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Abstract: Deep reinforcement learning provides a new approach to solving complex signal optimiza-
tion problems at intersections. Earlier studies were limited to traditional traffic detection techniques,
and the obtained traffic information was not accurate. With the advanced in technology, we can obtain
highly accurate information on the traffic states by advanced detector technology. This provides an
accurate source of data for deep reinforcement learning. There are many intersections in the urban
network. To successfully apply deep reinforcement learning in a situation closer to reality, we need to
consider the problem of extending the knowledge gained from the training to new scenarios. This
study used advanced sensor technology as a data source to explore the variation pattern of state
space under different traffic scenarios. It analyzes the relationship between the traffic demand and
the actual traffic states. The model learned more from a more comprehensive state space of traffic.
This model was successful applied to new traffic scenarios without additional training. Compared
our proposed model with the popular SAC signal control model, the result shows that the average
delay of the DQN model is 5.13 s and the SAC model is 6.52 s. Therefore, our model exhibits better
control performance.

Keywords: deep reinforcement learning; sensor technology; signal optimization; state space

1. Introduction

Due to the limited space on urban roads, a series of traffic problems, including traffic
congestion and traffic accidents, have arisen. This causes serious economic losses and
constrains the sustainable development of cities. Increasing traffic congestion has become
a common problem in cities. To address this problem, some researchers have proposed
measures to build an intelligent traffic system using intelligent technologies. Traffic signal
control is the core element of an intelligent traffic system and an important means to solve
traffic problems [1].

With the development of communication technology, sensor technology in urban traffic
systems has been enhanced to efficiently and accurately acquire complex traffic information
to improve traffic signal control strategies [2]. Previous researchers have utilized a loop
coil sensor to collect traffic flow data. The traffic data are utilized as the basis for setting the
parameters of the traffic signal to achieve fixed timing optimization [3]. Traditional loop
coil sensor technology can detect the number of vehicles but cannot identify the vehicle
type and continuous traffic flow [4]. Manual surveys are often required to determine the
distribution of vehicle types. The signal control strategies implemented with such traffic
data are not accurate.

To obtain traffic data conveniently, video and radar sensor technology have been
widely applied, which detects a larger range than the loop coil sensor and obtains traffic
information for a cross-section. The video sensor captures a real-time scene of the intersec-
tion by camera. It is passed to the handler for processing to achieve traffic count and speed
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recognition [5]. Previous researchers have performed large-scale traffic flow data collection
and analysis based on video sensors, overcoming the limitations of image processing, which
provides support for traffic signal control [6]. The radar sensor enables real-time detection
of multiple lanes of traffic, detecting data such as traffic flow, speed, and occupancy, as well
as providing real-time traffic condition information [7].

The Internet of Vehicles achieves the network connection of vehicle to cloud platform,
vehicle to vehicle, vehicle to road, and vehicle to people through information and com-
munication technologies [8]. At present, relying on communication technology, connected
vehicles can also be used as sensors to collect high-precision status information, which can
lay the foundation for the realization of real-time, efficient, and accurate traffic control [9,10].
In summary, a comparison of the sensor technologies is shown in Tables 1 and 2.

Table 1. Types of traffic data acquired by different sensors.

Technology Loop Coil Sensor Video, Radar Sensors Connected Vehicles

Type of traffic data

√
Traffic Volume

√
Traffic Volume

√
Traffic Volume√

Vehicle Type
√

Vehicle Type
√

Vehicle Type
×Occupancy

√
Occupancy

√
Occupancy

×Speed
√

Speed
√

Speed
×Vehicle Location ×Vehicle Location

√
Vehicle Location

×Trajectory ×Trajectory
√

Trajectory

Table 2. Comparison of sensors, detailing the range of applications and advantages and disadvantages
of different sensors.

Loop Coil Sensor Video, Radar Sensors Connected Vehicles

Scope of detection section detection area detection holographic detection

Advantage
obtains traffic obtains the entire

detection area information intersection’s information
is limited of one segment with high accuracy

Disadvantage prone to break down highly influenced technology is not matureby the environment

In past decades, researchers relied on loop coil sensors to obtain traffic status infor-
mation. Fixed-timing signal control methods were utilized to improve traffic efficiency
and capacity. Subsequently, adaptive control methods have been widely applied in signal
control systems. Compared with fixed timing methods, these improved the flexibility of
signal control and vehicle throughput efficiency [11]. Since these traditional signal control
methods optimize signals across time periods and cycles [12], it is difficult to deal with
the complex time-varying traffic demand. Therefore, some researchers have proposed
data-driven models [13,14]. However, traffic information at intersections is complex and
diverse. Limited by the sensor technology, the effect of data-driven models with low-
precision traffic status information is not ideal. With the development of technologies
such as vehicle networking, the traffic information data that can be obtained are more
refined. This enables researchers to develop new signal control models. Among these,
the application of deep reinforcement learning (DRL) to the field of traffic signal control
has become a research hotspot.

Much research has been conducted to solve traffic signal control problems with the
DRL algorithm based on advanced sensor technology, which has achieved great effects
in practice. However, cities have many intersections and a high dimensionality of traffic
demand. Each intersection needs to be trained with a corresponding set of signal control
models [15]. Retraining the model to calibrate the parameters takes a significant amount of
time [16–18]. Hence, model training is a problem.

Therefore, several important issues remain to be solved, which include:
(1) Finding a suitable model that can be applied to more than one intersection scenario;
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(2) Determining the relationship between the traffic demand at the intersection and
the actual traffic state;

(3) Designing a traffic scenario that represents a more comprehensive traffic demand.
In this paper, we research an adaptable DRL signal control model to deal with

these problems.

2. Related Work

The DRL algorithm is a combination of reinforcement learning and deep learning.
Reinforcement learning acquires knowledge by autonomously interacting with the envi-
ronment through a trial-and-error learning model, which is similar to a human being [19].
Minh et al. first proposed the deep Q-network model [20], which is suitable for process-
ing high-dimensional data. Some researchers have applied deep reinforcement learning
(DRL) to the field of signal control and achieved positive effects in solving complex traffic
congestion problems.

Much of the existing work uses deep reinforcement learning techniques to solve
complex signal optimization problems at intersections. Firstly, DRL traffic signal control
measures can be divided into three kinds: value-based, policy-based, and actor–critic
approaches, which are shown in Table 3. According to the training policy, the DRL signal
control methods can be divided into on-policy and off-policy. The deep Q-learning (DQN)
is an on-policy algorithm. The off-policy signal control model does not interact with
the environment in real-time. It takes a batch of samples from the experience replay
buffer for learning [21–23]. Kim proposed a cooperative traffic signal control with traffic
flow prediction (TFP-CTSC) for a multi-intersection. The results indicated that the model
improved the travel efficiency of vehicles on the road network [24]. Rasheed proposed
a multiagent DQN (MADQN) and investigated its use to further address the problem of
dimensionality under traffic network scenarios with high traffic volume and disturbances.
The simulation results showed that the proposed scheme reduced the total travel time of
the vehicles [25]. Song transferred the well-trained action policy of a previous DQN model
into a target model under similar traffic scenarios. The results indicated that, compared to
the directly trained DQN, transfer-based models could improve both the training efficiency
and model performance [18].

The on-policy signal control model interacts with the environment in real-time to
obtain an optimized policy, which can optimize while learning [26]. The PG is an on-
policy algorithm, and it learns a parameterized strategy function with sampled episode
return [27]. Rizzo et al. proposed the time critic PG technique to avoid jams in heavy traffic
volumes. Policy-based algorithms are effective in high-dimensional and continuous action
spaces [28].

The SAC algorithm is an off-policy actor–critic approach that has excellent sampling
efficiency [29]. The off-policy approach solves the problems of difficult data collection and
the high cost and risky implementation process in an on-policy approach. It is of great
importance in practical applications. Mao evaluated seven prevailing DRL algorithms from
two aspects: training and execution performance. The testing results indicated that the
soft actor–critic (SAC) outperformed other DRL algorithms and the maximum pressure
method in most cases [30]. Chu presented the advantage actor–critic (A2C) to stabilize the
learning procedure, and the results demonstrated its optimality, robustness, and sample
efficiency over other decentralized MARL algorithms [15]. Li proposed a PPO algorithm to
optimize the fairness of all drivers’ waiting times, and the results showed the algorithm
efficiently optimized the fairness criterion and had a more stable performance than the
A2C model [31].
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Table 3. Classification and comparison of DRL signal control methods.

Classification Author Approach Data Source Achievement

Value-based
signal control

approaches

Kim D. [24] DQN Connected vehicles
improved travel

efficiency of vehicle
on the road network

Rasheed F. [25] MADQN Video, Radar Sensors
reduce the total
travel time of
the vehicles

Song Li [18] DQN-TSC Connected vehicles

improve both
the training

efficiency and
model performance

Policy-based
signal control

approach
Rizzo et al. [28] PG Video, Radar Sensors

reduce average
delay and improve
effective capacity

Actor-Critic based
signal control

approaches

Feng Mao [30] SAC Connected vehicles

provide typical
model settings in
the traffic signal
control problem

Tianshu Chu [15] A2C Loop Coil Sensor
its optimality and

robustness over other
MARL algorithms

C. Li [31] PPO Video, Radar Sensors
optimize the

fairness criterion

These researchers enhanced the performance of the DRL method by different means.
The model usually performed better in the same or similar traffic scenarios. However,
it cannot be adapted to new traffic scenarios. It takes time and effort to train a specific
DQN model for each intersection in reality [18]. Therefore, the question of how to find a
signal control model that can be adapted to new traffic scenarios needs to be addressed.
In this research, we search for a method that can train adaptive models based on the DRL
approach. First and foremost, a suitable DRL algorithm needs to be selected as the testing
algorithm. Mao et al. showed that the value-based/off-policy optimization approach
had good sampling efficiency. It showed better performance than other approaches for
a discrete action space decision-making problem, such as traffic signal control [30]. Due
to the strong correlation between traffic states, the algorithm training needs to maintain
the independence between samples. In addition, the corresponding road facilities are not
yet available, and there are technical difficulties in the implementation of an on-policy
strategy. Therefore, off-policy was selected to optimize the signal control model in this
paper. The focus of the research was not to optimize the performance of the algorithm itself
but to explore how to train a DRL signal control model that could be generalized to new
traffic scenarios with an adaptable performance. We examined several value-based/off-
policy algorithms with similar effects. Among them, the DQN algorithm is a mature form
of urban signal control [32,33]. We used this method as the test algorithm for this research.

In the following section, we describe the construction of a traffic simulation platform
based on the DQN algorithm to simulate the signal control. From the perspective of
enriching the sample, a comprehensive traffic demand was designed so that the model
could “see” as many traffic states as possible to improve the model’s adaptability to new
traffic scenarios. The relationship between the input traffic demand and the actual traffic
flow state was analyzed to aid in designing efficient traffic demand. The feasibility and
effectiveness of the model proposed in the research were verified by comparing it with
other signal control methods. Ultimately, we obtained a model that could be adapted to
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new traffic scenarios, which saves the time and effort consumed by repeated training at
different intersections. The overall framework of the research is shown in Figure 1.

Figure 1. Overall framework of the research.

3. Materials and Methods

In this section, we first describe the framework of the DQN traffic signal model,
including the overall architecture of the DQN algorithm, the definition of the reward
function, and the setting of the observation state and action. Secondly, we explain the
training process and method of the model. Finally, we analyze the relationship between
traffic demand and traffic states.

3.1. Architecture of the DQN Model

The traffic signal control problem is described as an optimization problem with deep
reinforcement learning. The overall framework of the DQN signal control model is shown
in Figure 2. First, we observed the environment to obtain the traffic status of the intersection,
such as vehicle speed, queue length, etc. The real-time traffic status information was input
into the Q network, and the Q value corresponding to each signal decision action was
the output. According to the action selection strategy, the signal decision action with the
maximum Q value was selected. It was sent to the signal machine for execution. Then,
feedback was provided to measure the traffic operation of the intersection. The process
was repeated until the objective of maximizing the cumulative reward Rt=∑∞

n=0 γnrt+n
was reached. The traffic parameters, such as the traffic state information, signal decision
action, reward value, and the traffic state at the next time, were stored in the quadratic form
in the experience replay buffer. The Q network was trained with a batch of samples until
convergence, and the optimal mapping of the “state-action” was obtained.

It is necessary to determine the traffic parameter indicators of the model, such as the
traffic state information, the signal actions, and the reward functions for evaluating the
control effect. The model observes the intersection environment at time t to obtain the
information of the traffic state st. The queue length was chosen to characterize the state of
the intersection, which describes the distribution of the vehicle queue lengths on each lane,
st ∈ S. The model chose a corresponding action at, which is defined as the selection of the
signal phase according to the traffic state, at ∈ A. The environment provided feedback on
the action taken by the signal at the next moment. The reward function r(st, at) is defined
as the inverse of the average vehicle cumulative delay time, which is used to quantify the
impact of the action.
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Figure 2. The overall architecture of the DQN model.

3.1.1. Reward Function

The reward value reflects the impact of the model after deciding. The reward function
influences the final performance of the model, which includes vehicle delay time, queue
length, waiting time and vehicle speed, etc. The objective of the study is to improve the
efficiency of vehicle movement and reduce the delay time of vehicles at the intersection.
Therefore, the opposite of the average vehicle delay time is set as the reward function,
and its expression is

r(st, at) = −
t+∆t

∑
τ=t

α · dl
t (1)

where α is the weighting factor; dl
t is the average delay time for each lane at the time t,

li ∈ L.

3.1.2. Observation State

Traffic observation states are the critical factors for signals to make decisions, and each
observation state can contain one or more substates, st = (st

1, st
2, st

3, ..., st
j). Researchers

usually select traffic information such as the vehicle location, the average speed, the traf-
fic throughput, the queue length, and the average waiting time as the observed states.
The corresponding observation matrix was constructed as the input of the DQN algorithm.

The queue length is selected as the observed traffic state. The queue length indicates
the number of vehicles waiting in the queue on the lane, which changes with the arrival
and departure of vehicles. The queue length qi of each lane li at the intersection is collected.
As shown in Figure 3, the traffic flow at the intersection is divided into eight flow directions.
The traffic observation state is an eight-dimensional matrix:

st = [q1, q2, q3, q4, q5, q6, q7, q8] (2)

Among these, q1 = max{q11, q12, q13}, q3 = max{q31, q32, q33}, q5 = max{q51, q52, q53},
and q7 = max{q71, q72, q73}.
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Figure 3. Diagram of the observation state.

3.1.3. Action Settings

Signals at intersections make appropriate decisions based on the current traffic situ-
ation. The decision variables for signal control include the phase green time, the phase
switching, and the phase selection. The phase green time optimizes the signal by adjusting
the green duration. The phase switching is based on a predefined phase sequence that
determines the duration of the green light and switches the signal to the next preset phase.
Phase switching is the process of deciding whether to switch the signal to the next phase in
a predefined phase sequence. Phase selection is more flexible than phase switching in that
it selects the phase to be performed from a set containing multiple phases.

Phase selection is set as the possible actions of the model, which decide the next phase
according to the traffic states [34]. Firstly, four feasible phases are defined for the signal
system, as shown in Figure 4. The set of phases is phase = {NSL, NSS, WEL, WES}.

Figure 4. The set of phases.There are four possible phases.

The set of phase selections is Action = {0, 1, 2, 3}. The phase to be executed is selected
according to the action of the Q network output. The phase sequence is shown in Figure 5.
The specific decision process proceeds as follows: when at = 0, execute the phase 0. When
at = 1, execute the phase 2. When at = 2, execute the phase 4. When at = 3, execute the
phase 6.
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Figure 5. Phase selection.The diagram is derived from the interface of SUMO simulation.

3.2. Training of the DQN Model

The SUMO and Python software are utilized to construct a traffic simulation platform
for the experiments. The main functions of SUMO include building road networks, gener-
ating traffic demands, and obtaining various traffic evaluation indicators. The function of
Python is to implement the DQN algorithm and interact with SUMO in real-time.

We set up two main files to run the SUMO simulation, which include the following:
(1) Road network file (net.xml): We built the road network and set up the road details

in this file.
(2) Traffic routing file (rou.xml): We input the traffic requirements and generated the

traffic scenarios in this file.
There are other files, which include vehicle description files and detector description

files, which could be added to run a superior simulation.
We designed the DQN algorithm and determined the hyperparameters. When setting

the traffic simulation time, we considered that after generating the traffic demand in
the road network, the input traffic flow needs a certain time to enter the steady state to
ensure the desired duration of traffic demand stability and improve the possibility of
the model to explore the knowledge fully. Therefore, the simulation duration must be
sufficient. The number of simulations needed to ensure the convergence of the neural
network. The recommended value for the discount factor was 0.9, the recommended value
for the batch size was 400, the recommended value for the learning rate was 3× 10−4,
and the recommended value for the number of neural network iterations at each sampling
was 4 [15,29,35].

After initializing the parameters, Python interacted with SUMO in real time to obtain
real-time traffic status information of the intersection. The traffic status was fed into the
neural network. Then, the neural network output the Q values corresponding to each
phase. We selected the phase to be executed by ε− greedy and sent it down to the signal for
execution. The average delay of the current moment was obtained to evaluate the control
effect of the current phase. The traffic state, the selected phase, the average delay, and the
traffic state at the next time step were stored in the experience replay buffer. Finally, a batch
of samples was randomly drawn from the experience pool and used to update the weights
of the neural network.

When the input layer of the neural network is st, the output will be Qπ(st). When
the input layer of the neural network is st+1, the output will be Qπ(st+1). The goal of
updating the weights of the neural network was to obtain the difference between Qπ(st)
and Qπ(st+1) closer to rt. The neural network output the actual Q-value, while the target
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value was approximated using the value corresponding to the action with the largest
Q-value in the next state. The equation for updating is:

Qt(st, at) = Qt(st, at) + α[r(st, at) + γmax
a

Q(st+1, a)−Qt(st, at)] (3)

where r(st, at) is the reward. α,γ is the discount factor.
In addition, we designed a suitable traffic scenario to test the trained model. The model

testing was divided into the same demand scenario and a new demand scenario. The same
demand scenario testing referred to the testing under the same test scenario and training
scenario, which was used to verify the performance of the completed training model.
The new demand scenario testing referred to testing under different test scenarios from the
training scenarios and was used to verify the adaptive performance of the model. Finally,
the DQN model of the research was analyzed and compared to several existing traffic
signal control methods.

3.3. The Relationship between the Traffic Demand and Traffic States

To construct traffic states with various degrees of equilibrium, we designed n traffic
scenarios. In each traffic scenario, different percentages of traffic flow were assigned to
multiple directions of the intersection. The designed traffic scenarios represented several
typical traffic flow states, extreme traffic states, perfectly balanced traffic states, perfectly
balanced and mildly unbalanced traffic states, and fully balanced traffic states.

Exploring empirical knowledge plays a key role in deep reinforcement learning.
The generalized application of the model can be limited by restricted empirical knowledge.
To obtain models with adaptability, it is necessary to provide rich empirical knowledge
for model exploration. Therefore, the study classified the traffic demand by the balance
level of traffic distribution. Each model was equipped with traffic demand scenarios with
different levels of balance.

There are n periods to input traffic, and the total number of vehicles at period t is Qt.
Assume that the simulation time for each period is s and the model is simulated once in
time T = n · s. To distinguish between traffic states with different levels of balance. The in-

tersection has m directions and assigns traffic flow in direction i is qi(t) ,
m
∑

i=1
qi(t) = Qt.

Therefore, the percentage of the assigned traffic flow in direction i is ri(t), ri(t) =
qi(t)
Qi(t)

.
Traffic scenarios set up traffic arrivals by time series. However, the actual traffic

state is influenced by the signal control and has a strong time correlation. Therefore, to
study how to set a more comprehensive and effective demand scenario, the actual traffic
state is to be analyzed.Since the traffic parameter of queue length is a continuous value,
the dimensionality of its solution is large. In addition, the traffic states with similar values
of queue length are similar, and there is no abrupt variation in traffic states. Therefore,
we decided to discretize the queue length of intersections to improve the efficiency of the
traffic state analysis and reduce the computational consumption. The specific discretization
process: we divided the intersection into x flow directions and divided the queue length
into k segments. The unit queue length interval of the i-th segment is li, q ∈ [qi, qi+1).

The final number of state spaces for a certain flow direction is obtained as a =
k
∑

i=1

qi−qi−1
li

.

Therefore, the number of state spaces at the intersection is ax.

4. Results
4.1. Experimental Settings

The intersection is designed as a “cross-shaped” intersection. The four directions of
the intersection are four lanes in both directions, including a left-turn lane, two straight
lanes, and a right-turn lane. The length of the lane is 750 m. The length of the vehicle is
5 m, the maximum driving speed is 25 m/s, and the average speed is 10 m/s. In addition,
detailed information about the traffic demand is described in the next subsection.
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The initialized hyperparameters of the DQN model are set as shown in Table 4.

Table 4. Hyperparameter setting of DQN.

Hyperparameter Initialized Value

horizon 6000
episode 200
iteration 4

experience replay buffer 50,000
batch size 200

learning rate α 0.0003
discount factor γ 0.9
green duration gt 6

yellow duration yt 3

4.2. Traffic Demand Settings

In this section, we describe the design of four representative traffic scenarios as the
input for the models. The intersection had four directions, including east, west, north,
and south. The percentage of the traffic flow was r1(t), r2(t), r3(t), r4(t). The traffic flow
was input in five time periods. The simulation time for one period was set to 1200 s to
ensure that the model was explored sufficiently. The designed traffic scenarios represented
several typical traffic flow states, which were extreme traffic states, perfectly balanced
traffic states, perfectly balanced and mildly unbalanced traffic states, and fully balanced
traffic states.

Model 1 represented a traffic scenario containing extreme traffic conditions, where
all vehicles at the intersection were assigned to the south and north directions, and no
vehicles were assigned to any other direction. It had extreme unevenness in vehicle
distribution. Model 2 represented a traffic scenario that contained perfectly balanced
traffic states. The distribution of vehicles at the intersection was identical in each direction.
Model 3 represented a traffic scenario with perfectly balanced and lightly unbalanced
traffic. The distribution of vehicles at the intersection was identical for a portion of the time
period. In the other part of the time period, the south and north traffic was distributed
upwards a little more than in the other directions. Model 4 represented a traffic scenario
with a fully balanced traffic condition. In all five time periods, the input traffic flows
were the same. However, the percentage of vehicles distributed in the south and north
directions gradually became larger, and the percentage of vehicles distributed in the east
and west directions gradually became smaller. Therefore, the directional distribution of
traffic flows containing fully balanced, mildly unbalanced, and more extreme traffic states
were included. The vehicle allocation is shown in Table 5 and Figure 6.

The model is trained based on four demand scenarios. The observed states are
discretized. There are eight flow directions at the intersection. The upper limit of queue
length is the lane length qmax = 750 m, and the queue length of each flow direction is
divided into three segments, which are shown in Tables 6 and 7.

After the data are discretized, each flow direction contains fifteen state spaces, and the
number of state spaces is 158 states at the intersection. The number of state spaces of each
model is shown in Figure 7.
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Table 5. Design of traffic scenarios for training: allocation of vehicles in each direction.

Percentage t = 1 t = 2 t = 3 t = 4 t = 5

Model 1

r1(%) 0 0 0 0 0

r2(%) 0 0 0 0 0

r3(%) 50 50 50 50 50

r4(%) 50 50 50 50 50

Model 2

r1(%) 25 25 25 25 25

r2(%) 25 25 25 25 25

r3(%) 25 25 25 25 25

r4(%) 25 25 25 25 25

Model 3

r1(%) 25 20 20 15 15

r2(%) 25 20 20 15 15

r3(%) 25 30 30 35 35

r4(%) 25 30 30 35 35

Model 4

r1(%) 25 20 15 10 5

r2(%) 25 20 15 10 5

r3(%) 25 30 35 40 45

r4(%) 25 30 35 40 45

Figure 6. Diagram of traffic scenarios for training: allocation of vehicles in each direction.

Table 6. Division of queue length interval.

q1 q2 q3 q4

Interval of
queue length 0 m 100 m 200 m 750 m

Table 7. Setting of unit queue length interval.

l1 l2 l3

Unit queue
length interval 10 m 25 m 550 m
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Figure 7. Number of state spaces for the four models.

Model 1 represents the extreme traffic state, which contains a significantly lower
number of state spaces than the other models. Models 2–4 have increasingly comprehensive
traffic scenario designs, and the number of their state spaces is generally proportional.
The number of state spaces does not depend entirely on the design of the traffic scenario,
but is also related to the interaction between vehicles while they are moving. In addition,
the temporal correlation between traffic states also affects the distribution of the state space.
Therefore, we should not only design more comprehensive traffic scenarios, but also pay
attention to the coverage of the actual traffic state.

To further analyze the distribution of the state space, the frequency distribution of
state spaces of the four models was counted, which is shown in Figure 8.

Figure 8. Frequency distribution of state spaces of the four models.

As shown in Figure 8, the average frequency of each state space in model 1 is 17.16.
The average frequencies of each state space in models 2–4 are 4.27, 4.69, and 4.92, respec-
tively. The average state spaces frequencies of four models are compared, which were
shown in Figure 9.

As shown in Figure 9, model 1 only inputs vehicles in the directions of south and
north. The distribution of state spaces is more concentrated and the average frequency
is larger. Models 2–4 have a similar number of state space categories. As the balance of
vehicle distribution becomes more comprehensive, the average frequency of each state
space becomes larger. It indicates that the range of knowledge that the model can explore
is becoming more complete.
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Figure 9. Comparison of the average of state spaces frequencies.

4.3. Performance and Adaptation Analysis

The indicator of the loss function reflects how well the model is trained. The smaller
the value of the loss function, the better the model is trained. Based on the above process
for training, the variation of the loss function of each model is shown in Figure 10.

Figure 10. Variation of loss function for the four models.

As shown in Figure 10, the four DQN models eventually converge. The loss function
of Model 1 is of a larger order of magnitude, due to the extreme case of the traffic scenario.
The loss functions of models 2–4 present a trend of gradually growing larger. The traffic
scenario of Model 2 is the most balanced. The empirical knowledge used by the neural
network for training is similar. Therefore, the fluctuation of the loss function is slight. While
the traffic scenario of Model 4 is of different levels of balance, the empirical knowledge
used by the neural network for training is complex and diverse. Therefore, the loss function
fluctuates drastically.

The indicators of the average delay, loss time, and average cumulative delay are
selected to evaluate the control performance of the DQN model. The average delay refers to
the average delay time of all detected vehicles at a certain moment. The loss time refers to
the cumulative loss time of all detected vehicles within a certain time interval.The average
cumulative delay refers to the average cumulative delay time of all detected vehicles within
a certain time interval.

Simulation experiments are conducted using the traffic scenarios during training,
and the indicators of evaluation are presented in Table 8.
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Table 8. Experimental results of the four models in the same traffic scenario as during training.

Model 1 Model 2 Model 3 Model 4

Average delay 1.21 6.20 7.54 6.14

Loss time 4684.34 8639.28 8134.24 7774.52

Average
cumulative delay 5.79 19.73 20.21 17.48

The result of experiments shows that the average delay, lost time, and cumulative
average delay are at a stable and excellent level. It verifies the feasibility of the DQN
algorithm for signal control. To further validate the adaptability of the model, four new
traffic scenarios are designed for testing, which are shown in Table 9 and Figure 11.

Table 9. Design of traffic scenarios for testing: allocation of vehicles in each direction.

Traffic
Scenario Description Percentage t = 1 t = 2 t = 3 t = 4 t = 5

Traffic
scenario 1

for
testing

New
traffic

scenario

r1(%) 17 2 0 12 7

r2(%) 17 2 0 12 7

r3(%) 33 48 50 38 43

r4(%) 33 48 50 38 43

Traffic
scenario 2

for
testing

Traffic
scenario 1

for
training

r1(%) 0 0 0 0 0

r2(%) 0 0 0 0 0

r3(%) 50 50 50 50 50

r4(%) 50 50 50 50 50

Traffic
scenario 3

for
testing

Traffic
scenario 2

for
training

r1(%) 25 25 25 25 25

r2(%) 25 25 25 25 25

r3(%) 25 25 25 25 25

r4(%) 25 25 25 25 25

Traffic
scenario 4

for
testing

Traffic
scenario 3

for
training

r1(%) 25 20 20 15 15

r2(%) 25 20 20 15 15

r3(%) 25 30 30 35 35

r4(%) 25 30 30 35 35

The experiments are conducted using the new traffic scenarios, and the evaluation
indicators are presented in Tables 10–12.

Table 10. Average delay of the four models for each test traffic scenario.

Model 1 Model 2 Model 3 Model 4

Traffic scenario 1
for testing 802.35 5.24 4.33 4.32

Traffic scenario 2
for testing − 263.85 6.76 8.14

Traffic scenario 3
for testing 816.90 − 16.52 5.64

Traffic scenario 4
for testing 941.09 6.30 − 5.30
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Table 11. Loss time of the four models for each test traffic scenario.

Model 1 Model 2 Model 3 Model 4

Traffic scenario 1
for testing 333954.63 7985.18 8679.57 7676.60

Traffic scenario 2
for testing − 311758.38 14986.62 13072.37

Traffic scenario 3
for testing 1092345.52 − 19482.85 7858.67

Traffic scenario 4
for testing 898408.75 9379.50 − 8184.29

Table 12. Average cumulative delay of the four models for each test traffic scenario.

Model 1 Model 2 Model 3 Model 4

Traffic scenario 1
for testing 807.15 17.14 18.30 15.00

Traffic scenario 2
for testing − 270.07 25.96 25.59

Traffic scenario 3
for testing 872.74 − 46.30 17.90

Traffic scenario 4
for testing 951.15 20.97 − 16.74

Figure 11. Diagram of traffic scenarios for testing: allocation of vehicles in each direction.

In the same test traffic scenario, comparing the average delays of all four models,
Model 1 shows poor performance. It indicates that the knowledge learned by the model
trained under extreme traffic scenarios is very limited and cannot be adapted to other traffic
scenarios. Model 2 shows better performance in test traffic scenarios 1 and 4, but poorer
performance in test traffic scenario 2. Model 3 and Model 4 are basically adaptable to all
test traffic scenarios. However, the comparison reveals that Model 4 has better test results,
indicating that it can achieve excellent control under other traffic demands as well. In the
same test demand scenario, a comparison of lost time and average cumulative delay for
the four models show a similar pattern to the average delay.

The results of the experiments show that Model 1 has poor levels of all evaluation
indicators in each new test scenario compared to the other models. Therefore, it is less
adaptable to new scenarios. Model 4 exhibits a better level of each evaluation metric in each
new test scenario compared to the other models. Thus, it is more adaptable than the other
models. The study shows that traffic scenarios should be designed to be comprehensive so
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that the number of state spaces is high, and the frequency of occurrence is also high. Once
the model learns knowledge in as many comprehensive state spaces as possible, it would
have the ability to adapt to new scenarios.

4.4. Execution Performance Comparison

In this research, the DQN model with the best adaptation is compared with the SAC
signal control model [30], the adaptive signal control method and the multi-time fixed
timing method. Average cumulative delay and average delay are selected as the indicators
for evaluation. Two traffic scenarios are designed for testing. The first traffic scenario for
testing is designed as shown in Table 13 and Figure 12.

Table 13. Design of traffic scenario 1 for testing: allocation of vehicles in each direction.

Percentage t = 1 t = 2 t = 3 t = 4 t = 5

Traffic
scenario

for
testing

r1(%) 25 20 15 20 5

r2(%) 25 20 15 20 5

r3(%) 25 30 35 30 45

r4(%) 25 30 35 30 45

Figure 12. Diagram of traffic scenario 1 for testing: allocation of vehicles in each direction.

The result of the average cumulative delay is obtained as shown in Figure 13. In the
first test scenario, the average cumulative delay of the DQN model is 13.75 s. The average
delay of the SAC model is 14.02 s. The average cumulative delay value of the adaptive
control method model is 11.34 s and the multi-time fixed timing method is 19.87 s. The result
shows that the adaptive signal control method achieve a better control effect for the signal
control problem of an isolated intersection. The average cumulative delay data of the DQN
model is a bit worse than it, but the gap is small. In addition, its control performance is
better than that of the multi-time fixed timing method.

The result of the average delay is obtained as shown in Figure 14. The average delay of
the DQN model is 4.11 s. The average delay of the SAC model is 4.42 s. The average delays
of the adaptive control model and the multi-time fixed timing method are 5.48 s and 14.15 s,
respectively. Compared with the popular SAC signal control model, the average delay
of the DQN model is reduced 8%. Compared with the adaptive signal control method,
the average delay time is reduced 33%. The adaptation of the multi-time fixed timing
signal control method in complex traffic scenarios is not ideal, indicating that it is unable to
respond to diverse traffic demands and has some limitations.
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Figure 13. Comparison of the average cumulative delay of signal control methods under test traffic
scenario 1.

Figure 14. Comparison of the average delay of signal control methods under test traffic scenario 1.

In the first, second, and fourth periods, traffic demand with a more balanced traffic
distribution state is provided. Our proposed model and the SAC model exhibit similar
control performance in this case. In the third and fifth time periods, traffic demands with
more extreme traffic distribution states are provided. Our proposed model exhibits more
stable control performance, but the SAC model performs poorly and cannot adapt to
the traffic scenario. Therefore, our model shows better performance than the advanced
SAC model.

The second traffic scenario for testing is designed as shown in Table 14.

Table 14. Design of traffic scenario 2 for testing: allocation of vehicles in each direction.

Percentage t = 1 t = 2 t = 3 t = 4 t = 5

Traffic
scenario 2

for
testing

r1(%) 20 15 25 15 5

r2(%) 20 15 25 15 5

r3(%) 30 35 25 35 45

r4(%) 30 35 25 35 45
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The result of the average cumulative delay is obtained as shown in Figure 15. In the
first test scenario, the average cumulative delay of the DQN model is 15.13 s. The average
delay of the SAC model is 15.75 s. The average cumulative delay of the adaptive control
method is 15.69 s and the multi-time fixed timing method is 20.99 s. The result shows that
the performance of the DQN model is better than that of other methods.

Figure 15. Comparison of the average cumulative delay of signal control methods under test traffic
scenario 2.

The result of the average delay is obtained as shown in Figure 16. The average delay
of the DQN model is 5.13 s. The average delay of the SAC model is 6.52 s. The average
delays of the adaptive control model and the multi-time fixed timing method are 9.08 s and
14.78 s, respectively. Compared to the popular SAC and the adaptive signal control models,
the average delay of the DQN model is reduced. The multi-time fixed timing signal control
method cannot adapt to complex traffic scenarios and it has poorer performance.

In general, for the indicator of average cumulative delay, our proposed DQN model
generally exhibits similar performance to the SAC signal control model and the adaptive
signal control method. For the indicator of average delay, the DQN model exhibits the
best signal control results. The result is related to the optimization objective we selected
to train the DQN model. Since the reward function is set to minimize the average delay
of the vehicles, the DQN model performs significantly better in signal control for the
average delay.

Figure 16. Comparison of the average delay of signal control methods under test traffic scenario 2.
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5. Discussion and Conclusions

In this article, we provided a reasonable platform to test and compare various DRL
algorithms for isolated traffic signal control. The main contents of this research are summa-
rized as follows.

(1) To find a suitable model that could be applied to more than one intersection
scenario, we designed four typical traffic scenarios as the input of the model to research.
The designed traffic scenarios were extreme traffic states, perfectly balanced traffic states,
perfectly balanced and mildly unbalanced traffic states, and fully balanced traffic states.
It was found that the more complex the designed traffic demand, the more the traffic
scenarios contained more traffic states, and the greater the possibility for the model to
explore the knowledge fully. The result showed that the model with the traffic scenario of
fully balanced traffic states had a better ability to adapt to new traffic scenarios.

(2) To verify the performance of our proposed signal control model, we compared it
with other signal control methods, which included the multi-time fixed timing method,
the adaptive control method, and the SAC model. The test results showed that our model
achieved excellent performance. It worked better for signal control at an intersection than
the popular SAC model.

(3) In real traffic systems, traffic demand has a high dimensionality. It takes much
time and effort to train and calibrate the parameters for each intersection to obtain a signal
control model. In this research, the training method with an adaptive performance model
was provided by enriching the samples, which were used in learning. This enabled the
model to be extended to more intersections and it provides a potential and feasible solution
for urban signal control.

These test results are useful for many intelligent traffic control tasks, including how
to use the DRL algorithm to solve complex traffic demand problems, including multi-
intersection signal control. There is an autonomous driving demonstration area at Yizhuang,
Beijing, where some of the advanced sensors are laid down. Our proposed model will be
well integrated with real traffic systems for implementation purposes. For future work,
we will investigate how to reasonably implement an adaptable DQN model to a real road
network. Constrained by page limits, we will discuss these issues in the following articles.
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