry applications, provided that the tasks are off-loaded successfully [14].
MEC is the term used to describe this approach to computing [15,16]. Unfortunately, this
MEC paradigm has not yet reached its full potential due to the computation offloading link
being imperfect at present. For instance, devices at the cell’s periphery have a notoriously
low offloading success rate and/or may experience increased latency when offloading
computation rather than performing the work locally. Because of this, these gadgets
must rely on their computing power, which is usually insufficient to run resource-intensive
programs. That is why it is crucial to boost the MEC systems’ communications performance.

Thanks to recent developments in programmable meta-materials, IRS can be built to
increase the spectral as well as the energy efficiency of wireless communications [17,18]. In
this context, “IRS” refers to both the controller and the many passive reflecting elements
that make up the system [19]. The IRS controller sends instructions to each component of
the reflecting system, which then adjusts the amplitude as well as the phase of the reflected
signals individually [20,21]. IRS achieves its gain by combining the gains from their virtual
arrays and reflection-assisted beamformers. Following that, the reflection beamforming
gain is further achieved by adjusting the phase shift induced by each element of the IRS,
while the virtual-array gain is obtained by combining both signals, e.g., direct and IRS-
reflected signals [22,23]. Bringing together these two types of advantages allows the IRS
to maximize the potential of MEC systems, thereby raising the success rate of off-loading
devices. As a result of this treatise, we hope to have a better understanding of the IRS and
its role in MEC networks.

Extensive work has been carried out on resource optimization and performance
analysis in traditional wireless networks. For example, the authors of [24] have proposed
multi-objective optimization in NOMA wireless networks to jointly maximize the energy
and spectral efficiency of the system. Another paper in ref. [25] has used reinforcement
learning to improve the performance of backscatter networks. For short-range information
sharing, a multicluster backscatter communication model was developed in particular. This
has been followed by a power allocation algorithm that employs the Q-learning technique
to minimize network interference. Researchers in ref. [26] have improved the sum rate
of small-cell networks through efficient power allocation. They optimized the uplink
transmission while ensuring each user’s quality of service requirement and the maximum
transmit power constraint at each node. To solve the non-convex optimization problem,
a new sequential quadratic programming-based solution has been proposed. The paper
in ref. [27] has investigated an optimization problem to maximize the secrecy rate of a
NOMA-enabled multi-cell backscatter network by optimizing the reflection coefficient of
the backscatter node in the presence of multiple eavesdroppers in each cell, in particular.
The optimization problem was formulated as a convex problem and the authors used
Karush–Kuhn–Tucker conditions to obtain an optimal solution. Moreover, the researchers
in ref. [28] have employed reinforcement learning for backscatter-enabled software-defined
heterogeneous networks, and ref. [29] have investigated the energy efficiency of NOMA
heterogeneous networks, respectively.

1.1. Related Work

At the moment, there are two main categories of MEC systems [4]: those designed
for a single user [30,31] and those designed for multiple users [32–34]. When it comes to
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designing MEC systems for a single user, one of the most important performance metrics
is referred to as the computation offloading strategy. For a more detailed explanation,
see [31], in which a binary offloading strategy is proposed to determine whether a task
is going to compute locally by the user equipment (UE) or executed remotely at the
MEC server. For data-partitioning-oriented applications, a partial offloading scheme
was developed by Wang et al. [30] as a response to this problem; In this setup, some
data are being processed at AP referred to as the edge of the network while the rest
is processed locally on the mobile device. In addition, interference from other users in
practical multi-user systems can degrade the performance of the MEC system by disrupting
the radio communications link of the network and the edge server node. Similarly in the
scenario of multi-cell, multi-user, for example, to maximize efficiency, Sardellitti et al. [32]
proposed a framework for joint optimization of transmit precoding matrices and users’
share of available computing power. On the other hand, in a multi-carrier scenario, Energy-
efficient resource allocation across terminals, radio access networks (RANs), and ESs is
proposed by Sheng et al. [35]. Moreover, Chen et al. proposed a joint framework for
computation offloading and policy for the selection of channels using the principles of
classical game theory as their inspiration [36]. Offloading decisions are made at the device
level in this type of system. Similarly, in recent years, different algorithms have been
proposed for both mobility-aware dynamic scheduling and user association approaches for
multi-user, multiple-edge computing nodes [34,34]. Both of these schemes are intended
to be implemented shortly. Yang et al. [37] developed a federated learning algorithm that
can be executed over-the-air. This was done to further decrease latency, decrease power
consumption, and safeguard user privacy in the concept of MEC systems. The extensive
computing being offloaded onto devices in challenging communications environments is
one that is not fully studied in the literature. So, as per the above literature review, in this
paper, we provide evidence that IRS is useful in such circumstances. Let us take a look
at how these significant IRS contributions to science were implemented, to continue our
previous discussion.

IRS has been extensively studied for its potential uses in wireless communications
through channel estimation [38], ergodic capacity analysis [39], and phase shift modeling [40],
as well as the phase shift control [41–43]. Examples include [41] in which authors proposed
a joint framework for phase shift control at IRS and also design a matrix for precoding
at the AP, which employs complex semidefinite relaxation and alternating optimization
methods to lower transmission power such that the desired signal to interference and
noise (SINR) is maintained on the receiver. A more realistic discrete phase shift scenario
was added to the studies to better reflect reality. The problem with using the algorithm
presented in ref. [41,42] for large-scale IRS is that it requires too much processing power to
be practical. Since each group of IRS elements uses the same phase shift coefficient, In order
to reduce the amount of extra work required for the IRS channel estimation, Yang et al. [43]
proposed a framework for optimal allocation of transmission power and phase shift in
OFDM-based wireless systems. After that, in light of the significant scientific contributions
described above, we concluded that it was imperative for MEC systems to make use of the
advantageous function provided by the IRS.

1.2. Motivation and Contribution

This work investigates the IRS-enhanced MEC, designed to improve the system’s com-
puting performance in terms of computational capability and enhance the communication
channel capacity. Following that, the computational capability of the devices is enhanced
by the concept of a MEC server, whereas the effectiveness of the communication channel is
enhanced by introducing the IRS. UEs generally have a finite battery and a limited amount
of processing power. UEs are expected to have some data processing capability, even
if the processing capability is much slower than the MEC. To achieve this, in this work,
for task placement, a concept of partial offloading is considered, which is the process of
partitioning a task into two parts and offloading the latter to the MEC server while leaving
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the former for the UEs to handle locally. Furthermore, the optimal task segmentation was
carried out by taking into account the transmission power, phase shift control, and edge
computational resources to reduce the overall computational time required by a task. In
order to accomplish this, we formulate the joint task computational time minimization
problem, which is non-linear and non-convex and is challenging to solve in real-time. To ad-
dress this, we decoupled the original optimization problem into sub-problems and solved
them iteratively until convergence criteria were met. Additionally, the effectiveness of the
proposed scheme is demonstrated through numerical comparisons with an exhaustive
search and other benchmark schemes.

As mentioned in this paper, we discuss a dynamic approach for task segmentation
within the IRS-enhanced MEC network. In particular, the main contribution of this work is
as follows:

1. We proposed a task’s computational time minimization problem with joint optimiza-
tion of computational and communication resources, such as edge computational
resource, phase shift control, transmission power, and task segmentation, under
energy and system constraints;

2. To address the non-linearity and non-convexity that characterize the original optimiza-
tion problem, we decoupled the original optimization problem into sub-problems and
iteratively solved them. Furthermore, we also drive a closed-form solution for task
segmentation and computational resource allocation at MEC;

3. Numerical results are compared to the exhaustive search and other benchmark
schemes to demonstrate the efficacy of the proposed scheme. By taking into ac-
count, task computational time and energy consumption as performance matrices,
numerical results show that the proposed scheme performs epsilon equally to the
exhaustive search and outperforms all other schemes.

The rest of the paper is structured as follows. In Section 2, we outline the system
model and the problem formulation. In Section 3, we propose the effective framework for
optimal allocation of resources. Section 4 contains our simulation results and discussions.
The last section of this paper, Section 5, concludes the paper.

2. System Model

In this work, we considered IRS-enhanced mobile edge computing (MEC), where MEC
is located at the access point (AP) to provide computational resources to the N number of
single-antenna users (UE), also known as sensor nodes, which are distributed uniformly
over a predefined area in a dense urban environment. AP is equipped with an M number
of antennas. Sensor nodes typically have limited computational resources and battery life,
making them insufficient to handle or compute the massive amounts of data generated
by real-time applications. As a result, the system experiences latency. To address this,
MEC emerges as a viable solution that offers on-demand extensive computation, allowing
these devices to offload their portion of data for extensive computation using binary or
partial offloading schemes. In contrast, in a dense urban environment, the communication
link between devices and MEC is severely hampered by obstructions such as high-rise
buildings. To improve a communication link, we assume an intelligent reflecting surface
(IRS) is installed over the building, as shown in Figure 1. The IRS is made up of K reflecting
elements that intelligently reflect the signal communicated from the user to MEC. Moreover,
We use the most adopted model for the task, i.e., Zn = {sn, cn}, where sn represents the
size in terms of bits and cn represents the computational cycle requirement of the task Zn.
The partial offloading scheme for the assignment of tasks is taken into account in this study.
In a scheme that only partially offloads the task, the total task Zn is split in two. Part of the
computation is performed locally, while the rest is offloaded directly to the MEC server
over a direct connection (UE-MEC) and assisted by IRS (UE-IRS-MEC).
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Figure 1. System Model.

2.1. Communication Model

In this section, we introduce the communication model for both direct and assisted
links. Let us assume that gd

n ∈ C1×M, ga,1
n ∈ C1×K, and H ∈ CM×M as the channel

gain coefficients between UE-MEC, UE-IRS and IRS-MEC respectively. Following that
θ = diag{φ1, φ2...φK} diagonal matrix satisfying ‖φk‖ = 1, ∀K to ensure fully reflection
of the signal from IRS. Furthermore, we assume that UE mobility is not too high, so the
channel remains constant for the entire period T. Denote that pn is the up-link transmission
power of the user. Therefore, data rate Rn can be expressed as follows:

Rn = B log2

(
1 +

pn|yH
n (gd

n + Hθga,1
n )|2

∑i 6=n|yH
i (gd

i + Hθga,1
i )|2 pi + yH

n σ2

)
. (1)

In Equation (1), yn represents the beamforming vector at the receiving side, and it
can be calculated easily using the minimum mean square error. Whereas σ2 represents the
additive white gaussian noise with mean zero and variance 1. Therefore, the time required
to offload the portion of the task to the MEC server can be mathematically expressed as:

tR
n =

αnsn

Rn
. (2)

In Equation (2), αn represents the portion of the task offloaded to the MEC server for
extensive computation. Furthermore, the energy consumed while offloading the task Zn is
expressed as follows:

ER
n =

pnαnsn

Rn
. (3)

2.2. Task Computational Model

Specifically, in this work we considered a partial offloading scheme to carry out the
computation. Partial offloading splits a task into two parts, with one part being processed
locally and the other being sent to a remote MEC for more intensive processing.
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2.2.1. Local Computation

Since each UE in a local computation scheme has a finite computational capacity, or κl
n

(cycles/sec), the time spent on the computation can be expressed as:

tl
n =

(1− αn)cn

κl
n

. (4)

Additionally, the energy consumed while computing the task locally can be expressed as:

EL
n = Γn(1− αn)cn. (5)

The constant power consumption of a circuit per CPU cycle is denoted by Γn, and this
value is the same across all devices.

2.2.2. Edge Computing

Access to high-volume computation can be obtained on-demand via MEC, making it
a practical solution. Accordingly, users share the server’s computational resources at the
MEC. For UE n, κE

n represents the computing resources allocated to it by MEC. Alternatively,
κmax represents the MEC server’s absolute computational limit. Additionally, there are two
aspects of the total time spent computing the task at MEC: (1) The time it takes for data to
be transferred from the UEs to the MEC server, as specified in (2); (2) Processing time on
the MEC server. Therefore, the total amount of time the task took to compute on the MEC
server can be expressed as:

tE
n =

αncn

κE
n

+
αnsn

Rn
. (6)

In addition, we presume that the MEC’s battery life is infinite thanks to the constant
power from the grid. As a result, the amount of power used by the MEC server while it is
processing requests is ignored here. In a similar vein, the authors in ref. [14,16] state that
due to the small size of the results, we disregard the transmission time of the results from
the MEC server to UE.

2.3. Problem Formulation

In this work, we aimed to minimize the computational time of the task by joint
optimization of the communication and computational resources among the user and
MEC and task segmentation variable. Furthermore, for the ease of simplicity, we define
P = {p1, p2, · · · pn}, κ = {κE

1 , κE
2 , · · · κE

n} and α = {α1, α2, · · · αn}. Following that, the
computational time minimization problem can be mathematically expressed as follows:

P1 :min
P,κ,α,θ

max
(
(1− αn)cn

κl
n

,
αncn

κE
n

+
αnsn

Rn

)
(7a)

C1 :
pnαnsn

Rn
+ Γn(1− αn)cn ≤ Emax

n , ∀n (7b)

C2 :
N

∑
n=1

κE
n ≤ κmax (7c)

C3 : pn ≤ Pmax, αn ∈ (0, 1), ∀n, (7d)

C4 : |φk| = 1, ∀k. (7e)

The constraint (7b) guarantees that the total amount of energy used to compute the
task will be less than the maximum amount of energy the battery can hold Emax

n , whereas
constraint (7c) states the computational resources allocated to UEs at the MEC server should
be less than the maximum computational resources. Similarly, constraint (7d) represents
the transmission power constraints of the UEs. Following that, phase shift control of IRS
elements is ensured by (7e).
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In addition, the optimization problem that is discussed in the (7a)–(7e) is of the mixed-
integer, non-convex, and non-linear variety. This is because the rate equation contains a
logarithmic function. In order to address this issue, we decoupled the original problem into
a series of sub-problems. Moreover, to find the optimal best solution, the sub-optimization
problems are then solved iteratively.

3. Proposed Solution

In this section, we demonstrate a framework for efficient allocation of computational
and communication resources, task segmentation variables and phase shift control of IRS.

3.1. Task Segmentation

In the MEC framework, task segmentation is a crucial design parameter that signifi-
cantly affects overall system performance. Our research takes into account a scheme for
partial offloading in which parallel computations are performed both locally and on the
MEC server. As a result, there is a monotonic relationship between the local and the edge
computation time, as perceived from (4) and (6). The task segmentation variable αn affects
both the local and edge computational time. When αn is small, most of the work can be
carried out locally at UEs, and the time on each edge is negligible (tE

n ≈ 0). In contrast,
when αn approaches its maximum value of 1, most of the work is carried out on the MEC
server, resulting in a local computational time that is roughly equal to zeros, i.e., tL

n ≈ 0. A
situation exists where the computational edge time is the same as the local computational
time or tL

n = tE
n . The following is a mathematical expression of this:

(1− αn)cn

κl
n

=
αncn

κE
n

+
αnsn

Rn
, (8)

cn

κl
n
− αncn

κl
n

=
αncn

κE
n

+
αnsn

Rn
⇒ αn =

κL
n A

cnRnB
, (9)

whereas A = Rncn + κE
n sn and B = κE

n + κL
n . Equation (9) represents the task segmentation

expression, which depends on local and edge resources as well as phase shift control.
Similarly, the optimal values of these variables result in the optimal values of the task
segmentation variable.

3.2. Edge Computational Resource Allocation

This section computes the close form solution of edge computation resources assigned
to the nth UEs task.

Lemma 1. Under given optimal value task segmentation αn, transmission power pn and phase
shift of IRS θn, the computational task minimization problem is convex and mathematically can be
expressed as follows:

P2 : min
κ

max
(
(1− αn)cn

κl
n

,
αncn

κE
n

+
αnsn

Rn

)
, (10a)

C2 :
N

∑
n=1

κE
n ≤ κmax. (10b)

Proof. Therefore for the ease of simplicity we can define the objective function of (10) as:

Q(κ) = max
(
(1− αn)cn

κl
n

,
αncn

κE
n

+
αnsn

Rn

)
, (11)

whereas the hessian matrix of (11) can be expressed as:
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H =


∂2Q
∂2κ1

· · · ∂2Q
∂κ1∂κn

...
. . .

...
∂2Q

∂κn∂κ1
· · · ∂2Q

∂2κn
.

 (12)

After some mathematical calculation, it was perceived that all the elements of matrix
H were zeros except for the digital elements, i.e.,

∂2Q
∂κn∂κn′

=

{ 2cn
κn′

n
if n = n′

0 = otherwise.
(13)

Equations (13) demonstrate that all of the elements along the diagonal of the matrix H
have a positive value. Therefore, in accordance with the theorem [44], the objective function
mentioned in (11) is convex in nature. As a results, the optimization problem mentioned
in (10) is a convex optimization problem.

Lemma 2. The optimal allocation of resources at the MEC can be calculated by using Equation (17).

Proof. According to Lemma 1, the Lagrange function of optimization problem (10) can be
mathematically represented as:

L(κE
n , λ) = Q(κE

n ) + λ

(
N

∑
n=1

κE
n − κmax

)
. (14)

Therefore, according to the KKT condition, if κE
n
∗ and λ∗ is the optimal value of the

solution, then we can say that:

∆Q(κE
n ) + λ∗

(
∆

N

∑
n=1

κE∗
n − κmax

)
= 0, (15)

N

∑
n=1

κE∗
n − κmax = 0. (16)

Therefore, by solving the above mention equation, the optimal value of computational
resource allocation at the MEC can be expressed as follows:

κE
n
∗
=

√
cn

∑N
n=1
√

cn
. (17)

3.3. Transmission Power and Phase Shift Control

Under given the optimal value of task segmentation variable, and computational
resources at the MEC server The computational task minimization problem is written in a
simplified form as:

P4 : min
P,θ

max
(
(1− αn)cn

κl
n

,
αncn

κE
n

+
αnsn

Rn

)
(18a)

C1, C3, C4. (18b)

The optimization problem that is mentioned in (18) is a non-linear and still non-convex
problem due to log function in Rn. Therefore, to tackle this, we transform the optimization
problem into a more easily tackled form by introducing the slack variable R′n as follows:
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P3 : min
P,θ,R′

max
(
(1− αn)cn

κl
n

,
αncn

κE
n

+
αnsn

R′n

)
(19a)

Φn ≥
2R′n/B

Φ i
−Φi, ∀n (19b)

C1, C3, C4, (19c)

where Φn = pn|yH
n (gd

n +Hθga,1
n )|2 and Φi = ∑i 6=n|yH

i (gd
i +Hθga,1

i )|2 pi + yH
n σ2. Hense the

optimization problem mention (19) in convex in nature and thus can be solved by using the
convex optimization toolbox, such as CVX, the steps of which are illustrated in Algorithm 1.

Algorithm 1: Framework for Optimal Resource Allocation.

1 Initialization: Initialize all the simulation parameters, Ωo, error, αo
2 Execution:
3 while termination criterion met do
4 // Find the optimal value of computational resources allocation to UEs at MEC servers
5 κE∗

n ← solve (17)
6 foreach n ∈ N do
7 // Calculate the optimal value of Phase shift control and transmission power.
8 [p∗, θ∗]← solve (18)
9 // Given the value of all the decision variables, calculate the task segmentation

variable.
10 α∗ ← solve (9)
11 // Given the value of all the decision varible, calcuate task computational time
12 Ω∗ ← solve(7a)
13 end
14 error=Ω∗ −Ωo

15 Ωo = Ω∗

16 end

3.4. Worst Case Per Iteration Complexity Analysis

The optimization problem mentioned in (19) involves N.K.K.N decision variables and
N.N.N.K.K convex constraints. Therefore, according to the authors of [45], the worst case
per iteration complexity of can be expressed as O

(
N2K2)3(N3K2) . Following that, by

assuming the tmax as the total iterations of the algorithm, the overall complexity of the
algorithm can be expressed as O

(
tmax(N2K2)3(N3K2)).

4. Result and Discussion

Here, we show numerical results to prove the effectiveness of the proposed approach.
For this, extensive simulations were executed with the simulation parameters from Table 1.
The proposed scheme is also compared to other benchmark schemes, such as binary
offloading [46], edge computing, and naive offloading, to ensure it delivers the best per-
formance possible. In the binary offloading method, the entire job is either computed
locally or on the MEC server. With edge computing, all UEs offload their processing to
the MEC server, while with naive offloading, UEs offload their extensive computation in a
random manner.

To begin, it was essential to evaluate the proposed scheme’s performance with and
without the involvement of the IRS [12]. After that, we compared it with an exhaustive
search as well as various other benchmark schemes. In order to accomplish this, Figure 2
shows the IRS’s effects on the performance of the system. In a dense urban environment, the
communication link between the UEs and MEC servers is highly tempered due to blockage,
e.g., high-rise buildings. Therefore, as a result of poor channel conditions, achievable data
decrease, which has a significant impact on the amount of time required to complete the
task. Thanks to IRS, that emerges as a practical solution to assist the existing terrestrial
communication system. In order to improve the channel gain, the IRS elements perform
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an intelligent signal reflection from the UEs in the direction of the MEC servers. As a
consequence of this, the achievable data rate increases, and the amount of time required to
offload the task decreases, as shown in Figure 2.

Table 1. Simulation Parameters.

Name Symbol Value

Transmission Bandwidth B 20 MHz

Maximum Transmission Power Pmax 0.1 W

Noise Power No −173 dBm

Static Circuit Power Γ 90 W/Gcycle

Maximum battery Capacity Emax 103 J
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Figure 2. Impact of IRS on system performance.

The results in Figure 3 demonstrate the comparative analysis of the proposed scheme
with exhaustive search and other benchmark schemes by considering computational time
as a performance metric. Results show that the proposed scheme produces epsilon equal
results as compared to exhaustive search and outperforms all others. Outcomes reveal
that, for a small number of users, the performance of the proposed schemes follows one
another. In contrast, as the number of users increases in the system, the proposed scheme
performs better than others. This trend is because edge computational resources are shared
among the number of connected users. For a large number of users, the portion of resources
allocated to each user is minute as compared to a small number of users as a result of
latency in introducing a system. In contrast, in the proposed scheme, the task is optimally
divided into two parts by taking into account the edge computational resources and channel
characteristics. One portion of the task is computed locally, while the other is offloaded to
MEC for extensive computation.
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Figure 3. Computational Time vs Number of Users.

The amount of data being processed is an essential component of the edge computing
paradigm and has a considerable impact on the overall performance of the system. In order
to demonstrate the usefulness of the proposed scheme, several simulations were carried out
using sets of varying data sizes. The effectiveness of the proposed scheme is demonstrated
by the results in Figure 4. In addition, the results demonstrate that the time required for
edge computation increases at an exponential rate when the data size increases. This is due
to the fact that the total computational time in edge computing is primarily determined
by the achievable data rate, denoted by Rn, as well as the number of bits, as specified
in (2). In the context of edge computing, the value of the task segmentation variable is
αn = 1. That is to say, all of the bits are offloaded to MEC severe. In that case, an edge
computing scheme is not an acceptable method for task computation because of a direct
relationship between the amount of time it takes to offload data and the number of bits
involved. When compared to other methods, optimal task segmentation always performs
better and emerges as a viable solution for problems involving large amounts of data.

Sensors are an essential component of any intelligent control system that collect the
necessary data from applications that operate in real-time. The most recent improvement
to the 5G/6G communication system has allowed for the deployment of additional sensor
nodes. These sensor nodes, in addition to having a limited capacity for computation,
also have a finite battery life, which is a factor that bottlenecks the performance of the
system. The simulation was carried out so that the efficacy of the proposed scheme can be
evaluated with regard to the amount of energy that it would require to compute the task.
The effectiveness of the proposed scheme is illustrated by the numerical results in Figure 5.
The results show that, for a small number of users, the proposed scheme follows the others.
However, as the number of users increases, the proposed scheme begins to perform better
due to its optimal task segmentation into two portions. In the proposed scheme, only a
small portion of the task is computed locally, resulting in lower energy consumption when
compared to binary or edge computation schemes, in which the entire task is offloaded to
MEC for extensive computation, resulting in higher energy consumption.
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Figure 4. Energy Consumption vs. Data Size.
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Figure 5. Energy Consumption vs. Number of Users.

5. Conclusions

IRS and MEC are the two promising technologies for low latency and high energy
efficiency communications in future networks. This paper has provided a new framework
for minimizing the maximum computational time of user tasks using an IRS-enhanced
MEC network. In particular, this framework has simultaneously optimized the task seg-
mentation and transmission power of users, phase shift design of IRS, and computational
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resource of edge, respectively. Since the problem was non-convex and coupled with multi-
ple variables, it was hard to obtain the joint solution directly. Therefore, it was decoupled
into sub-problems first and then solved through convex optimization methods. The pro-
posed scheme was validated and compared through numerical results. Results show that
the proposed IRS-enhanced MEC network performs significantly better than the other
benchmark schemes in terms of computational time and energy consumption. This work
can be extended in several ways. For example, we can use aerial IRS such that the IRS can
be equipped with a drone. Moreover, we can integrate non-orthogonal multiple access to
the same system model, where the existing model can act as a benchmark.
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