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Abstract: This manuscript explores the applications of deterministic artificial intelligence (DAI) in
a space environment in response to unknown sensor noise and sudden changes in craft physical
parameters. The current state of the art literature has proposed the method, but only ideal environments,
and accordingly this article addresses the literature gaps by critically evaluating efficacy in the face of
unaddressed parametric uncertainties. We compare an idealized combined non-linear feedforward (FFD)
and linearized feedback (FB) control scheme with an altered feedforward, feedback, and deterministic
artificial intelligence scheme in the presence of simulated craft damage and environmental distur-
bances. Mean trajectory tracking error was improved over 91%, while the standard deviation was
improved over 97% whilst improving (reducing) control effort by 13%.
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1. Introduction

Attitude determination and control is a critical subsystem on the majority of modern
spacecraft like that depicted in Figure 1. Rotational dynamics and kinematics,
actuators, sensors and observers, controllers, and perturbations are all expansive ar-
eas of research into ensuring the desired pointing and spin of a given craft is achieved.
Traditional linearized feedback control is anything but simple and robust. Extensive
analysis of poles, gain design, and analysis on the boundaries of where linearization still
holds true all pose consistent challenges even in simple implementations of traditional
proportional-integral-derivative (PID). Large amounts of thought are put into designing
controllers for their specific implementations and their performances are highly restricted
to the anticipated environment for which they were designed. To address the limitations
of linearization, non-linear feedforward techniques were developed. Though more robust
than traditional feedback (and in theory capable of exact control), feedforward control also
has innate restrictions. It requires highly accurate process modeling that is easily disturbed
by unaccounted for noise. deterministic artificial intelligence conveniently ignores envi-
ronmental noise and requires only knowledge of rotational dynamics. By assuming the
physics will hold true (which it always will), we can create highly accurate and robust
controllers. In conjunction with feedback and feedforward control, our new hybrid control
can perform accurately in a wide range of environments and shifting variables.

Attitude control of space vehicles is complicated by external forces and torques and un-
fortunately sometimes collision damage due to coincident orbital events. Significant research
in the topic follows several lines seeking to negate such complicating factors. A long list
of techniques in the lineage include classical feedback, feedforward (more relatively rare),
optimal control, robust control (typically a label for optimal control minimizing the infinity
norm of specified cost function), and several nonlinear adaptive techniques like self-tuning
regulators and model-reference adaptive control. Another recent technique is physics-based
control. Several of these techniques necessitate autonomous formulation of attitude trajec-
tories and several options predominate. Especially noting the utilization of the eigenaxis [3]
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by the four-dimensional parameterization of three-dimensional rotation (the “quaternion”),
so-called eigen-axis maneuvers [4] utilize the eigen-axis to define the shortest-distance
between two point (the initial point and the desired point). Subsequent demonstration that
shortest distance does not lead to minimum time maneuvers, [5] alternative options for
autonomous trajectory generation abound. Having the control follow a “sliding-mode”
manifold [6,7] defined as by linearity with a nonlinear control forcing the trajectory to
follow the sliding mode, where Zou et al., [8] also sought to introduce learning using a
stochastic (non-deterministic) neural network. Wang et al., [9] sought to include actuator
dynamics while Wang et al., [10] incorporated vehicle structural flexibility.
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Figure 1. NASA’s Cyclone Global Navigation Satellite System (CYGNSS) mission, a constellation of
eight microsatellites, will improve hurricane forecasting by making measurements of ocean surface
winds in and near the eye wall of tropical cyclones, typhoons and hurricanes throughout their life
cycle. Figure taken from [1] in compliance with NASA’s image use policy [2].

Nonlinear adaptive techniques established the provenance of self-awareness state-
ments in deterministic artificial intelligence (later combined with physics-based controls).
Slotine proposed nonlinear adaptive methods for robotics [11] with parallel development
for spacecraft attitude control [12] culminating in the finalized development of both pre-
sented as advanced material in the textbook Applied Nonlinear Control. [13] The method
essentially utilized classic feedback to adapt a feedforward and feedback signals in addition
to adaptive the trajectory fed to both feedforward and feedback channels. The foundational
work parameterized the control in the non-rotating, non-accelerating inertial reference
frame, while Fossen [14] proposed improved performance (computational efficiency) with
analytically identical control formulated in the rotating body reference frame. Fossen
illustrated broad, general applicability to underwater robotics and underwater vehicles
in general [15,16], and this generalization continued eventually culminating in similar
demonstrations for the currently instantiation of deterministic artificial intelligence.

After Fossen’s evolutions, the feedforward and feedback gains were proven to be
separately tunable [17,18], while the former works combined tuning of both. The evolving
techniques were augmented by physics-based control methods of Lorenz [19] formerly
applied to torque control [20] but also applied specifically to deadbeat torque generation,
induction machines [21], multi-phase electric motors [22], magnetic state control [23],
loss-minimizing servo control [24], magnetic flux control [25], self-sensing control [26],
and brushed DC motor control [27] eventually illustrating efficacy for spacecraft attitude
control [28] as an augmentation to the lineage of methods started by Slotine.

Regarding the feedforward channel, the most recent developments proposed methods
for dealing with highly nonlinear oscillatory van der Pol circuits [29] necessitating state
observers [30] to permit applicability in feedback [31] as learning by Smeresky and Rizzo to
spacecraft attitude control. Following this success, very similarly to the earlier lineage, the
methods were applied to unmanned underwater vehicles [32] and DC motor control [33]
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where an interesting comparison to foundational nonlinear adaptive control was offered by
Shah [34]. So far, this year the current instantiation of deterministic artificial intelligence has
been applied to remote underwater vehicles by Osler [35], while the necessary autonomous
trajectory generation schemes currently in use were critically compared by Sandberg [36]
following Koo’s elaboration [37] of the impacts on trajectories of discretization and numeri-
cal propagation. Sandberg’s trajectory generation results were enhanced by Raigoza [38] to
include satellite de-orbiting with autonomous obstacle avoidance.

This considerable background literature display gaps emphasized strongly by the
instantiation of the work presented here, and based on the major gaps of overcoming
uncertainties, the claimed contributions of the article are justified. One major feature
offered by the self-awareness statements of deterministic artificial intelligence obfuscates
the necessity in the stochastic approaches to categorize uncertainties as internal or external,
parametric or non-parametric, constant, characteristic or random. In real time applications
the physical, mechanical, electrical and environmental constraints are addressable in real
time environments by a priori utilization of real-time optimization techniques presented by
Sandberg in [36].

Artificial intelligence is ubiquitously described as intrinsically stochastic, implying
machine learning, most often utilizing neural networks and often augmented with deep
learning. While this manuscript utilizes a number of uncertainties, disturbances and noises
the algorithm remains deterministic in the assertion of self-awareness (offered by Cooper
and Heidlauf’s methodology), relegating the stochastic forms of artificial intelligence to
counteract the unknowable features.

Smeresky and Rizzo [31] showed that deterministic artificial intelligence could achieve
improved results compared to both optimized feedback and feedforward control schemes.
Additionally, it achieved reduced computational burden. Building off their work, this
manuscript presents a redesigned deterministic artificial intelligence controller in conjunc-
tion with Smeresky’s optimal feedback and feedforward control and evaluates the proposed
method to overcome a range of environmental disturbances (not formerly in the literature)
including a sudden shift in the values of the craft’s mass moments of inertia, while the
controller was tuned with no such knowledge. Despite this sudden shift and range of
disturbances, the controller exceeded expectations and demonstrated consistent stability.
Mean trajectory tracking error was improved over 91%, while the standard deviation was
improved over 97% whilst improving (reducing) control effort by 13%.

2. Materials and Methods

Comparisons of the various algorithms should be performed under equal conditions.
Therefore, the validating simulations displayed in Appendix A illustrate identical condi-
tions where algorithms are switched on when active, while others are deactivated. The
parameters of the respective algorithms are chosen seeking identical final values when
initiated from identical initial conditions.

2.1. Rigid Body Motion

The topic of rigid body motion is best described in a Euler’s Equation for rigid body
motion displayed in Equation (1) (reference Table 1 for variable definitions in Equation (1)).

T =
.

H + ω× HS, (1)

Table 1. Definitions of proximal variables for Section 2.1.

Variable Definition Variable Definition

T Resultant applied torque ω Angular velocity (radians/second)
.

H Timed rate of change of HS HS Spacecraft angular momentum
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This is the rotational equivalent of newton’s second law relating the acceleration of an
object to the fore applied to it. It is the basis of action from the controllers and actuators on
the craft, determining the exact quantity of torque necessary to shift the angular momentum
of the craft to a specific direction and magnitude.

2.2. PDI Control

Traditional PID control functions around a linearized control point as illustrated in
Equation (2) (reference Table 2 for variable definitions in Equations (2) and (3)).

u f b = kpeθ + kd
.
eθ + ki

∫
eθ . (2)

Table 2. Definitions of proximal variables for Section 2.2.

Variable Definition Variable Definition

u f b Feedback control signal θd Desired attitude angle
kp Proportional gain ωd Desired angular rate
kd Derivative gain θ Actual attitude angle
ki Integral gain ω Actual angular rate
eθ Angular position error J Mass moment of inertia
.
eθ Angular velocity error dt Differential element of time

We implement a non-linear enhanced control called proportional-integral-derivative (PDI)
of the form displayed in Equation (3).

u f b = −kp(θd − θ)− kd(ωd −ω)− ki

∫
(θd − θ)dt−ω× Jω, (3)

This controller accounts for both position and velocity errors, better reflecting the true
physics of the non-linear system we are modeling. Additionally, it contains a non-linear
decoupling term (ω× Jω) to account for the constantly shifting reference frames.

2.3. Luenberger Observers

We implement an observer of the form displayed in Equation (4) (reference Table 3 for
variable definitions in Equation (4)).

x(k + 1) = Ad x̂(k) + Bdu(k) + Ld(y(k)− ŷ(k)), (4)

where x̂(k) is the kth estimated state vector, ŷ(k) is the kth estimated output vector. Ad
is the discretized state matrix, Bd is the discretized input matrix, and Ld is the observer
gain matrix.

Table 3. Definitions of proximal variables for Section 2.3.

Variable Definition Variable Definition

x(k + 1) State at following timestep u(k) Control at present timestep
Ad Discretized state matrix y(k) Output at present timestep

x̂(k) Present state estimate ŷ(k) Present timestep output estimate
Bd Discretized input matrix k Present timestep
Ld Observer gain matrix

2.4. Deterministic Artificial Intelligence (DAI)

While feedback (PDI) and feedforward control have proven applications and function-
ality, they both suffer flaws. Feedback (PDI) control contains no analytical solution, as one is
equating a derivative and integral to an exact physical value, hence the consistent error and
oscillation in steady state of all feedback (PDI) solutions. Adaptive Feedforward control
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could in theory provide exact solutions, but only with perfect knowledge of all system
and environmental parameters, again impossible. deterministic artificial intelligence seeks
to provide an exact analytical solution without knowledge of environmental parameters,
by enforcing new assumptions on your physical system, a system who’s physics one can
characterize exactly. In this case, we focus purely on three degree of freedom rotational
control according to Euler’s equations for rotational rigid body motion. Our estimable sys-
tem parameter of inertia will allow us to enforce desirable physics on our control algorithm
via the self-awareness statement displayed in Equation (5) (reference Table 4 for variable
definitions in Equations (5)–(7)). whose system matrix is displayed in Equation (6) and
regression vector in Equation (7). Equation (6) in particular illustrates the novel method of
insuring trajectory tracking, where the control definition embeds the coupled, nonlinear
desired trajectory annotated by the subscript, d. As estimates converge to actual values,
trajectory tracking is assured by actual states converging to desired states.

u ≡ Ĵ
.

ωd + ωd × Ĵωd = [Φd]
{

Θ̂
}

, (5)

where:

Φd =

 .
ωx

.
ωy

.
ωx −ωyωx 0 ωzωy

ωxωz
.
ωx 0

.
ωy

.
ωz −ωzωx

−ωxωy 0
.
ωx ωyωx

.
ωy

.
ωz

, (6)

Table 4. Definitions of proximal variables for Section 2.4.

Variable Definition Variable Definition

u Total control
.
ωx Acceleration about body x-axis

Ĵ Estimated mass moment of inertia
.
ωy Acceleration about body y-axis

.
ωd Desired angular acceleration vector

.
ωz Acceleration about body z-axis

ωd Desired angular rate vector ωx Angular rate about the body x-axis
Φd Regression matrix of “knowns” ωy Angular rate about the body y-axis
Θ̂ Regression vector of “unknowns” ωz Angular rate about the body z-axis

FFD Feedforward control DAI Deterministic artificial intelligence
FB Feedback control

And

Θ =
{

Jxx Jxy Jxz Jyy Jyz Jzz
}T → Θ̂ =

{
Ĵxx Ĵxy Ĵxz Ĵyy Ĵyz Ĵzz

}T , (7)

Incorporating this knowledge with our observer output, we can estimate a θ̂ (the
difference in our desired state inertia vs. our current state inertia) via the Moore-Penrose
pseudo inverse (the 2-norm optimal solution to our self-awareness statement). This gives an
output control that enforces our system inertia to match its actual behavior, thus producing
a more robust response regardless of any present disturbances.

Using our learned θ̂, we can enforce an additional control input proportional to θ̂ in
addition that of our PID algorithm. While the DAI control can exist on its own, in this
paper we only cover the pure PID and hybrid PID/DAI cases.

Existing machine learning techniques in vehicle control attempt to match assumptions
about highly non-linear real-world equations of motion and matching control outputs
based on environmental experience. Inherently, these methods will be non-robust as the
introduction of novel inputs to their schemas will produce undesirable results until the
algorithm readapts. For example, if a reinforcement learning model is trained to control
an aerial vehicle in laminar flow conditions, the introduction of turbulent conditions will
introduce unknown equations of motion that will threaten stability. DAI, in contrast, as-
sumes any estimated control input to produce a desired change in motion is inherently
false (as we do not have perfect knowledge of the multitude of effects that can change
vehicle dynamics). To counter this problem, it simplifies the error to a change in vehicle
parameters (parameters that we know will affect the equations of motion we are seeking



Sensors 2022, 22, 8723 6 of 25

to modify, in this case inertia). The “learning” is instantaneous and not necessarily reflec-
tive of the true state of the vehicle, but it is reflective of the effective state in the face of
unknown perturbations.

3. Results

This section will compare combined feedforward and feedback control (FFD + FB)
to combined feedforward and feedback control with deterministic artificial intelligence
(FFD + FB + DAI). First, we will compare performances of the schemes for a thirty-degree
yaw with no disturbances. Next, we will perform the same maneuver with simulated
gravitational gradient and drag torques to evaluate the efficacy of each approach to handle
the disturbance inputs without their explicit presence in the respective approach. Lastly,
we simulate a large one-hundred-degree yaw with perturbations and a change in the craft’s
dynamics via a sudden shift in inertia. Visualization, initialization, and data processing
code are provided in Appendix B. The exact values for simulation startup and input
parameters are provided in Appendix C. Observer and controller gains are listed in Table 5.

Table 5. Observer and controller gains 1.

Kp Kd Ki

PDI control 1000 10 0.1
Luenberger Observer 10,000 500 0.1

1 These gains will remain constant for all data sets.

3.1. Thirty-Degree Yaw

The plots in Figure 2 show that just over one order of magnitude of precision is gained
via deterministic artificial intelligence implementation. Exact values of improvement
are listed in Table 6. While traditional control settles to 2.1424× 10−4 degrees of error,
deterministic artificial intelligence hybrid control settles to 1.5147× 10−5 degrees of error
in a fraction of the amount of time. Additionally, deterministic artificial intelligence runs
in 18.2 s while traditional optimal control takes 21.3 s, showing both a boost in speed
and accuracy.
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Figure 2. (a) Thirty degree yaw feedforward plus feedback (FFD + FB) control, (b) thirty degree yaw
hybrid deterministic artificial intelligence (DAI) control. Both figures include display of tracking
errors in the zoomed-inset graphic. Notice the ordinate scale, respectively of insets in subfigure (a,b)
to reveal the relative comparison.

Table 6. Figures of merit for nominal thirty degree yaw 1.

Method Mean Tracking Error (µ) Tracking Error Standard Deviation (σ) Control Effort

Feedforward + feedback (PDI) 2.1424 × 10−4 2.3 × 10−3 2.13 × 101

Hybrid deterministic
artificial intelligence 1.5147 × 10−5 2.0181 × 10−4 1.82 × 101

1 Illustration of performance improvement.
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3.2. 30 Degree Yaw with Perturbations

While the traditional proportional-derivative-integral (PDI) controller’s performance
is reduced in the presence of perturbations, we see in Figure 3 and Table 7 that deterministic
artificial intelligence’s performance increases, settling to an error of 6.0185× 10−6 degrees.
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Figure 3. Control with perturbations. (a) Thirty degree yaw using feedforward plus feedback
(FFD + FB) control; (b) thirty degree yaw hybrid deterministic artificial intelligence control. Both
figures include display of tracking errors in the zoomed-inset graphic. Notice the ordinate scale,
respectively of insets in subfigure (a,b) to reveal the relative comparison.

Table 7. Figures of merit for thirty-degree yaw with perturbations 1.

Method Mean Tracking Error (µ) Tracking Error Standard Deviation (σ) Control Effort

Feedforward + feedback (PDI) 2.1537 ×10−4 2.3 ×10−3 2.46 ×101

Hybrid deterministic
artificial intelligence 6.0185 ×10−6 4.3078 ×10−5 2.13 ×101

1 Illustration of performance improvement.

3.3. One-Hundred-Degree Yaw Maneuver with Perturbations and Simulated Damage

Lastly, a large maneuver produces largely similar results for deterministic artificial
intelligence with a maximum error of 5.4427× 10−6 degrees as depicted in Figure 4 and
Table 8. Traditional control settles to 6.2142× 10−5 degrees of error.

Table 8. Figures of merit for thirty-degree yaw with perturbations and simulated damage 1.

Method Mean Tracking Error (µ) Tracking Error Standard Deviation (σ) Control Effort

Feedforward + feedback (PDI) 6.2142× 10−5 1.40× 10−3 2.29× 101

Hybrid deterministic
artificial intelligence 5.4427× 10−6 4.0650× 10−5 1.99× 101

1 Illustration of performance improvement.
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Figure 4. (a) One hundred degree yaw feedforward plus feedback (FFD + FB) control; (b) one
hundred degree yaw with hybrid deterministic artificial intelligence (DAI) control. Both figures
include display of tracking errors in the zoomed-inset graphic. Notice the ordinate scale, respectively
of insets in subfigure (a,b) to reveal the relative comparison.

4. Discussion

While it was anticipated that the hybrid deterministic artificial intelligence approach
would yield optimal results per the work of Smeresky and Rizzo, one surprising outcome
was the reduction of error in the presence of persistent excitation. Any level of observer
noise improved the precision of the deterministic artificial intelligence controller. In sim-
ulation, this can be difficult to model but a real-world implementation of deterministic
artificial intelligence would yield continuous noise inputs from sensors and thus more
accurate controls.

Both controllers seemed to handle sudden changes in spacecraft inertia (and thus its
dynamics), quite well, with minimal effect on the actual control. As displayed in Table 9,
mean trajectory tracking error was improved over 91%, while the standard deviation was
improved over 97% whilst improving (reducing) control effort by 13%. It should be noted
that the observer proportional-derivative-integral (PDI) gains were set quite aggressively
and may not be feasible for real life actuators to implement. Further work should be done to
explore deterministic artificial intelligence with control signals restricted by the capabilities
of real-world actuators.

Table 9. Percent performance improvements in DAI vs Feedforward+Feedback for thirty degree yaw
with perturbations and simulated damage 1.

Method Mean Tracking Error Tracking Error Standard Deviation Control Effort

Hybrid deterministic artificial intelligence 91.24% 97.10% 13.10%
1 Illustration of performance improvement.

One final further route to explore would be to implement the θ̂ output of the deter-
ministic artificial intelligence controller to update the controller side inertia estimate. This
may allow for faster control in the face of damage, along with being a useful diagnostic
tool for remote vehicles.
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Appendix A.2. Learn [J] Subsystem Function File Depicted in Figure A3

function [J,J_inv] = fcn(u)
%At T = 8, simulate damage
% if u(16) == 8
% u(1) = 0.7*u(1); u(5) = 0.3*u(5); u(9) = 0.65*u(9);
% end
J = zeros(3,3);
J(1,1) = u(1) + u(10); J(1,2) = u(2) + u(11); J(1,3) = u(3) + u(12);
J(2,1) = u(4) + u(11); J(2,2) = u(5) + u(13); J(2,3) = u(6) + u(14);
J(3,1) = u(7) + u(12); J(3,2) = u(8) + u(14); J(3,3) = u(9) + u(15);
% J = [J(1) J(2) J(3); J(4) J(5) J(6); J(7) J(8) J(9)];
J_inv = J\eye(length(J)); %J_inv = inv(J); %J_inv = eye(3,3)\J;
%set_param(‘AE3818_HW6_v3_simulink/J’,’Value’,[J(1:3);J(4:6);J(7:9)]);

Appendix A.3. Feedforward Control Subsystem Function File Depicted in Figure A3

function T = fcn(J,w,w_dot)
%Unpack the input data
Jxx = J(1); Jxy = J(2); Jxz = J(3);
Jyx = J(4); Jyy = J(5); Jyz = J(6);
Jzx = J(7); Jzy = J(8); Jzz = J(9);
wx = w(1); wy = w(2); wz = w(3);
wx_dot = w_dot(1); wy_dot = w_dot(2); wz_dot = w_dot(3);
%Calculate the torques
Tx = Jxx*wx_dot+Jxy*wy_dot+Jxz*wz_dot-Jxy*wx*wz-Jyy*wy*wz-Jyz*wzˆ2 +Jxz*wx*wy
+Jzz*wz*wy+Jyz*wyˆ2;
Ty = Jyx*wx_dot+Jyy*wy_dot+Jyz*wz_dot-Jyz*wx*wy-Jzz*wx*wz-Jxz*wxˆ2+Jxx*wx*wz
+Jxy*wz*wy+Jxz*wzˆ2;
Tz = Jzx*wx_dot+Jzy*wy_dot+Jzz*wz_dot-Jxx*wx*wy-Jxz*wy*wz-Jxy*wyˆ2+Jyy*wx*wy
+Jyz*wz*wx+Jxy*wxˆ2;
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%Package the output
T = [Tx;Ty;Tz];
end
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function q_dot = fcn(q,w)
q = [q(1);q(2);q(3);q(4)]; w_matrix = 1/2* . . .
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Appendix A.5. [q]_([4 × 4]) Subsystem Depicted in Figure A10 Constructing Direction Cosine
Matrix from Quaternion Vector

function q_dot = fcn(q,w)
w = [w(1);w(2);w(3);0];
q_matrix = 1/2* . . .
[q(4), -q(3), q(2), q(1); . . .
q(3), q(4), -q(1), q(2); . . .
-q(2), q(1), q(4), q(3); . . .
-q(1), -q(2), -q(3), q(4)];
q_dot = q_matrix*w;
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Appendix B. Wrapper MATLAB Line Code

% Clear all variables, figures, and outputs
clear all; clc; close all;

% GLOBAL VARIABLE DECLARATIONS/////////////////////////
% This section is where global variables are defined
% NONE
% END GLOBAL VARIABLES\\\\\\\\\\\\\\\\\\\\\\\\\

% FORMATTING BEHAVIOR/////////////////////////
% This section is where formatting behavior is defined
setgraphics()
% END FORMATTING BEHAVIOR\\\\\\\\\\\\\\\\\\\\\\\\\

% MAIN/////////////////////////
% This section is main function
disp ‘Main ————————-’;
% J = [50.5 0.1 0.1; 0.1 75.2 0.1; 0.1 0.1 one-hundred.4];
% %J = [2.0 0.1 0.1; 0.1 2.0 0.1; 0.1 0.1 2.0]; %For an uglier J
% J_Inv = J\eye(length(J));
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%Load Simulink files
load_system(‘AE3818_HW6_v3_simulink.slx’);
model = ‘AE3818_HW6_v3_simulink’;

%Run Simulink models:
%Set the input parameters
wait_time = 5; % Seconds
maneuver_time = 20; % Seconds
post_maneuver_time = thirty; % Seconds
orbital_Gain_Switch = 0; % 0 = Orbital disturbances off, 1 = on
aero_torque_Switch = 0; % 0 = aero torque disturbances off, 1 = on
gravity_gradient_Switch = 0; % 0 = gravity disturbances off, 1 = on
dist_correct_switch = 1; %1 = off, 2 = on
Rotation_Var = 1; %Select the DCM to Euler Angle Rotation scheme
Inv_case = 1; % Inverse calculated via pseudoinv
spud_case = 1; % 1 = SPUD off, 0 = SPUD on
case_Var = [0,0,thirty]; %The commanded Euler Angle

PID_case = 1; % Feedback controller method 1 = proportional, derivative, integral, 2 =
Matlab PID
kp = one-hundred0; % Kp gain for controller
kd = 10; % Kd gain for controller
ki = 0.1; % Ki gain for controller

observer_case = 2; % 1 = observer off, 2 = observer on
kp2 = one-hundred000; % Kp gain for controller
kd2 = 500; % Kd gain for controller
ki2 = 0.1; % Ki gain for controller

% I. Scenario cases
% A. Case 1—large timestep ffd+fb

disp(‘Case 1’)
timestep = 0.01; %Seconds
set_param(model,’FixedStep’,num2str(timestep),’StopTime’, . . .
num2str(wait_time+maneuver_time+post_maneuver_time));
ffd_case = 1; % 1 = ffd control on, 0 = ffd control off
fb_case = 1; % 1 = fb control on, 0 = fb control off

tic;
[case1.time,~,~] = sim(model);
case1.runtime = toc; %Get timing data

%Retrieve data from Simulink
case1.q_dot = q_dot;
case1.q = q;
case1.q_norm = q_norm;
case1.DMC = DCM;
case1.H = H;
case1.w_B = w_B;
case1.Euler_Angles = Euler_Angles;
case1.Body_Angles = Body_Angles;
case1.T_cmd = T_cmd;
case1.T_act = T_act;
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case1.Theta_dot = Theta_dot;
case1.cond_num = cond_num;
case1.detA = det_A;
case1.ffd = ffd;
case1.fb = fb;
case1.ffdfb = ffdfb;
case1.theta_error = theta_error;
case1.omega_error = omega_error;
case1.delta_u = delta_u;
case1.Theta_hat = Theta_hat;

% B. Case 2—small timestep ffd+fb
disp(‘Case 2’)
timestep = 0.001; %Seconds
set_param(model,’FixedStep’,num2str(timestep),’StopTime’, . . .
num2str(wait_time+maneuver_time+post_maneuver_time));
ffd_case = 1; % 1 = ffd control on, 0 = ffd control off
fb_case = 1; % 1 = fb control on, 0 = fb control off

tic;
[case2.time,~,~] = sim(model);
case2.runtime = toc; %Get timing data

%Retrieve data from Simulink
case2.q_dot = q_dot;
case2.q = q;
case2.q_norm = q_norm;
case2.DMC = DCM;
case2.H = H;
case2.w_B = w_B;
case2.Euler_Angles = Euler_Angles;
case2.Body_Angles = Body_Angles;
case2.T_cmd = T_cmd;
case2.T_act = T_act;
case2.Theta_dot = Theta_dot;
case2.cond_num = cond_num;
case2.detA = det_A;
case2.ffd = ffd;
case2.fb = fb;
case2.ffdfb = ffdfb;
case2.theta_error = theta_error;
case2.omega_error = omega_error;
case2.delta_u = delta_u;
case2.Theta_hat = Theta_hat;

% C. Case 3—large timestep, ffd on, fb off
disp(‘Case 3’)
timestep = 0.001; %Seconds
set_param(model,’FixedStep’,num2str(timestep),’StopTime’, . . .
num2str(wait_time+maneuver_time+post_maneuver_time));
ffd_case = 1; % 1 = ffd control on, 0 = ffd control off
fb_case = 0; % 1 = fb control on, 0 = fb control off
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tic;
[case3.time,~,~] = sim(model);
case3.runtime = toc; %Get timing data

%Retrieve data from Simulink
case3.q_dot = q_dot;
case3.q = q;
case3.q_norm = q_norm;
case3.DMC = DCM;
case3.H = H;
case3.w_B = w_B;
case3.Euler_Angles = Euler_Angles;
case3.Body_Angles = Body_Angles;
case3.T_cmd = T_cmd;
case3.T_act = T_act;
case3.Theta_dot = Theta_dot;
case3.cond_num = cond_num;
case3.detA = det_A;
case3.ffd = ffd;
case3.fb = fb;
case3.ffdfb = ffdfb;
case3.theta_error = theta_error;
case3.omega_error = omega_error;
case3.delta_u = delta_u;
case3.Theta_hat = Theta_hat;

% D. Case 4—large timestep, ffd off, fb on
disp(‘Case 3’)
timestep = 0.001; %Seconds
set_param(model,’FixedStep’,num2str(timestep),’StopTime’, . . .
num2str(wait_time+maneuver_time+post_maneuver_time));
ffd_case = 0; % 1 = ffd control on, 0 = ffd control off
fb_case = 1; % 1 = fb control on, 0 = fb control off

tic;
[case4.time,~,~] = sim(model);
case4.runtime = toc; %Get timing data

%Retrieve data from Simulink
case4.q_dot = q_dot;
case4.q = q;
case4.q_norm = q_norm;
case4.DMC = DCM;
case4.H = H;
case4.w_B = w_B;
case4.Euler_Angles = Euler_Angles;
case4.Body_Angles = Body_Angles;
case4.T_cmd = T_cmd;
case4.T_act = T_act;
case4.Theta_dot = Theta_dot;
case4.cond_num = cond_num;
case4.detA = det_A;
case4.ffd = ffd;
case4.fb = fb;
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case4.ffdfb = ffdfb;
case4.theta_error = theta_error;
case4.omega_error = omega_error;
case4.delta_u = delta_u;
case4.Theta_hat = Theta_hat;

% II. Analysis and Plots
% Timestep analysis plots
figure(1);
subplot(1,3,1);
plot(case1.time, case1.Euler_Angles(:,1),’-’, . . .
case2.time, case2.Euler_Angles(:,1),’:’);
title(‘$\phi$ Time-step Analysis ffd+fb’);
legend(‘0.01 Time-step’,’0.001 Time-step’,’location’,’best’)
subplot(1,3,2);
plot(case1.time, case1.Euler_Angles(:,2),’-’, . . .
case2.time, case2.Euler_Angles(:,2),’:’);
title(‘$\theta$ Time-step Analysis ffd+fb’);
legend(‘0.01 Time-step’,’0.001 Time-step’,’location’,’best’)
subplot(1,3,3);
plot(case1.time, case1.Euler_Angles(:,3),’-’, . . .
case2.time, case2.Euler_Angles(:,3),’:’);
title(‘$\psi$ Time-step Analysis ffd+fb’);
legend(‘0.01 Time-step’,’0.001 Time-step’,’location’,’best’)

figure(20);
subplot(2,3,1);
plot(case1.time, case1.theta_error(:,1),’-’, . . .
case2.time, case2.theta_error(:,1),’:’);
title(‘$\theta_x$ error to feedback controller’);
legend(‘0.01 Time-step’,’0.001 Time-step’,’location’,’best’)
subplot(2,3,2);
plot(case1.time, case1.theta_error(:,2),’-’, . . .
case2.time, case2.theta_error(:,2),’:’);
title(‘$\theta_y$ error to feedback controller’);
legend(‘0.01 Time-step’,’0.001 Time-step’,’location’,’best’)
subplot(2,3,3);
plot(case1.time, case1.theta_error(:,3),’-’, . . .
case2.time, case2.theta_error(:,3),’:’);
title(‘$\theta_z$ error to feedback controller’);
legend(‘0.01 Time-step’,’0.001 Time-step’,’location’,’best’)

subplot(2,3,4);
plot(case1.time, case1.omega_error(:,1),’-’, . . .
case2.time, case2.omega_error(:,1),’:’);
title(‘$\omega_x$ error to feedback controller’);
legend(‘0.01 Time-step’,’0.001 Time-step’,’location’,’best’)
subplot(2,3,5);
plot(case1.time, case1.omega_error(:,2),’-’, . . .
case2.time, case2.omega_error(:,2),’:’);
title(‘$\omega_y$ error to feedback controller’);
legend(‘0.01 Time-step’,’0.001 Time-step’,’location’,’best’)
subplot(2,3,6);
plot(case1.time, case1.omega_error(:,3),’-’, . . .
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case2.time, case2.omega_error(:,3),’:’);
title(‘$\omega_z$ error to feedback controller’);
legend(‘0.01 Time-step’,’0.001 Time-step’,’location’,’best’)

% Show ffd,fb,ffd+fb control inputs on a 1x3 plot
figure(2);
subplot(1,3,1);
plot(case2.time, case2.ffd(:,1), . . .
case2.time, case2.ffd(:,2), . . .
case2.time, case2.ffd(:,3));
title(‘feedforward control’);
legend(‘$\phi$’,’$\theta$’,’$\psi$’,’location’,’best’)
subplot(1,3,2);
plot(case2.time, case2.fb(:,1), . . .
case2.time, case2.fb(:,2), . . .
case2.time, case2.fb(:,3));
title(‘feedback control’);
legend(‘$\phi$’,’$\theta$’,’$\psi$’,’location’,’best’)
subplot(1,3,3);
plot(case2.time, case2.ffdfb(:,1), . . .
case2.time, case2.ffdfb(:,2), . . .
case2.time, case2.ffdfb(:,3));
title(‘feedforward plus feedback control’);
legend(‘$\phi$’,’$\theta$’,’$\psi$’,’location’,’best’)

% Show ffd vs fb euler angle analysis
% case3 = ffd only, case4 = fb only, case 1 = ffd+fb
figure(3);
subplot(2,3,1);
plot(case3.time, case3.Euler_Angles(:,1),’:’, . . .
case3.time, case3.Euler_Angles(:,2),’–’, . . .
case3.time, case3.Euler_Angles(:,3));
title(‘feedforward control Euler Angles’);
legend(‘$\phi$’,’$\theta$’,’$\psi$’,’location’,’best’)
subplot(2,3,2);
plot(case4.time, case4.Euler_Angles(:,1),’:’, . . .
case4.time, case4.Euler_Angles(:,2),’–’, . . .
case4.time, case4.Euler_Angles(:,3));
title(‘feedback control Euler Angles’);
legend(‘$\phi$’,’$\theta$’,’$\psi$’,’location’,’best’)
subplot(2,3,3);
plot(case1.time, case1.Euler_Angles(:,1),’:’, . . .
case1.time, case1.Euler_Angles(:,2),’–’, . . .
case1.time, case1.Euler_Angles(:,3));
title(‘feedforward plus feedback control Euler Angles’);
legend(‘$\phi$’,’$\theta$’,’$\psi$’,’location’,’best’)

subplot(2,3,4);
plot(case3.time, case3.Euler_Angles(:,1), . . .
case3.time, case3.Euler_Angles(:,2), . . .
case3.time, case3.Euler_Angles(:,3));
title(‘feedforward control Euler Angles (zoomed)’);
legend(‘$\phi$’,’$\theta$’,’$\psi$’,’location’,’best’)
ylim([29.95 thirty.05])
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xlim([8 15])
subplot(2,3,5);
plot(case4.time, case4.Euler_Angles(:,1), . . .
case4.time, case4.Euler_Angles(:,2), . . .
case4.time, case4.Euler_Angles(:,3));
title(‘feedback control Euler Angles (zoomed)’);
legend(‘$\phi$’,’$\theta$’,’$\psi$’,’location’,’best’)
ylim([29.95 thirty.05])
xlim([8 15])
subplot(2,3,6);
plot(case1.time, case1.Euler_Angles(:,1), . . .
case1.time, case1.Euler_Angles(:,2), . . .
case1.time, case1.Euler_Angles(:,3));
title(‘feedforward plus feedback control Euler Angles (zoomed)’);
legend(‘$\phi$’,’$\theta$’,’$\psi$’,’location’,’best’)
ylim([29.95 thirty.05])
xlim([8 15])

% Plot the calculated vs desired Euler angle error over time
figure(4);
subplot(1,4,1);
plot(case3.time, case3.Euler_Angles(:,1)-0, . . .
case4.time, case4.Euler_Angles(:,1)-0,’:’, . . .
case1.time, case1.Euler_Angles(:,1)-0);
title(‘$\phi_{act}$-$\phi_{des}$ error’);
legend(‘ffd’,’fb’,’ffd+fb’,’location’,’best’)
subplot(1,4,2);
plot(case3.time, case3.Euler_Angles(:,2)-0, . . .
case4.time, case4.Euler_Angles(:,2)-0,’:’, . . .
case1.time, case1.Euler_Angles(:,2)-0);
title(‘$\theta_{act}$-$\theta_{des}$ error’);
legend(‘ffd’,’fb’,’ffd+fb’,’location’,’best’)
subplot(1,4,3);
plot(case3.time, case3.Euler_Angles(:,3)-thirty, . . .
case4.time, case4.Euler_Angles(:,3)-thirty,’:’, . . .
case1.time, case1.Euler_Angles(:,3)-thirty);
title(‘$\psi_{act}$-$\psi_{des}$ error’);
legend(‘ffd’,’fb’,’ffd+fb’,’location’,’best’)
subplot(1,4,4);
plot(case3.time, case3.Euler_Angles(:,3)-thirty, . . .
case4.time, case4.Euler_Angles(:,3)-thirty,’:’, . . .
case1.time, case1.Euler_Angles(:,3)-thirty);
title(‘$\psi_{act}$-$\psi_{des}$ error (zoomed)’);
legend(‘ffd’,’fb’,’ffd+fb’,’location’,’best’)
ylim([-0.02 0.02])
xlim([8 15])

% Boundary condition satisfaction
feedforward_BC = [0-case3.Euler_Angles(end,1), . . .
0-case3.Euler_Angles(end,2), . . .
thirty-case3.Euler_Angles(end,3)];
feedback_BC = [0-case4.Euler_Angles(end,1), . . .
0-case4.Euler_Angles(end,2), . . .
thirty-case4.Euler_Angles(end,3)];
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feedforwardfeedback_BC = [0-case1.Euler_Angles(end,1), . . .
0-case1.Euler_Angles(end,2), . . .
thirty-case1.Euler_Angles(end,3)];
fprintf(‘feedforward BC@tf: phi=%2.2e, theta=%2.2e, psi=%2.2e\n’, . . .
feedforward_BC(1),feedforward_BC(2),feedforward_BC(3));
fprintf(‘feedback BC@tf: phi=%2.2e, theta=%2.2e, psi=%2.2e\n’, . . .
feedback_BC(1),feedback_BC(2),feedback_BC(3));
fprintf(‘feedforwardfeedback BC@tf: phi=%2.2e, theta=%2.2e, psi=%2.2e\n’, . . .
feedforwardfeedback_BC(1),feedforwardfeedback_BC(2),feedforwardfeedback_BC(3));
% Runtime analysis
fprintf(‘Case3 ffd runtime for 0.001 timestep: %2.2e sec\n’, . . .
case3.runtime);
fprintf(‘Case4 fb runtime for 0.001 timestep: %2.2e sec\n’, . . .
case4.runtime);
fprintf(‘Case1 ffd+fb runtime for 0.001 timestep: %2.2e sec\n’, . . .
case1.runtime);

% delta_u analysis plots
figure(5);
subplot(1,3,1);
plot(case1.time, case1.delta_u(:,1)-0);
title(‘$\delta_{ux}$’);
legend(‘ffd+fb’,’location’,’best’)
subplot(1,3,2);
plot(case1.time, case1.delta_u(:,2)-0);
title(‘$\delta_{uy}$’);
legend(‘ffd+fb’,’location’,’best’)
subplot(1,3,3);
plot(case1.time, case1.delta_u(:,3)-thirty);
title(‘$\delta_{uz}$’);
legend(‘ffd+fb’,’location’,’best’)

% Theta_hat analysis plots
figure(6);
subplot(2,3,1);
plot(case1.time, case1.Theta_hat(:,1));
title(‘$\Delta\Theta_{xx}$’);
legend(‘ffd+fb’,’location’,’best’)
subplot(2,3,2);
plot(case1.time, case1.Theta_hat(:,2));
title(‘$\Delta\Theta_{xy}$’);
legend(‘ffd+fb’,’location’,’best’)
subplot(2,3,3);
plot(case1.time, case1.Theta_hat(:,3));
title(‘$\Delta\Theta_{xz}$’);
legend(‘ffd+fb’,’location’,’best’)

subplot(2,3,4);
plot(case1.time, case1.Theta_hat(:,4));
title(‘$\Delta\Theta_{yy}$’);
legend(‘ffd+fb’,’location’,’best’)
subplot(2,3,5);
plot(case1.time, case1.Theta_hat(:,5));
title(‘$\Delta\Theta_{yz}$’);
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legend(‘ffd+fb’,’location’,’best’)
subplot(2,3,6);
plot(case1.time, case1.Theta_hat(:,6));
title(‘$\Delta\Theta_{zz}$’);
legend(‘ffd+fb’,’location’,’best’)
disp ‘EOF ————————-’;
% END MAIN\\\\\\\\\\\\\\\\\\\\\\\\\
% FUNCTION DECLARATIONS/////////////////////////
% This section is where functions are defined
function [] = setgraphics()
% Set the graphics parameters for plotting
set(groot, ‘defaultAxesFontSize’, 18, . . .
‘defaultAxesLineWidth’, 0.7, . . .
‘defaultLineLineWidth’, 2, . . .
‘defaultPatchLinewidth’, 0.7, . . .
‘defaultTextFontSize’, 18);
set(groot, ‘defaultTextInterpreter’, . . .
‘latex’);
set(groot, ‘defaultAxesTickLabelInterpreter’, . . .
‘latex’);
set(groot, ‘defaultLegendInterpreter’, . . .
‘latex’);
fprintf(‘Graphics paremeters set.\n’)
end
% END FUNCTION DECLARATIONS\\\\\\\\\\\\\\\\\\\\\\\\\\

% EOF **************************************************

Appendix C. Simulation Input Parameters

%MAIN/////////////////////////
%This section is main function
disp ‘InitFcn Main ————————-’;

%Clear all variables, figures, and outputs if not done in main fcn
%clear all;
%close all;
%clc;

%Constants
Re = 6378; %Km Earth radius
mu = 398600; %Km Universal gravitation constant

% %Spacecraft orbit
h = 150; %Km Orbit altitude
R = Re+h; %Km orbit radius from center of earth
we = 0.000072921158553; %earth’s angular velocity rad/solar sec(Vallado)
T = 2*pi*sqrt(Rˆ3/mu); %sec
w0 = sqrt(mu/(Re+h)ˆ3); %Orbit angular velocity

%Spacecraft initial Euler state angles and rates
phi0 = 0;theta0 = 0;psi0 = 0; %Initial Euler Angles
phi_dot0 = 0;theta_dot0 = 0;psi_dot0 = 0; %Initial Euler Rates

S1 = sin(phi0);S2 = sin(theta0);S3 = sin(psi0);
C1 = cos(phi0);C2 = cos(theta0);C3 = cos(psi0);
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wx0 = phi_dot0-psi_dot0*S2-w0*S3*C2;
wy0 = theta_dot0*C1+psi_dot0*C2*S1-w0*(C3*C1+S3*S2*S1);
wz0 = psi_dot0*C2*C1-theta_dot0*S1-w0*(S3*S2*C1-C3*S1);

%Calculation of initial quaternion (q0)
s1 = sin(phi0/2);s2 = sin(theta0/2);s3 = sin(psi0/2);
c1 = cos(phi0/2);c2 = cos(theta0/2);c3 = cos(psi0/2);
q10 = s1*c2*c3-c1*s2*s3; %Wie pg. 321
q20 = c1*s2*c3+s1*c2*s3; %Wie pg. 321
q30 = c1*c2*s3-s1*s2*c3; %Wie pg. 321
q40 = c1*c2*c3+s1*s2*s3; %Wie pg. 321
q0 = [q10 q20 q30 q40];

%Dynamics
J = diag([30,60,90]);
%J = [50.5 0.1 0.1; 0.1 75.2 0.1; 0.1 0.1 100.4]; %For an uglier J
J_Inv = J\eye(length(J));

%Aero Torque Disturbance
%Atm_Density = 4.39e-14; %Sample density
Temp_inf = 1000; %Kelvin
Temp_10 = 360; %Kelvin
L_k10 = 12; %K/km
lambda = [1/(Temp_inf-Temp_10)]*L_k10;
Z_10 = 120; %Km
Zeta = (h-Z_10)*(Re+Z_10)/(Re+h);
Temp = Temp_inf-(Temp_inf-Temp_10)*exp(-lambda*Zeta); %From 1977 NASA
p0 = 101.325; %kPa at sea level pressure
T0 = 288.15; %K sea level std temp
g = 9.80665; %m/sˆ2 gravity acceleration
Lapse = 0.0065; %K/m temperature lapse rate
gas_const = 8.31447; %J/(mol*K) ideal universal gas constant
molar_mass = 0.0289644; %kg/mol molar mass of dry air
Pressure = p0*(1-Lapse*h/T0)ˆ((g*molar_mass)/(gas_const*Lapse)); %kpa
Atm_Density = Pressure*molar_mass/(gas_const*Temp); %kg/mˆ3
Atm_Density = Atm_Density*1000*(1/100)ˆ3; %g/cmˆ3

mass = 500; %Kg Spacecraft mass
a = 0.5e-3; b = 2e-3; c = 6e-3; %Km, assumed spacecraft rectangular size
Area = [a*b (a+c+a)*a (b*a+c*a+b*a)]; %projected area~mˆ2 in body x,y,z directions
Cd = 2.5; %Drag coefficient
cp_cg_dist = [0.01 0.02 0.03]; %predicted distance between cp and cg
V_orbit=w0*(Re + h); %Magnitude of the orbital velocity

% Actuators and Controls block
Gimble_Theta = [-30*pi/180; -30*pi/180; -30*pi/180]; % Initial Gimbal angles for 0 H spin up
Gimble_Beta=[90;90;90]*pi./180;

disp ‘InitFcn EOF ————————-’;
%END MAIN\\\\\\\\\\\\\\\\\\\\\\\\\
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