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Abstract: Pork is the most widely consumed meat product in the world, and achieving accurate
detection of individual pigs is of great significance for intelligent pig breeding and health monitoring.
Improved pig detection has important implications for improving pork production and quality, as
well as economics. However, most of the current approaches are based on manual labor, resulting
in unfeasible performance. In order to improve the efficiency and effectiveness of individual pig
detection, this paper describes the development of an attention module enhanced YOLOv3-SC model
(YOLOv3-SPP-CBAM. SPP denotes the Spatial Pyramid Pooling module and CBAM indicates the
Convolutional Block Attention Module). Specifically, leveraging the attention module, the network
will extract much richer feature information, leading the improved performance. Furthermore, by
integrating the SPP structured network, multi-scale feature fusion can be achieved, which makes
the network more robust. On the constructed dataset of 4019 samples, the experimental results
showed that the YOLOv3-SC network achieved 99.24% mAP in identifying individual pigs with a
detection time of 16 ms. Compared with the other popular four models, including YOLOv1, YOLOv2,
Faster-RCNN, and YOLOv3, the mAP of pig identification was improved by 2.31%, 1.44%, 1.28%,
and 0.61%, respectively. The YOLOv3-SC proposed in this paper can achieve accurate individual
detection of pigs. Consequently, this novel proposed model can be employed for the rapid detection
of individual pigs on farms, and provides new ideas for individual pig detection.

Keywords: pig detection; YOLOv3; Convolutional Block Attention Module; Spatial Pyramid Pooling

1. Introduction

Pigs are the most common source of meat products worldwide. With the progress of
human society, people pay more and more attention to the quality of pork.

Object detection technology has high value in improving animal welfare. Early in
pig production, it can be utilized to monitor pig health to improve pork quality [1]. The
dietary behavior of animals is closely related to their health status, and subtle dietary
changes are important for animal health observations [2]. When pigs are sick, they usually
show reduced feeding, reduced exercise, depression, and lethargy [3]. Leveraging scientific
methods to monitor live pigs and, if necessary, human intervention, will help protect
animal welfare and prompt pork quality and profitability. Initially, the vast majority of pigs
were monitored manually, which led to significant increases in labor intensity. Meanwhile,
during the monitoring process, human subjective judgment errors often occur, which was
not conducive to the high-quality production of live pigs.

To handle the above problems, in the early days, researchers used RFID systems to
monitor pigs’ diets. However, the sensitivity of RFID system monitoring was often affected
by their surrounding environment as well as their own height, direction, and distance [4]. In
pursuit of better accuracy, it is necessary to constantly adjust the position of the antenna [5],
and RFID monitoring requires a large number of pig ear tags, which is time-consuming and
expensive to maintain. Furthermore, there are also some problems to these approaches that
depend on the utilization of the wearable equipment RFID such as being easy to damage,
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being invasive, and prone to infection [6,7]. Subsequently, the breeder deployed cameras to
record the pigs’ behavior and manually analyzed the recorded video data, in order to obtain
the health status of the pigs. These methods are all based on manual analysis, resulting in a
significant increase in the workload of breeders.

Despite some desirable results, the above-mentioned methods suffer from compro-
mised animal welfare and high physical labor intensity. This makes it urgent to leverage
more efficient methods, for pig detection. The following are some effective attempts
by researchers.

In [8], by leveraging elliptical displacement calculation methods, Kashila et al. has
achieved 89.8% accuracy in pig movement detection. Concerning the individual pig
classification, Kashila et al. [9] has received 88.7% accuracy in detecting individual pig
identification via ellipse fitting technique. Based on traditional computer vision technol-
ogy [10], Nasirahmadi et al. [11,12] has employed ellipse fitting and the Otus algorithm, to
realize the individual pig detection and pig lying position detection. Furthermore, Nasir-
ahmadi [13] has utilized support vector machine (SVM) algorithm to classify pig poses,
with 94% classification accuracy achieved. Leveraging the linear discriminant analysis
algorithm, Viazzi et al. [14] has achieved 89.0% accuracy in the recognition of aggressive
behavior of pigs. Furthermore, a more promising method for individual identification
and behavioral recognition of pigs is based on 2D or 3D cameras. For example, Matthews
et al. [15] has utilized a depth camera to track the movement of pigs, enabling the effective
detection of pigs’ standing, eating, and drinking behaviors. Depending on the depth sensor,
Kim et al. [16] has realized the pig standing behavior recognition under the complex envi-
ronment. Meanwhile, the effectiveness of the proposed method in terms of both the cost
and the accuracy have been verified. Based on the images captured by the CCD camera,
Nasirahmadi [11] et al. have utilized an ellipse fitting approach to locate each pig in the
image, while cameras can easily record the pig behavior, factors such as farm environment
and lighting conditions can make pig classification challenging.

Currently, deep-learning based approaches [17–19] have achieved promising detection
performance, especially in the field of animal phenotype detection. For example, Wu
et al. [20] has proposed an effective corbel detection method based on YOLOv3 and relative
step size characteristic vector. Specifically, based on the relative step size characteristic
vector, the YOLOv3 algorithm was utilized to detect the position of the corbel, and then
the LSTM model was employed to identify the normal walking and the lame behavior
of the cattle, and an accuracy of 98.57% obtained. Shen et al. [21] has first applied the
YOLO model to detect cows, and then an improved AlexNet model has been employed
to classify the corresponding detected individual cow. Finally, they obtained 96.65%
accuracy of individual cow classification. Tassinari [22] proposed a deep learning-based
system for individual cow classification and location analysis. Zhang [23] proposed a
lightweight YOLO detection model, using MobileNetV3 to replace the backbone network in
the YOLOv3 network, and obtained 96.8% of the cattle key position detection accuracy. Hu
et al. [24] employed the YOLO algorithm to extract cow objects, and then a segmentation
algorithm was utilized to extract the head, torso, and legs parts of the corresponding cow
object. Subsequently, the deep feature fusion was performed on these extracted parts.
Finally, the SVM classifier was employed to do the classification, and an accuracy of 98.36%
was obtained. Jiang [25] proposed a filter-based YOLOv3 algorithm and achieved 99.18%
accuracy in the detecting key parts of cows. Based on an RGB camera and convolutional
neural network, Bezen [26] built a computer vision system for measuring cow feeding, and
an accuracy of 93.65% was obtained. Achour [27] has built a CNN-based image analysis
system for the classification of individual cows, their foraging behavior, and their food.
Specifically, their model obtained an accuracy of 97% for individual cow classification and
an accuracy of 92% for cow foraging behavior separately. Wu [28] proposed a CNN-LSTM
(Fusion of Convolutional Neural Network and Long Short-Term Memory Network) model
for cow action recognition. Specifically, the action categories of cows in their experiments
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included drinking, ruminating, walking, standing, and lying down, and the average
classification accuracy of their model has reached 97.6%.

Above all, while the monitoring method using RFID ear tags is simple, it often causes
harm to the pig and compromises animal welfare. Although the computer vision tech-
nology [29] can improve animal welfare and recognition accuracy, it is not suitable for
industrial production requirements due to its slow detection speed. Furthermore, when the
pigs are occluded, or the size of the target pigs in the image varies greatly, the detection
performance of the model drops significantly.

Attention mechanism is an important means to improve feature robustness [30], among
which Convolutional Block Attention Module (CBAM) [31] have shown promising success
in a broad range of fields. Based on an intermediate feature map, CBAM captures attention
maps in two independent dimensions, including channel and spatial dimensions. Then,
the input feature map is multiplied with this attention map for adaptive feature refinement.
Since CBAM is a general and lightweight component, it can be seamlessly incorporated
into any CNN architecture for end-to-end training with negligible overhead.

Furthermore, the Spatial Pyramid Pooling (SPP) [32] module realizes the feature map-
level fusion of local features and global features, enriching the expressiveness of the final
feature map.

Consequently, based on YOLOv3, leveraging the advantages of CBAM and SPP, this
paper proposes a novel improved pig detection model YOLOv3-SC. The YOLOv3-SC
model enables efficient detection of pigs. In addition, the model can achieve effective pig
detection in the case of occlusion, and can achieve effective multi-scale pig targets. The
main contributions of this paper is summarized as follows:

• We first propose a novel pig detection method YOLOv3-SC based on the CBAM and
the SPP modules. The channel attention and the spatial attention units in the CBAM
module enable the YOLOv3-SC to focus on the regions of the image that are impor-
tant for detection, thereby extracting richer, more robust, and more discriminative
features. The SPP module endows YOLOv3-SC the capacity of extracting multi-scale
features, which enables the model to detect objects of different sizes, thereby improv-
ing the model’s pig detection performance. Specifically, our model achieves the best
performance for pig detection task, with 2.3% improvement of the existing model.

• Numerous ablation experiments have been designed and performed to verify the
performance of our model. Specifically, these studies include the comparison of
different models, evaluation of the effectiveness of the spp module, evaluation of
the effectiveness of the CBAM module, and the evaluation of the superiority of the
YOLOv3-SC.

2. Materials and Methods
2.1. Datasets

The individual pig detection dataset utilized in this paper was collected from one pig
farm in Jinzhong City, Shanxi Province, China. The breeding method of this farm is captive
breeding, surrounded by iron fences to form a closed area, and the ground of the farm is
cement concrete. The data collection cameras were installed at a height of 3 m from the
ground, at 45° diagonally and directly above the farm. Through this collection strategy, the
whole view of the pig and its range can be well captured. The data collection period lasted
for two months, from August to October 2020. It should be noted here that videos with
poor picture quality are deleted due to factors such as light, and finally a total of about 2
Terabyte video data is obtained. Specifically, the video is sliced into image frames with
rgb format at a sampling rate of 25 f/s and some images with no target objects, blurring
and poor quality, are deleted. Further, the labelImg tool was employed to label the image
frames in the PASCAL VOC format, and the labeled data was saved as an XML file. Finally,
we obtained a dataset with a total of 4019 images with 13,996 annotations, some sample
images are shown in Figure 1. Figure 1a indicates the camera position above the 45° angle
of the farm. Figure 1b shows the camera position above the 45° diagonal of the farm.
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Figure 1c indicates that the camera position directly above the farm. In order to evaluate
the performance of the proposed model, the dataset is divided as follows, 3255 samples
are employed as the training data, the 362 samples are employed for validation data, and
the remaining 402 samples are utilized as the test data. The samples in the test data are the
unseen data. Further, to increase the diversity of data and allows the model to obtain richer
features, this paper adopts the following data augmentation techniques, such as random
scaling, random flipping, random cropping, and other operations.

Figure 1. Some examples of the dataset.

2.2. Technical Route

The technical route of the individual pig detection model proposed in this paper is
shown in Figure 2. To reduce the noise in the data and enable the model to obtain better
detection ability, the samples are first preprocessed and data augmented. Specifically,
the image preprocessing operation utilized for data noise reduction refers to deleting
samples with poor quality in the data set and and resize the input image to a fixed size
416 × 416. In order to increase the diversity of data, we have adopted the following data
enhancement methods, including the random_distort, random_expand, random_interp,
and random_flip, shuffle_gtbox. Subsequently, the processed data is sent to the YOLOv3-SC
for model training and evaluation. Finally, an effective individual pig detection model is
obtained, which can realize fast and accurate individual pig detection.

Pig data set 

collection

Data pre-

processing

Data 

Enhancement
YOLOv3-SC

Model 

Training

Individual pig 

testing

Feature 

Extraction

Feature 

Fusion
Result

Figure 2. Technical route of the proposed pig detection model.
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2.2.1. Feature Extraction

The backbone network DarkNet-53 with the addition of the CBAM of the proposed
model, are utilized to extract features with richer spatiotemporal dependencies, which will
facilitate the pig detection significantly.

2.2.2. Feature Fusion

The Feature Fusion in Figure 2 refers to two kind of fusions; they are the multiple
YOLO-head fusion and the SPP (Spatial Pyramid Pooling) fusion. The detailed feature
fusion operations are described in Section 2.5.

2.3. YOLOv3

Based on YOLOv1 [33] and YOLOv2 [34], to leverage the anchor mechanism, BN
operation, and multi-scale fusion strategies, we proposed YOLOv3 models. The basic
principle of YOLOv3 is to divide the input image into S× S grids, where S = 7 and each
grid predicts 3 anchors. Each anchor has 5 parameters including (x, y, w, h, c), where x and
y are the coordinate positions of the anchor, w and h represent the width and height of the
anchor, and c is the confidence level of the predicted object. In addition to the parameters
of the anchor, the YOLOv3 algorithm predicts the probability of each category and the
confidence level can be achieved by the following Equation (1).

Con f idence = p_r(obj)× IoU (1)

where p_r(Obj) is set as 0 or 1 and the IoU denotes the intersection ratio of the predicted
and true frames. The confidence reflects whether the grid contains objects or not, and the
accuracy of the prediction frame when the grid contains objects. Finally, the redundant
anchor is eliminated by non-maximal suppression (NMS), and the position and size of
the corresponding anchors are adjusted to produce the final result. YOLOv3 improves
the detection performance via introducing the anchor mechanism based on YOLOv2 and
a K-means clustering algorithm. The K-means clustering algorithm can be employed to
obtain the suitable prior frame size, which is shown in the following Table 1 [35].

By introducing suitable prior frames, the network no longer needs to randomly gen-
erate anchor frames of different sizes to predict objects, thus making the network train
faster and converge faster. YOLOv3 leverages a multi-scale strategy for object detection,
which can detect more objects and identify smaller objects than those of YOLOv1 and
YOLOv2, respectively. Concretely, the YOLOv3 network consists of four parts, including
the input unit, backbone network unit, neck unit, and output unit. The backbone network
in the YOLOv3 framework is the Darknet-53, and its basic unit is the residual structure [36],
which can alleviate the gradient vanishing or explosion problems caused by the deepening
of the network layers. The network structure of YOLOv3 is shown in Figure 3.

Table 1. YOLOv3 Anchor Size

Cell Size Detection Box Size

13 × 13 (10,13) (16,30) (33,23)
26 × 26 (30,61) (62,45) (59,119)
52 × 52 (116,90) (156,198) (373,326)
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Figure 3. The network structure of YOLOv3.

2.4. Attention Module

Pigs exhibit different actions at different times of the day, and there are often problems
with pigs occluding each other. These situations can lead to a lack of distinct behavioral
identification features in pig datasets. In order to handle the above-mentioned problems
and improve the accuracy of the network by capturing more effective features, it is necessary
for the network to learn action features adaptively. Consequently, this paper proposes an
attention-enhanced YOLOv3 network, which aims to utilize the attention module to make
the neural network pay more attention to the corresponding regions in the image, and these
regions play a key role in action discrimination.

The Convolutional Block Attention Module (CBAM) [31] is a lightweight unit that
consists of two separate parts, they are the Channel Attention Module (CAM, Channel
Attention Module) and the Spatial Attention Module (SAM, Spatial Attention Module).
CBAM is a combination of spatial attention and channel attention, which can be utilized
to obtain rich semantic information in pig images. CBAM can capture the dependencies
between channel feature space features, reduce the weight of unimportant information,
and improve the detection performance of individual pigs. The structure diagram of the
CBAM module is shown in Figure 4.
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Input Feature
Channel Attention Spatial Attention

Output Feature

MaxPooling

AvgPooling

 MaxPooling

AvgPooling MLP

Figure 4. The structure of the CBAM module.

Specifically, CAM first performs a maximum pooling operation and a global average
pooling operation on the input feature layer in turn, their output features are sent to a
Multi-Layer Perception (MLP) layer. Then the output features of the MLP of two branches
are summed together and send to a sigmoid function for fixing the weights between 0 and
1 distribution. The final result is obtained by multiplying the original input feature layer.

SAM first performs a maximum pooling operation and a global average pooling oper-
ation on the input feature layer, and then executes a tensor splicing on the corresponding
output features. Finally, they are sent to the Sigmoid function to fix the weights between
0 and 1 distribution and then multiplied with the original input feature to achieve the
final result.

The CBAM module can be represented by the following equation.

Fc = Zc(F)F (2)

F2 = Zc(Fc)Fc (3)

Zc( f ) = σ{Ff c[AvgPool(F)] + Ff c[MaxPool(F)]} (4)

Zs( f ) = σ{Cc[AvgPool(F1)] + Fc[MaxPool(F1)]} (5)

where Zc presents the channel attention module (CAM), Zs denotes the spatial attention
module (SAM), F indicates the feature layer of the input network, and Fc/Fs denotes the
feature map after the Channel Attention Module (CAM)/Spatial Attention Module(SAM),
respectively. × represents to perform the pointwise multiplication, and Ff c is the fully
connected operation. AvgPool denotes the global average pooling operation and the
MaxPool indicates the global maximum pooling operation, respectively. Cc presents the
tensor splicing Concat operation. + represents the summation operation and the σ denotes
the sigmoid activation function.

2.5. The Proposed Novel YOLOv3-SC Model

The proposed YOLOv3-SC model is built by leveraging the attention mechanism
and Spatial Pyramid Pooling (SPP) module to the YOLOv3 backbone network Darknet-
53. Specifically, the CBAM module endows YOLOv3 with powerful feature extraction
capabilities. Furthermore, the SPP structure extracts features of different scales in the
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final stage of the backbone network and fuses them. This design can alleviate network
overfitting, increase the robustness of the model, and allow the network to learn richer
features. The architecture of the novel proposed YOLOv3-SC is presented in Figure 5.

CBL Conv BN
Leaky

ReLU

CBL

Res1_CBAM

Res2_CBAM

Res8_CBAM

Res4_CBAM 5×CBL

13×13×18

CBL

Concat 5×CBL

CBL

Upsample

Upsample

52×52×18

26×26×18

CBL Conv

CBL

X Residual Components

Res 

unit
addCBL    CBLResX_CBAM

ConvAvg

CAT

SAT

RELU

Max

add

Mean
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Max

Sigmoid

Conv

Conv RELU Conv

Sigmoid

CAT SAT×

CBAM CBAM

SPP

Maxpool13

Maxpool9

Maxpool5

SPP

Concat

Concat

CBAM ×

CBAM CBAM

CBL ConvCBAM

CBL ConvCBAM

CBAM

CBAM

CBAM

Input

5×CBLRes8_CBAM ConcatCBAM

3xCBL

Res 

unit

Figure 5. The pipeline of the proposed YOLOv3-SC. Here, we should note that the 5, 9, 13 in the
Maxpool5, Maxpool9, Maxpool13 indicate the pooling kernel size of the maxpool operation.

Specifically, as in Figure 5 show, the YOLOv3-SC is enhanced by integrating the CBAM
module in each Res_Block and adding SPP unit in the final stage of the backbone network.

The backbone network with the addition of the CBAM consists of Res1-CBAM, Res2-
CBAM, Res4-CBAM, and Res8-CBAM. Resi_CBAM i = 1, 2, 4, 8 denotes a stack of CBL
and i residual structures with CBAM modules, where CBL is composed of Conv, Batch
Normalization (BN), and activation function (LeakyReLu) unit. The CBAM component
allows the model to extract richer spatiotemporal features, which will facilitate the pig
detection significantly.

Furthermore, the SPP structure is introduced for feature fusion. Specifically, SPP
performs maximum pooling operations at different scales on the input feature maps, and
finally all the output feature maps are tensor-spliced with the original feature maps. In this
way, the network can perform feature fusion at different scales to prevent overfitting.

The input image is improved with the backbone network and SPP structure to obtain
three different scales of feature layers with sizes of 13 × 13, 26 × 26, and 52 × 52. After that,
further feature fusion operations are performed. The 13 × 13 feature map is upsampled
to obtain the 26 × 26 feature map and the 26 × 26 feature map of the backbone network
is concatenated. After that, we perform up-sampling again to obtain 52 × 52 feature map
and 52 × 52 feature map in the backbone network for Concat operation to fuse the feature
information of different scales. In the feature fusion stage, we first perform CBAM operation
on the input of different feature layers, and then perform CBAM operation again after the
tensor stitching Concat to obtain the improved feature fusion network.

The training process of the YOLOv3 is presented in Algorithm 1.
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Algorithm 1: YOLOv3-SC Model Training
Input: Pig image, target box
Output: Predicted box

1 Initialization(learning rate, epochs);
2 for i in epoch do
3 for train_image, target in train_dataloader do
4 output = YOLOv3-SC(train_image)
5 loss = Loss function(output, target)
6 Optimizer.zero_grad()
7 loss.backward()
8 Optimizer.step()
9 end

10 for test_image, target in test_dataloader do
11 output = YOLOv3-SC(test_image)
12 loss = loss_function(output, target)
13 end
14 Lr_scheduler() (Adjust the learning rate)
15 Save() (Save the weights of the model)
16 end

2.6. The Loss Function

In order to achieve the optimized pig detection model, a reasonable loss function
needs to be designed for the network training. Specifically, the loss function consists of
three terms: including category loss (Lcls), confidence loss (Lcon f ), and locality loss (Lloc).
Among them, IoU is utilized to calculate the locality loss, and the cross-entropy loss is
employed to calculate the confidence loss and class loss separately. The loss function of the
proposed model is defined as follows.

Loss = Lloc +Lcls +Lcon f (6)

where Lloc indicates the error between the coordinates and the length and width of the real
frame and the coordinates and length and width of the predicted frame, Lcon f illustrates
the prediction region confidence error, and Lcls denotes the object classification error,
respectively.

AP =
∫ 1

0
P(R)dR (7)

mAP =
∑n

1 (AP)
n

(8)

P = TP/(TP + FP) (9)

R = TP/(TP + FN) (10)

where TP represents the number of positive samples predicted to be positive; FP indicates
the number of negative samples predicted as positive samples; and FN illustrates the
number of positive samples predicted as negative samples. n represents the number of the
detected pig category, and its value is set as 1 here. AP is the average precision, denotes
the area under the PR curve. mAP indicates the average accuracy over all categories.

2.7. Experiment Setup

In this paper, for fair comparison, all experiments are developed and run based on the
PyTorch framework. The stochastic gradient descent optimization algorithm is employed
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for the model parameter update. Furthermore, the batchsize is 16, the initial learning rate
is set as 0.001 and updated based on the cosine descent theory, the momentum is 0.937, and
the total number of iterations is 400 epochs.

Additionally, the hardware configuration is as follows: operating system Ubuntu 20.04,
CPU Intel(R) Xeon(R) CPU E5-2670 v3, GPU Nvidia Feforce GTX 3060 12G, and memory
16G DDR4.

3. Results

In this section, the experimental results and the discussions will be illustrated in detail.
The experiments are organized in the following several parts, including the comparison of
different models, the evaluation of the effectiveness of the SPP module, and the evaluation
of the effectiveness of the SPP module. The purposes are to verify the effectiveness of the
model, the effectiveness of the SPP unit in the YOLOv3-SC and the effectiveness of the
CBAM unit in YOLOv3-SC correspondingly.

3.1. Comparison of Different Models

In order to validate the effectiveness of the proposed YOLOv3-SC, several models
are utilized for comparison, including YOLOv1, YOLOv2, YOLOv3. Results are shown in
Table 2.

Table 2. Comparison of YOLOv3 and YOLOv3-SC.

Model
Mean Average

Accuracy
(mAP/%)

Precision (P/%) Recall (R/%) F1 Score

YOLOv1 97.00 94.00 93.12 0.92
YOLOv2 97.83 94.40 93.55 0.93

Faster-RCNN 98.08 94.92 93.78 0.94
YOLOv3 98.64 95.94 94.12 0.95

YOLOv3-SC 99.24 98.27 94.31 0.97

Table 2 illustrates that the proposed model YOLOv3-SC achieves the best perfor-
mance on all evaluation criteria. Specifically, YOLOv3-SC achieves 99.24% mAP, which is
2.31%/1.44%/1.18%/0.61% higher than that of YOLOv1/YOLOv2/Faster-RCNN/YOLOv3;
the YOLOv3-SPP obtains 98.27% Precision, which is 4.54%/4.10%/3.53%/2.43% better than
that of YOLOv1/YOLOv2/Faster-RCNN/YOLOv3; the YOLOv3-SPP achieves 94.31% Re-
call, which is 1.28%/1.44%/0.81%/0.22% superior than that of YOLOv1/YOLOv2/Faster-
RCNN/YOLOv3; and the YOLOv3-SPP obtains 0.96 F1 score, which is 4.35%/3.22%/2.13%/
1.05% higher than that of YOLOv1/YOLOv2/Faster-RCNN/YOLOv3. These all results
validate the effectiveness of the proposed YOLOv3-SC.

The SPP structure and the CBAM attention component of the YOLOv3-SC allow the
model to focus on the discriminant regions of the image in pig detection, fuse multi-scale
feature maps, and extract more effective features even in the case of pigs sticking to each
other. Consequently, YOLOv3-SC implements fast and efficient pig detection and achieves
99.24% mAP, which is significantly better than other models.

3.2. Evaluation of the Effectiveness of the SPP Module

In order to validate the effectiveness of the SPP module, we compare the YOLOv3 and
YOLOv3-SPP. YOLOv3-SPP is built by encompassing the SPP module into the YOLOv3.
Comparison results are shown in Table 3.

From Table 3, it can be seen that the YOLOv3-SPP model is superior to the YOLOv3
model on all evaluation criteria. Specifically, the YOLOv3-SPP achieves 99.19% mAP, which
is 0.56% higher than that of YOLOv3; the YOLOv3-SPP obtains 97.19% Precision, which is
1.72% better than that of YOLOv3; the YOLOv3-SPP achieves 95.08% Recall, which is 1.02%
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superior than that of YOLOv3; and the YOLOv3-SPP obtains 0.96 F1 score, which is 1.05%
higher than that of YOLOv3. These results validate the effectiveness of the SPP module.

Table 3. Comparison of YOLOv3 and YOLOv3-SPP.

Model
Mean Average

Accuracy
(mAP/%)

Precision (P/%) Recall (R/%) F1 Score

YOLOv3 98.64 95.94 94.12 0.95
YOLOv3-SPP 99.19 97.19 95.08 0.96

The reason why the YOLOv3-SPP model is superior to YOLOv3 can be attributed
to the following reasons. Specifically, the SPP module integrates both local and global
features, thereby capturing multi-scale feature information, enhancing the expressiveness
of features, and improving the robustness and the performance of the model.

3.3. Evaluation of the Effectiveness of the CBAM Attention Module

To evaluate the effectiveness of the CBAM attention module, some models are utilized
for comparison, including YOLOv3 and YOLOv3-CBAM. YOLOv3-CBAM is established
by leverage the CBAM module into the backbone of the YOLOv3. The comparison results
are shown in Table 4.

Table 4. Comparison of YOLOv3 and YOLOv3-CBAM.

Model
Mean Average

Accuracy
(mAP/%)

Precision (P/%) Recall (R/%) F1 Score

YOLOv3 98.64 95.94 94.12 0.95
YOLOv3-CBAM 99.17 97.46 94.24 0.96

Table 4 illustrates that the YOLOv3-CBAM model is superior to the YOLOv3 model
on all evaluation criteria. Specifically, the YOLOv3-CBAM achieves 99.17% mAP, which is
0.54% higher than that of YOLOv3; the YOLOv3-CBAM obtains 97.46% Precision, which
is 1.58% better than that of YOLOv3; the YOLOv3-CBAM achieves 94.24% Recall, which
is 0.13% superior than that of YOLOv3; and the YOLOv3-CBAM obtains 0.96 F1 score,
which is 1.05% higher than that of YOLOv3. These results evaluate the effectiveness of the
CBAM module.

3.4. Evaluation of the Superiority of the YOLOv3-SC

To evaluate the superiority of the proposed model YOLOv3-SC, we compare it with
the models in the above section, including the YOLOv3, YOLOv3-SPP, and YOLOv3-CBAM.
YOLOv3-SC is built by integrating both the CBAM and the SPP modules into the structure
of the YOLOv3. The corresponding comparison results are shown in Table 5 and Figure 6.

Table 5. Comparison of YOLOv3-SPP and YOLOv3-CBAM with YOLOv3-SC.

Model
Mean Average

Accuracy
(mAP/%)

Precision (P/%) Recall (R/%) F1 Score

YOLOv3 98.64 95.94 94.12 0.95
YOLOv3-SPP 99.19 97.19 95.08 0.96

YOLOv3-CBAM 99.17 97.46 94.24 0.96
YOLOv3-SC 99.24 98.27 94.31 0.97
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Table 5 and Figure 6 illustrate that the YOLOv3-SC model obtains the best results,
which verifies the superiority of the integration of SPP and CBAM modules.

(a) YOLOv3 

(b) YOLOv3-SPP 

(d) YOLOv3-SC 

(c) YOLOv3-CBAM 

Figure 6. The detection results of different models.

4. Discussion

In this paper, we propose an improved YOLOv3 model, YOLOv3-SC, to achieve
the efficient detection of individual pigs. Specifically, in order to verify the superiority
of the proposed model, this paper compares and discusses the performance of the four
models YOLOv3, YOLOv3-SPP, YOLOv3-CBAM, and YOLOv3-SC. The experimental
results demonstrate that both the YOLOv3-SPP and YOLOv3-CBAM models achieve better
performance than those of the YOLOv3 model, which verifies the effectiveness of the
SPP module and the CBAM unit. Moreover, the YOLOv3-SC model achieves the best
performance, verifying the effectiveness of the proposed model. By leveraging the attention
module CBAM, the proposed model can adaptively focus on the important features and
reduce the weight information on the non-important features in pig detection. Furthermore,
the SPP structure allows the model to combine the multi-scale information, which improves
the model’s detection ability on small targets and adapts to the changing environment of
individual pig detection in pig farms. The utilization of the SPP structure enhances the pig
detection effect and performance of the model. Future work will explore more optimized
data augmentation methods and more effective attention mechanisms that can be applied
to more complex environments.
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5. Conclusions

This paper develops a novel effective pig detection model YOLOv3-SC, which en-
compasses both the CBAM model and the SPP module into the backbone of YOLOv3
framework. The channel attention and the spatial attention units in the CBAM module
enable the YOLOv3-SC to focus on the regions of the image that are important for detection,
thereby extracting richer, more robust, and more discriminative features. The SPP module
endows YOLOv3-SC the capacity of extracting multi-scale features, which enables the
model to detect objects of different sizes, thereby improving the model’s pig detection
performance. Ablation studies validate the superiority of both the CBAM and the SPP mod-
ules. Furthermore, experimental results show that the proposed YOLOv3-SC model obtains
the promising pig detection performance. Specifically, the YOLOv3-SC achieves 99.24%
mAP performance, which is significantly higher than those of the other popular models.
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