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Abstract: Companies that own water systems to provide water storage and distribution services
always strive to enhance and efficiently distribute water to different places for various purposes.
However, these water systems are likely to face problems ranging from leakage to destruction of
infrastructures, leading to economic and life losses. Thus, apprehending the nature of abnormalities
that may interrupt or aggravate the service or cause the destruction is at the core of their business
model. Normally, companies use sensor networks to monitor these systems and record operational
data including any fluctuations in water levels considered abnormalities. Detecting abnormalities
allows water companies to enhance the service’s sustainability, quality, and affordability. This study
investigates a 2D-CNN-based method for detecting water-level abnormalities as time-series anomaly
pattern detection in the One-Class Classification (OCC) problem. Moreover, since abnormal data are
usually scarce or unavailable, we explored a cheap method to generate synthetic temporal data and
use them as a target class in addition to the normal data to train the CNN model for feature extraction
and classification. These settings allow us to train a model to learn relevant pattern representations of
the given classes in a binary classification fashion using cross-entropy loss. The ultimate goal of these
investigations is to determine if any 2D-CNN-based model can be trained from scratch or if transfer
learning of any pre-trained CNN model can be partially trained and used as the base network for
one-class classification. The evaluation of the proposed One-Class CNN and previous approaches
have shown that our approach has outperformed several state-of-the-art approaches by a significant
margin. Additionally, in this paper, we mention two interesting findings: using synthetic data as the
pseudo-class is a promising direction, and transfer learning should be dealt with considering that
underfitting can happen because the transferred model is too complicated for training data.

Keywords: convolutional neural network; one-class classification; anomaly detection; water-level
anomaly; synthetic data

1. Introduction

Water systems are essential infrastructures for water quality for the social quality of
life and sustainable economic activities. Considering the importance of water systems,
water storage and distribution systems play a vital role in human life and economic growth.
Therefore, appropriate measures should be taken to protect those water systems from any
threat that can damage them and lead to significant economic and environmental issues.
That is why understanding the abrupt changes or fluctuations in water levels is necessary
to safeguard and sustainably manage water systems effectively.

An essential task in managing these systems is detecting fluctuations or anomalies in
particular time steps and reporting them so that the operators can take necessary actions
to resolve underlying issues. For example, an anomaly score can be produced based on
sensor data and used as an indicator of a power plant failure [1]. Precise detection is
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crucial to prevent serious business crisis and losses, as it is reported that one minute of
downtime of an automotive manufacturing plant may cost thousands of dollars [2]. Much
research has been conducted to develop a sophisticated data-driven solution (e.g., machine-
and deep-learning-based approaches) because of the availability of such data and the
issue’s importance.

Recently, deep-learning-based techniques have dominated traditional techniques for
a significant margin in various domains and industrial applications. The deep-learning
techniques are the advanced version of biologically (more precisely, of the human brain)-
inspired techniques [3] known as neural networks. Since the 2010s, when deep-learning-
based techniques became popular [4], most time-series anomaly detections were tackled
using traditional techniques such as rule-based techniques (e.g., [5–7]) and classical machine
learning [8–10]. In recent years, advancements in deep learning have revolutionized the
scope of data-driven modeling use cases. Two primary network architectures led to this
marginal advancement: Convolutional neural networks (CNN) [11] and Recurrent neural
networks (RNN) [12]. Initially, RNNs were developed for temporal sequence tasks [13–15]
and CNNs for image-related tasks [16–18].

We recognized the potential of convolutional neural networks as they have proven
to produce competitive methods in various tasks, including computer vision tasks [19],
natural language processing tasks [20], and even time-series domains [21,22]. The benefit
of using CNNs for sequence classification [23] is that they can learn from the raw temporal
data directly and do not need domain expertise to extract input features manually. The
model generated from CNNs for sequence classification can learn an internal representation
of the temporal data and ideally achieve comparable performance to models fit on a version
of the dataset with engineered features.

However, it has been difficult to apply CNN for detecting anomaly by modeling
normal behavior only [24], because CNN is basically a discriminative model. In the real
world, it is very difficult to obtain anomalous data because it is from rare events, whereas it
is very easy to obtain normal data which are mostly present. Therefore, in our study, we
adopt one-class neural network approaches [25,26] to model the anomalous behavior of
water level. Considering all the benefits of CNN models, our approach is also built on 2D
CNN and trained on normal and synthetic data to learn a decision boundary that will be
sufficient to distinguish the two classes during the inference phase. We start by preparing
the synthetic data through a guided generative process using a synthetic time-series data
generation library. After that, we preprocess both sensors’ (normal) and synthetic data
(anomaly) and then use them to fit the model. We used Adam optimizer [27] and binary
cross-entropy loss function to train the model to learn a decision boundary from relevant
feature representations of the data. We successfully produced a competitive model for
anomaly detection following those steps (also illustrated in Figure 1).

The following are the contributions of our study:

• We extensively investigated the potential of 2D Convolutional Neural Networks
for temporal data one-class classification. We aimed to use CNN models as feature
extractors and classifiers to build an end-to-end anomaly detection system. We suc-
cessfully trained the system on normal (collected sensor) and abnormal (synthetic
generated) data, then evaluated it using test data containing both normal and abnor-
mal data points.

• We explored the knowledge transfer across domains that is between two unrelated
tasks. This task intended to explore a similar learning paradigm as that of transfer
learning between the image classification and natural language processing. The
difference is that we used fully trained models for image classification which have
never learned time-series data for classification. The OC-CNN achieved our goal by
partially training the pre-trained images classification model using our dataset and
performing a classification task.
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• And we provide detailed experiments, results, analyses, and discussions that give
new insights on how to deal with data absence in time-series problems and present
the readers with informative findings.

Norm

Aborm

Norm_score

Aborm_scoreConv x
ReLU Pooling

Conv x
ReLU Pooling

Flatten Fully 

Connected SoftmaxForward

Propagation

BackPropagation
Data Preprocessing

Timestep

Va
lu

e

Timestep

Va
lu

e

Figure 1. The illustration of steps followed from data to input to the final classification of each given
data sequence converted to raw pixel images and fed to the end-to-end anomaly detection system
built using a 2D-Convolutional Neural Network architecture that outputs the class of the given
input sequence.

Here is how we organized the rest of the manuscript: Section 2 provides a literature
review of the prior works. Section 3 contains a detailed explanation of the methods under
investigation. Section 4 describes the experiment. Section 5 provides the results and
discussion of the 2D-CNN-based models, Autoregressive Integrated Moving Average
(ARIMA) [28], and Hierarchical Stacking Temporal Convolutional Network (HS-TCN) [29]
experiments. Lastly, the discussion and conclusions in Section 6 and Section 7, respectively.

2. Related Work

Safeguarding the infrastructure facilities is one of the crucial tasks in daily controlling
and monitoring system operations. Considering its importance, recently, much work
has been focusing on ensuring that faults are detected early and reported immediately.
That will provide the chance to avoid damage to the facilities/infrastructure or at least
prevent catastrophic events. Despite the effort, fault or anomaly detection for water-level
monitoring systems is still under-explored. Thus, we adopted 2D convolution neural
networks to classify data points generated by the system as either anomalous or normal.
To the best of our knowledge, no prior work adopts 2D convolution neural networks for
water-level anomaly detection.

2.1. One-Class Classification

One-Class Classification [30] became popular in anomaly detection because of its abil-
ity to learn from only one class of data (normal data) and then apply it to binary problems.
Currently, One-Class classification is performed using a few classical machine learning,
or neural network-based algorithms. For example, a few OCC classical machine learning
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methods that are widely studied and used are Naïve Bayes Positive Class (NBPC) [31],
One-Class Support Vector Machine (OC-SVM) [32], and Support Vector Data Description
(SVDD) [33].

Naïve Bayes Positive Class (NBPC) is an extension of a traditional Naive Bayes classi-
fier that attempted to correct the calculation of an instance’s class probability. The NBPC
introduced a threshold t that checks if the likelihood of an instance’s attribute value is great
or equal to t, then it belongs to a given class; otherwise, it considers the instance anomalous.

SVM-based methods introduced the concept of finding a boundary that maximizes
the margin between two classes and works well for binary and multi-class classification.
One of the obstacles for applying SVM to one-class problems is that the negative class
data information is usually unavailable. Scholkopf et al. proposed a one-class SVM (OC-
SVM) to deal with the issue. Their approach tackles the absence of abnormal class data by
maximizing the boundary with respect to the origin.

The Support Vector Data Description (SVDD) presented by Tax and Duin [33] is
another popular technique inspired by the SVM, in which a hypersphere encircles the target
class data. Various extensions of OC-SVM have been proposed and proven to be a practical
approach for numerous case studies.

Unfortunately, despite their ability to discriminate anomalies from normal data, they
are not the appropriate solutions for time-series problems because those algorithms are not
inherently designed to incorporate the temporal property of time-series data.

Neural network-based approaches have been widely studied and used since the in-
troduction of Deep Neural Networks (DNN). The DNN showed impressive performance
in modeling complex tasks such as recognition, object detection, segmentation, key-point
detection, etc. Additionally, recently, the DNN methods have been introduced to the
anomaly detection field to cope with the challenges encountered when adopting them in
the OCC problems. For example, unsupervised methods such as AutoEncoder (AE) [34–36],
Deep Belief Network (DBN) [37–39], and Generative Adversarial Network (GAN) [40–42]
provide efficient solutions to solve problems involving the absence of positive (abnormal)
class data. Oza and Perera [26] introduced approaches closely related to our work because
we all use similar styles to counter the problem of training the DNNs for one-class clas-
sification. Oza’s idea is to learn a good representation along with a decision boundary
using One-Class CNN via the entropy loss function with the help of a pseudo-abnormal
class generated using a zero-centered Gaussian noise in a latent space. Perera’s [43] work
relies on unrelated task labeled data as an abnormal class to train a CNN model for feature
learning in OCC. Compared with the two approaches, we used CNN to learn from temporal
collected (normal) and synthetic (abnormal) data.

Time-series anomaly detection is certainly an interesting topic with numerous works
in the machine learning research community. Zhu et al. [44] introduce a combination
of Long Short-Term Memory (LSTM) and GAN to harness each technique’s significant
benefits, leading to excellent performance. Those benefits are the capabilities of LSTM
over the temporal data and GAN for data feature extraction and data (normal) model
construction. The GAN constructs a normal data model that outputs the generator residual
and discriminator loss. Then a threshold is applied to the discriminator loss to judge the
given input as anomalous or normal during a test phase. Chadha et al. [45] employ deep
autoencoder and Top-K clustering objectives for grouping the latent space based on the
most discriminative latent space features.

2.2. Transfer Learning

Transfer learning is one of the methods employed in deep learning to accelerate
learning by using the knowledge learned from other related tasks to the targeted task to
be solved [46]. This learning method became prominent and proved its potential in other
domains, mostly in computer vision tasks such as object localization and image recognition,
and recently slightly in time-series problems. The challenges of applying such methods
in temporal data are the lack of a universal or standard and large-scale dataset [47]. Wen
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and Keyes [47] demonstrated that transfer learning for time-series anomaly detection could
successfully improve a CNN-based model pre-trained on a univariate time-series dataset.
However, their approach required large-scale time-series data to train the network from
scratch before fine-tuning it on a target dataset.

In our study, we also intended to explore the ability of the deep-learning model
to borrow prior knowledge from the different domains to solve a task at hand. More
specifically, we wanted to fine-tune the computer vision network’s weights to work with
time-series problems. We adopted this approach because we targeted classifying given
patterns in raw pixel input as either normal or anomalous rather than forecasting. We
employed CNN because integrating it with transfer learning led to many successful appli-
cations in two-dimensional image recognition tasks. Finally, sharing weights from different
tasks in transfer learning could be more promising than using arbitrary initial weights in
neural networks.

3. Methodology

In this section, we formally describe the proposed water-level anomaly detection
approach. First, we introduce the general Convolution Neural Networks and their primary
operations, and then we clarify how we adopted them for time-series One-class classifica-
tion problems. Figure 1 illustrates the workflow of the proposed 2D-CNN-based approach.

We adopted a 2D Convolutional Neural Network (CNN) as a primary feature learner
for this classification problem. As can be seen in Figure 1, the CNNs are composed of at
least four (4) layers named input, convolutional (kernel), pooling, and fully connected
(classification layer). The input layer receives a raw image (can be a 1-channel (grayscale)
or colored (3-channels)) and passes it to the convolutional layer. The convolutional layer
consists of a set of kernels (also known as filters) that output a feature map when applied to
an input image. Stacking multiple convolutional layers of the models allows them to learn
complex features from the images. The pooling layer downsizes the input dimensions to
perform abstraction, decreases the number of parameters and relaxes memory requirements,
and hence makes it easier to process, which leads to faster training. Two widely used
pooling methods are max pooling, and average pooling. Max pooling returns the maximum
value from the area covered by the kernel, while average pooling returns the average value
from the area covered by the kernel. The fully connected layer is the dense layer consisting
of mesh-connected network neurons. This layer uses a traditional Feed-Forward Network
architecture, which accepts a one-dimensional input vector of the flattened feature maps
and outputs the predictions.

The training mechanism is composed of two phases, the first is forward propaga-
tion, and the next is error back-propagation. The forward propagation is the inference
mechanism by using the network input, and weights. Then, the CNN uses error back-
propagation [48] as an error reduction mechanism to optimize the network weights. The
learning principle, used in error back-propagation, is to minimize the errors (such as a sum
of the squared errors) by iteratively adjusting the network’s weights and biases based on
the errors returned from the output layer back to the input layer.

3.1. Synthetic Data Generation

We considered using the TimeSynth library [49], which provides several options to
generate different forms of time-series data. These options include several signals and
noise types separately defined in three different groups of classes named ‘general’, ‘noise
generation’, and ‘signal generation’. Among the options, we explored several relevant
classes to generate suitable synthetic signals that closely resemble our sensors’ collected
data. Synthesis data generation in time-series is a highly complicated process involving
several hyperparameters that must be carefully tuned. Therefore, we use ‘AutoRegressive’
class for signal generation, ‘TimeSampler’ for noise or signal sampling instructions (when
and how), and ‘TimeSeries’ classes for handling time-series data sampling.
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3.2. Anomaly Detector

In this paper, we used two forms of learning: transfer learning with partial training
and custom model training from scratch. Since they are both end-to-end systems, we feed
in the raw input and obtain the prediction to which the instance belongs. The systems
operate over the probability distribution of the classes space with SoftMax function. The
highest probability from the distribution indicates that the systems regard the associated
class of the given input.

3.2.1. Transfer Learning

We chose to use pre-trained ResNet and then replaced the fully connected layer with a
layer suitable for binary classification problem. We consider effectiveness and efficiency
as the main criteria for adopting this framework. However, one important problem of
applying transfer learning of pre-trained ResNet to our anomaly detection task is that the
selected pre-trained model has never seen temporal data. Therefore, we decided to partially
train the model with our data for a few epochs. That would allow the model to capture
some of the informative features from the target temporal data, and then, solve our task.

3.2.2. Custom Model

We designed our model that contained a maximum of four convectional layers with
several dropout layers as a regularizer. We kept it simple to avoid underfitting and
overfitting of the model. We trained the model from scratch with the raw pixel data of both
collected and generated (synthetic).

3.3. Loss Function and Evaluation Metrics

We used the binary cross-entropy [50] loss function as shown in Equation (1) to train
the entire network:

Lc = −(y log(p) + (1 − y) log(1 − p)) (1)

where y is a binary indicator (0 or 1) if class label is the correct classification for the given
instance and p—predicted probability that the given instance is of the class 1 (positive) or
0 (negative).

The expense of diagnosing a positive (abnormal) event as negative (normal) can
threaten the system’s safety. Therefore, other performance measures must be used when the
performance of the minority class is more critical than overall accuracy. The performance
metrics such as recall, precision, area under the curve (AUC) score and F1-score are often
used when the minority class is essential.

3.4. Evaluation Metric

With two labeled sets (actual or true and predictions), we can create a confusion
matrix that will summarize the results of evaluation or inference phase of the classifier. The
confusion matrix computed is a 2D matrix as shown in Table 1.

Table 1. The representation of the confusion matrix for binary classification task. True Positive (TP):
the label and the prediction are positive, False Positive (FP): the label is negative, but the prediction is
positive, False Negative (FN): the label is positive, but the prediction is negative, and True Negative
(TN): the label and the prediction are negative.

Predicted–Positive Predicted–Negative

Actual–Positive TP FN

Actual–Negative FP TN

Precision =
TP

TP + FP
(2)
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Recall =
TP

TP + FN
(3)

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

F1-score = 2 × Precision × Recall
Precision + Recall

(5)

The F1-score (in Equation (5)) is the harmonic mean of precision and recall with values
between 0 and 1.

Receiver Operating Characteristics

A ROC curve is a graphical plot that depicts the diagnostic capability of a binary
classifier system for different threshold values. Each point on the plot represents the ratio
of the true positive rate (TPR) and the false positive rate (FPR) for various thresholds or
cut-off points. Area Under the Curve (AUC) in the ROC curve is a threshold-independent
metric that measures a binary classifier’s performance on classification problems. Normally,
the classifier with a higher AUC is better than all other evaluated classifiers.

4. Experiment

We evaluated our approach on two different testing datasets and provided a meticu-
lous comparison with three anomaly detection approaches.

4.1. Datasets Description

We obtained the datasets from a private company located in Seoul, South Korea. These
datasets were named ‘Traindata1’, ‘Traindata2’, ‘Testdata1’, and ‘Testdata2’ consisting of
604,767, 604,767, 86,400, and 75,594 data points, respectively. The other dataset is synthetic,
which was generated using aforementioned TimeSynth [49], a time-series synthetic data
generator library.

4.2. Experiment Design

We designed a custom 2D-CNN as illustrated in Figure 2 and optimized it using
Adam optimizer [27]. For the transfer learning, as we discussed, we adopted ResNet18 and
then changed the last convolution layer and fully connected layer to match the required
number of classes (that is two) for this case study. We compared our approach with Autore-
gressive Integrated Moving Average (ARIMA) [28], and Hierarchical Stacking Temporal
Convolutional Network (HS-TCN) [29].

4.2.1. ARIMA

Autoregressive Integrated Moving Average (ARIMA) models possess versatile prop-
erties in forecasting a time-series, leading to much adoption by research communities
and industrial application developers. However, the ARIMA algorithm was designed
for time-series forecasting, not classification problems. The ARIMA models are fitted to
time-series data to understand the data reasonably or predict future points in the sequence
(forecasting). Therefore, to make them compatible with the time-series anomaly detection
problem, we check if the predicted value intervals lie outside the true value interval and
then label it as an anomaly.

4.2.2. HS-TCN

Hierarchical Stacking Temporal Convolutional Network (HS-TCN) is an ensemble
learning method that integrates more than one classifier or regression model. HS-TCN
is a method built on top of a powerful algorithm known as a Temporal Convolutional
Network (TCN) [51] to solve sequential problems. It searches outliers, weeding them out
as part of unlabeled data, and then labeling them as anomalies. As for the base classifiers,
widely adopted base models are SVM, K-Nearest Neighbors (kNN), Bayesian networks and
decision trees, which take the outliers out from the feature extracted by the TCN as input.
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Figure 2. Our custom model architecture built as a Sequential Model which stacks series of feature
extractors (2D-Convolutional Neural Networks), Activation function (ReLU), Down sampling opera-
tor (MaxPooling), BatchNormalization and Regularizer (Dropout), Classifier (Fully connected layer)
that uses SoftMax function.

5. Results

For diverse comparison, we summarized the results computed as the accuracy (Acc),
recall (RC), precision (PR), area under the curve (AUC) score and F1-score (F1) in several
tables. We calculated the average of five runs to compute each performance measure
metrics. We reported the average because the training instances were randomly selected
from the entire training dataset.

5.1. Data Validity Analysis

Since the data are crucial for the model to learn informative features, they are worth
careful and intensive exploration. This is because the required pseudo-class data should
appropriately represent the abnormal target data (at least to our custom dataset). The
model (Res1) showed poor performance in Table 2, which were the consequences of the
model complexity (see Section 5.2) and the amount of training data.

We demonstrated the effect of the training data on learning which can be indicated
from the experiment results of the ResNet models (Res3 and Res4 trained on normal and
random noise) in Table 2, which underperformed the ResNet models (Res1) in Table 2.

As we can observe the results in Table 3, the custom model trained with only
2000 instances from each class outperformed the complex model (ResNet18) which
experimentally proves that data played a big part in negatively or positively impacting
the model performance.

From the several experiments conducted, it can see seen that:

• Using synthetic data as the pseudo-class is a promising direction because of the model
performance improvement achieved after only changing the pseudo-class data from
random or Gaussian noise to synthetic generated data.

• Transfer learning should be dealt with consideration that underfitting can happen
because the transferred model is too complicated for training data (see Section 5.2).
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Table 2. Performance summary of ResNet models trained different on training data versions. Note:
Number of training instances (ITs), ResNet models trained on custom and synthetic data, custom and
Random noise data, custom and Gaussian noise data noted as Res1, Res2 and Res3, respectively, and
the bold scores indicate the highest mean scores obtained in test phase.

Dataset ITs Acc PR RC F1 AUC

Res1 T1 8000 0.464 0.609 0.372 0.462 0.522

T1 10,000 0.830 0.828 0.392 0.494 0.564

T2 8000 0.893 0.793 0.569 0.662 0.595

T2 10,000 0.902 0.859 0.581 0.693 0.649

Res2 T1 8000 0.884 0.706 0.186 0.294 0.509

Res3 T2 8000 0.818 0.232 0.235 0.234 0.505

Table 3. The results of the 2D custom model after trained on normal and synthetic data then tested
with ‘Testdata1’ (noted as T1) and ‘Testdata2’ (noted as T2)’, the bold scores indicate the highest mean
scores obtained in test phase. Note: Number of training instances (ITs).

Dataset ITs Acc PR RC F1 AUC

T1 40,000 0.442 1.000 0.280 0.437 0.617

10,000 0.901 1.000 0.664 0.798 0.798

4000 88.902 1.000 0.641 0.781 0.623

2000 0.917 0.999 0.937 0.967 0.912

T2 40,000 0.544 0.890 0.28 0.437 0.532

10,000 0.839 0.901 0.693 0.798 0.624

4000 0.968 0.983 0.845 0.887 0.841

2000 0.909 0.987 0.902 0.943 0.896

Additionally, the experiments indicate that there exists a valid subspace where the
representative samples of the target (synthetic) data are located, which makes it efficient
for training the model. We improved the model performance from two aspects: (1) by
using the data found for normal class, (2) and by efficiently and effectively exploiting that
subspace for anomaly class.

We set up multiple configurations for the amount of data used for training as presented
in Table 3. We obtained the highest scores in terms of F1-score and AUC when we configured
the number of instances to be 2000 for each class.

5.2. Model Architecture Analysis

The appropriate model complexity (depth-wise) serves several important features
(generalization, appropriate training, and inference time) of an efficient model. However,
too complex models may either suffer from underfitting or overfitting depending on the
training data. The ResNet’s performance results in Table 2 are not encouraging compared
with custom model (in Figure 2) performance results in Table 3. As shown in the result
tables, the complex model (such as ResNet) suffers from underfitting with the training
data, leading to negative predictions for most data points in a test phase, hence the lowest
Recall and F1-score. Thus, we investigated simple custom models that can capture enough
information from the training data and generalize while mitigating the underfitting issue.
As we can observe the results in Table 3, the custom model (in Figure 2) outperformed the
complex model (ResNet18), which experimentally proves that the appropriate complexity
of the model also greatly impacts the performance.
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5.3. Comparison with Other Methods

In this subsection, we detail the performances of different approaches on our custom
dataset. We summarized the results of several experiments in Table 4 computed using the
F1-score and AUC score as performance metrics.

We further investigated the anomaly detection of the three selected approaches
(ARIMA, HS-TCN, and our OC-CNN) by training them from scratch and analyzed their
performances. We computed the mean (by repeatedly running each experiment five times
using different seeds) for fair and correct evaluations, which is necessary and more suitable
comparisons considering that most of the methods start with random weights. As we can
see in Table 4, the 2D-Convolutional Neural Network-based anomaly detector OC-CNN
(ours) significantly outperformed two approaches.

Table 4. Performance comparison of different methods using F1-score (noted as F1) and AUC score
averaged of five runs, the bold scores indicate the highest mean scores obtained in test phase, T1
(Testdata1) and T2 (Testdata2).

ARIMA HS-TCN Our OC-CNN

F1 AUC F1 AUC F1 AUC

Dataset
T1 0.494 0.521 0.812 0.733 0.963 0.922

T2 0.029 0.500 0.693 0.652 0.954 0.887

6. Discussion
6.1. Effectiveness of the OC-CNN

Performance metrics from the combination 2D-CNN custom model and synthetic
data indicate that the CNN-based model can successfully achieve the objective of using
pseudo-class and the simple model. Results indicate that the OC-CNN implemented by
custom 2D-CNN outperforms the ResNet models and two other approaches. The reason for
the high performance is that the feature representations learned were sufficiently relevant
to distinguish between the two classes. This was possible because our 2D-CNN focused on
understanding which patterns resemble normal or abnormal patterns instead of temporal
features. At the same time, our 2D-CNN was able to learn sufficiently informative features
from small training instances, which made it efficient yet effective for the presented case
study. This effectiveness and efficiency allow companies to focus on other important
core parts of the business and not to worry about the cost of data preparations. The data
preparation requires a few cheap steps to generate, which do not require hours of training.

6.2. Limitation of the OC-CNN

Although the developed OC-CNN outperformed the other approaches in this case
study, it has several drawbacks. It highly relies on the careful manual exploration of pseudo-
class data generation. Therefore, improving and automating the process for synthetic data
generation will be a more beneficial and highly reliable solution.

7. Conclusions

In this paper, we have investigated 2D Convolutional Neural Network technique and
synthetic data for water-level anomaly detection. Our design for water-level anomaly
detection intended to investigate various scenarios of training a simple model from scratch,
transferring models across multiple domains and applying relevant synthetic (pseudo-
class) data. We adopted those techniques based on their compatibility, simplicity, and
capability to learn complex functions to represent an optimal subspace for normal and
anomalous data. We experimentally demonstrated the effects of complexity of the models
and amount/quality of the training data on model’s generalization performance. Addition-
ally, we showed that a simple model with quality data is sufficient to learn from scratch
a function that can discriminate the instances of the two classes in water-level anomaly
detection. Unfortunately, it was not the same with a multi-domain transfer, whereby the
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ResNet model failed to perform effective classification and therefore underperform the
simple custom model in this case study. However, despite the overall performance degra-
dation of the ResNet, we showed that the relevant pseudo-class data could slightly improve
the performance of the ResNet while leading to the higher performance of our OC-CNN
model. This shows that time-series synthetic data could be one of the promising ways to
solve the problem of lacking positive class data for anomaly detection. Despite the failure
of multi-domain transfer, we still believe it is worth further investigation that would lead
to an efficient model, which will be one of our future research directions.
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