
Citation: Canese, L.; Cardarilli, G.C.;

Di Nunzio, L.; Fazzolari, R.; Famil

Ghadakchi, H.; Re, M.; Spanò, S.

Sensing and Detection of Traffic Signs

Using CNNs: An Assessment on

Their Performance. Sensors 2022, 22,

8830. https://doi.org/10.3390/

s22228830

Academic Editors: Chuan-Ming Liu

and Wei-Shinn Ku

Received: 14 September 2022

Accepted: 10 November 2022

Published: 15 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Sensing and Detection of Traffic Signs Using CNNs: An
Assessment on Their Performance
Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari , Hamed Famil Ghadakchi, Marco Re
and Sergio Spanò *

Department of Electronic Engineering, University of Rome “Tor Vergata”, via del Politecnico 1, 00133 Rome, Italy
* Correspondence: spano@ing.uniroma2.it; Tel.: +39-0672-597-273

Abstract: Traffic sign detection systems constitute a key component in trending real-world applica-
tions such as autonomous driving and driver safety and assistance. In recent years, many learning
systems have been used to help detect traffic signs more accurately, such as ResNet, Vgg, Squeeznet,
and DenseNet, but which of these systems can perform better than the others is debatable. They
must be examined carefully and under the same conditions. To check the system under the same
conditions, you must first have the same database structure. Moreover, the practice of training under
the same number of epochs should be the same. Other points to consider are the language in which
the coding operation was performed as well as the method of calling the training system, which
should be the same. As a result, under these conditions, it can be said that the comparison between
different education systems has been done under equal conditions, and the result of this analogy
will be valid. In this article, traffic sign detection was done using AlexNet and XresNet 50 training
methods, which had not been used until now. Then, with the implementation of ResNet 18, 34, and 50,
DenseNet 121, 169, and 201, Vgg 16_bn and Vgg19_bn, AlexNet, SqueezeNet1_0, and SqueezeNet1_1
training methods under completely the same conditions. The results are compared with each other,
and finally, the best ones for use in detecting traffic signs are introduced. The experimental results
showed that, considering parameters train loss, valid loss, accuracy, error rate and Time, three types
of CNN learning models Vgg 16_bn, Vgg19_bn and, AlexNet performed better for the intended
purpose. As a result, these three types of learning models can be considered for further studies.

Keywords: traffic sign; convolutional neural network; deep learning; CNN; dataset

1. Introduction

Deep learning (DL), or deep structured learning (DSL), is part of machine learn-
ing (ML), which is based on artificial neural networks (ANN). There are three different
types of learning that can be used: supervised, semi-supervised, and unsupervised [1–3].
Moreover, for each of the named types, a novel research field consists of their hardware
acceleration [4–6]. This means that there is a need for improved and efficient machine
learning systems.

The architecture of DL, which has been applied to different fields such as computer
vision, drug design, image processing, board game programs, medical image process-
ing, driver identification, etc., such as deep neural networks (DNN), deep reinforcement
learning (DRL), convolutional neural networks (CNN), etc. [7–12].

With the ongoing development of deep learning, computer vision has made significant
progress and is now applicable to online situations. One of the current subtasks of computer
vision is object recognition. It is widely used in intelligent transportation applications such
as motorized and non-motorized vehicle detection, pedestrian detection, and self-driving
cars. This study, which focuses on traffic sign recognition, is critical for creating highly
accurate maps for driverless automobiles. Traffic signs are widely scattered in real traffic
situations, and weather conditions, such as fog, rain, and snow, can also affect recognition

Sensors 2022, 22, 8830. https://doi.org/10.3390/s22228830 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22228830
https://doi.org/10.3390/s22228830
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7383-2663
https://orcid.org/0000-0002-8230-7211
https://doi.org/10.3390/s22228830
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22228830?type=check_update&version=1

Sensors 2022, 22, 8830 2 of 29

accuracy. In this case, it is undoubtedly fatal for drivers and pedestrians. Therefore,
it is especially important to enhance traffic sign detection performance in a variety of
complicated situations [13].

Researchers’ contributions to convolutional neural networks have helped computer vi-
sion advance quickly in recent years. Prior to CIFAR [9], only small, low-resolution datasets
could be used to train neural networks for classification tasks. Then, Alex et al. [9] presented
AlexNet to accomplish the classification task in sizable datasets such as ImageNet [14].
AlexNet consists of convolutional and fully connected layers. Following that, scientists
suggested networks with more layers, such as VGG [15], which somewhat increased the
accuracy of networks. At a certain depth, the gradient will, however, diminish or disappear.
In order to ensure that deeper network layers can obtain no fewer features than shallower
network layers, He et al. [16] proposed ResNet, which uses cross-layer connections to fuse
the input with the output of the residual blocks. This effectively prevents the phenomenon
of insignificance or even the disappearance of deeper features. By modifying the depth,
width, and input image resolution of the network model, the majority of the earlier net-
works enhance network performance. In order to combine the three factors, Tan et al. [17]
introduced EfficientNet, which first constructed an ideal benchmark and then modified the
benchmark network based on various scaling factors.

In deep learning, a CNN (or ConvNet) is one of the ANNs, most commonly applied to
analyzing visual imagery [18]. It is a regularization of multilayer perceptrons. It usually
means fully connected networks. It means that the neurons in one layer are fully connected
to all the neurons in the next layer.

In CNNs, to make complex patterns, they make simpler patterns by assembling them,
so in terms of connectivity and complexity, CNNs are on the lower extreme. Another
important advantage in comparison with other image processing algorithms is prepro-
cessing. This means that the filters learn to optimize through automated learning. This
independence from prior knowledge and human intervention in feature extraction is a
major advantage.

A very good example of DL is driver identification. Simply, according to claims, the
Intelligent Transportation System (ITS) will transform travel by enhancing people’s safety,
security, and comfort. Although some vehicles are automated, there are still serious security
concerns that need careful investigation and cutting-edge solutions. The attacker can steal
the vehicle thanks to ITS’s security flaws. Therefore, in order to create a safe and secure
system and safeguard the vehicles from theft, the identification of drivers is necessary. A
driver can be recognized in two ways: (1) by face recognition of the driver, and (2) based on
driving behavior. Face recognition involves processing 2-D images for images and learning
the features, both of which need a lot of processing power.

Traffic sign recognition has two varying approaches that have been utilized by re-
searchers in recent years. One-stage networks, such as R-FCN [19], Faster R-CNN [20],
Mask R-CNN [21], etc., and two-stage networks, such as YOLO [22] and SSD [23], improve
the speed and accuracy of detection and classification. Both strategies have pros and cons
and can be used differently. One-stage detectors, such as YOLO, are great for identifying
small objects, but they struggle with large numbers of classes or classes that are identical
to one another. When the traffic sign is too far away, blurry, or partially covered by other
objects, the accuracy of the two-stage detectors drops dramatically [24–26].

2. Structure of Different CNN Models

The most important models of CNNs are ResNet, XRexNet, DenseNet, VGG, SqueezeNet,
and AlexNet. ResNets are one of the powerful systems for deep learning that were presented
by Kaiming He et al. [16]. He has achieved the training system with good performance. As a
result, ResNet became one of the most widely used systems for computer vision tasks. The
important idea of ResNet is to introduce residual blocks that include an “identity shortcut
connection” that skips one or more layers, as shown in Figure 1.

Sensors 2022, 22, 8830 3 of 29

Sensors 2022, 22, x FOR PEER REVIEW 3 of 31

were presented by Kaiming He et al. [16]. He has achieved the training system with good
performance. As a result, ResNet became one of the most widely used systems for com-
puter vision tasks. The important idea of ResNet is to introduce residual blocks that in-
clude an “identity shortcut connection” that skips one or more layers, as shown in Figure 1.

Figure 1. A residual block, as used in ResNets.

This residual block changes the goal of the stacked layers from fitting the ideal
weights and biases H(x) to fitting the output of the ResBlock, H(x) = F(x) + x [17].

The CNNs begin with an input, which is followed by four different stages, and each
stage has similar patterns.

With increasing the size of the ResNet, the accuracy of the prediction and also the
time of the training will increase. The architecture of a ResNet50 is shown in Figure 2.

Figure 1. A residual block, as used in ResNets.

This residual block changes the goal of the stacked layers from fitting the ideal weights
and biases H(x) to fitting the output of the ResBlock, H(x) = F(x) + x [17].

The CNNs begin with an input, which is followed by four different stages, and each
stage has similar patterns.

With increasing the size of the ResNet, the accuracy of the prediction and also the time
of the training will increase. The architecture of a ResNet50 is shown in Figure 2.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 31

Figure 2. ResNet50 architecture.

Tong He [27] introduced XResNet with three different methods to improve the three
separate convolutional steps that are presented in the ResNet structure. As shown in Fig-
ures 3 and 4, ResNet-B moves the stride (2,2) to the second convolution and keeps a stride
of 1 for the first layer [27]. ResNet-C removes the 7 × 7 convolution and replaces it with
three consecutive 3 × 3 convolutions. Finally, ResNet-D replaces the 1 × 1 convolution of
stride (2,2) with a (2,2) average pooling layer of stride (2,2) followed by a 1 × 1 convolution
layer [28].

Figure 3. Three ResNet methods. ResNet-B modifies the downsampling block of Resnet. ResNet-C
further modifies the input stem. On top of that, ResNet-D again modifies the downsampling block.

Figure 2. ResNet50 architecture.

Tong He [27] introduced XResNet with three different methods to improve the three
separate convolutional steps that are presented in the ResNet structure. As shown in

Sensors 2022, 22, 8830 4 of 29

Figures 3 and 4, ResNet-B moves the stride (2,2) to the second convolution and keeps a stride
of 1 for the first layer [27]. ResNet-C removes the 7 × 7 convolution and replaces it with
three consecutive 3 × 3 convolutions. Finally, ResNet-D replaces the 1 × 1 convolution of
stride (2,2) with a (2,2) average pooling layer of stride (2,2) followed by a 1 × 1 convolution
layer [28].

Sensors 2022, 22, x FOR PEER REVIEW 4 of 31

Figure 2. ResNet50 architecture.

Tong He [27] introduced XResNet with three different methods to improve the three
separate convolutional steps that are presented in the ResNet structure. As shown in Fig-
ures 3 and 4, ResNet-B moves the stride (2,2) to the second convolution and keeps a stride
of 1 for the first layer [27]. ResNet-C removes the 7 × 7 convolution and replaces it with
three consecutive 3 × 3 convolutions. Finally, ResNet-D replaces the 1 × 1 convolution of
stride (2,2) with a (2,2) average pooling layer of stride (2,2) followed by a 1 × 1 convolution
layer [28].

Figure 3. Three ResNet methods. ResNet-B modifies the downsampling block of Resnet. ResNet-C
further modifies the input stem. On top of that, ResNet-D again modifies the downsampling block.

Figure 3. Three ResNet methods. ResNet-B modifies the downsampling block of Resnet. ResNet-C
further modifies the input stem. On top of that, ResNet-D again modifies the downsampling block.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 31

Figure 4. Key aspects of the xResNet50 architecture.

The designer presented a dense convolutional network (DenseNet), an architecture
that distills the complexity of other CNN learners into a simple connectivity pattern, so
that with this system, the maximum information will flow between layers in the network
and all layers will be directly connected with each other. To preserve the feed-forward
nature, each layer obtains additional inputs from all preceding layers and passes them on
to all subsequent layers. Figure 5 shows this layout schematically. In contrast to ResNets,
we never combine features through summation before they are passed into a layer; in-
stead, we combine features by concatenating them. Hence, the layer has inputs consisting
of the feature maps of all the preceding convolutional blocks. Its own feature maps are
passed on to all subsequent layers. This introduces connections in an L-layer network in-
stead of just an L-layer network, as in traditional architectures. Because of its dense con-
nectivity pattern, we refer to our approach as “Dense Convolutional Network” (Dense-
Net) [28].

Figure 4. Key aspects of the xResNet50 architecture.

The designer presented a dense convolutional network (DenseNet), an architecture
that distills the complexity of other CNN learners into a simple connectivity pattern, so that
with this system, the maximum information will flow between layers in the network and
all layers will be directly connected with each other. To preserve the feed-forward nature,
each layer obtains additional inputs from all preceding layers and passes them on to all

Sensors 2022, 22, 8830 5 of 29

subsequent layers. Figure 5 shows this layout schematically. In contrast to ResNets, we
never combine features through summation before they are passed into a layer; instead,
we combine features by concatenating them. Hence, the layer has inputs consisting of the
feature maps of all the preceding convolutional blocks. Its own feature maps are passed
on to all subsequent layers. This introduces connections in an L-layer network instead of
just an L-layer network, as in traditional architectures. Because of its dense connectivity
pattern, we refer to our approach as “Dense Convolutional Network” (DenseNet) [28].

Sensors 2022, 22, x FOR PEER REVIEW 6 of 31

Figure 5. A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-
maps as input.

The AlexNet has eight layers with learnable parameters. The model consists of five
layers with a combination of max pooling followed by three fully connected layers, and
they use Relu activation in each of these layers except the output layer [9].

Ref. [9] found out that using the relu as an activation function accelerated the speed
of the training process by almost six times. They also used the dropout layers to prevent
their model from overfitting. Furthermore, the model is trained on the ImageNet dataset.
The ImageNet dataset has almost 14 million images across a thousand classes.

The SqueezeNet [29] is a smaller CNN architecture that uses fewer parameters while
maintaining competitive accuracy. Several strategies are employed on the CNN basis to
design the SqueezeNet: (1) replace 3 × 3 filters with 1 × 1 filters, (2) decrease the number
of input channels to 3 × 3 filters, and (3) downsample late in the network so that the con-
volution layers have large activation maps. The SqueezeNet is comprised mainly of Fire
modules that are squeeze convolution layers with only 1 × 1 filters. These layers are then
fed into an expand layer, which has a mix of 1 × 1 and 3 × 3 convolution filters, as shown
in Figure 6.

Figure 5. A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-
maps as input.

The AlexNet has eight layers with learnable parameters. The model consists of five
layers with a combination of max pooling followed by three fully connected layers, and
they use Relu activation in each of these layers except the output layer [9].

Ref. [9] found out that using the relu as an activation function accelerated the speed of
the training process by almost six times. They also used the dropout layers to prevent their
model from overfitting. Furthermore, the model is trained on the ImageNet dataset. The
ImageNet dataset has almost 14 million images across a thousand classes.

The SqueezeNet [29] is a smaller CNN architecture that uses fewer parameters while
maintaining competitive accuracy. Several strategies are employed on the CNN basis to
design the SqueezeNet: (1) replace 3 × 3 filters with 1 × 1 filters, (2) decrease the number
of input channels to 3 × 3 filters, and (3) downsample late in the network so that the
convolution layers have large activation maps. The SqueezeNet is comprised mainly of
Fire modules that are squeeze convolution layers with only 1 × 1 filters. These layers are
then fed into an expand layer, which has a mix of 1 × 1 and 3 × 3 convolution filters, as
shown in Figure 6.

Sensors 2022, 22, 8830 6 of 29
Sensors 2022, 22, x FOR PEER REVIEW 7 of 31

Figure 6. Micro-architectural view: convolution filters organization in the fire modules [30].

VGG16 is a convolution neural network (CNN) architecture that was used to win the
ILSVR (ImageNet) competition in 2014. It is regarded as one of the best vision model ar-
chitectures available to date. Its structure is shown in Figure 7. The most unique thing
about VGG16 is that instead of having a large number of hyper-parameters, they focused
on having convolution layers of a 3 × 3 filter with a stride 1 and always used the same
padding and maxpool layer of a 2 × 2 filter with a stride 2. It follows this arrangement of
convolution and max pool layers consistently throughout the whole architecture. In the
end, it has two FC (fully connected layers), followed by a softmax for output. The 16 in
VGG16 refers to it 16 layers that have weights. This network is pretty large, and it has
about 138 million (approximately) parameters [29].

Figure 7. Architecture of VGG16 [17].

The architecture of the FCN-VGG19, shown in Figure 8, is adapted from [29], which
learns to combine high-level information with fine-level information using skips from the
third and fourth pooling layers. The hidden layers are equipped with rectified linear units

Figure 6. Micro-architectural view: convolution filters organization in the fire modules [30].

VGG16 is a convolution neural network (CNN) architecture that was used to win
the ILSVR (ImageNet) competition in 2014. It is regarded as one of the best vision model
architectures available to date. Its structure is shown in Figure 7. The most unique thing
about VGG16 is that instead of having a large number of hyper-parameters, they focused
on having convolution layers of a 3 × 3 filter with a stride 1 and always used the same
padding and maxpool layer of a 2 × 2 filter with a stride 2. It follows this arrangement of
convolution and max pool layers consistently throughout the whole architecture. In the
end, it has two FC (fully connected layers), followed by a softmax for output. The 16 in
VGG16 refers to it 16 layers that have weights. This network is pretty large, and it has
about 138 million (approximately) parameters [29].

Sensors 2022, 22, x FOR PEER REVIEW 7 of 31

Figure 6. Micro-architectural view: convolution filters organization in the fire modules [30].

VGG16 is a convolution neural network (CNN) architecture that was used to win the
ILSVR (ImageNet) competition in 2014. It is regarded as one of the best vision model ar-
chitectures available to date. Its structure is shown in Figure 7. The most unique thing
about VGG16 is that instead of having a large number of hyper-parameters, they focused
on having convolution layers of a 3 × 3 filter with a stride 1 and always used the same
padding and maxpool layer of a 2 × 2 filter with a stride 2. It follows this arrangement of
convolution and max pool layers consistently throughout the whole architecture. In the
end, it has two FC (fully connected layers), followed by a softmax for output. The 16 in
VGG16 refers to it 16 layers that have weights. This network is pretty large, and it has
about 138 million (approximately) parameters [29].

Figure 7. Architecture of VGG16 [17].

The architecture of the FCN-VGG19, shown in Figure 8, is adapted from [29], which
learns to combine high-level information with fine-level information using skips from the
third and fourth pooling layers. The hidden layers are equipped with rectified linear units

Figure 7. Architecture of VGG16 [17].

The architecture of the FCN-VGG19, shown in Figure 8, is adapted from [29], which
learns to combine high-level information with fine-level information using skips from the
third and fourth pooling layers. The hidden layers are equipped with rectified linear units
(ReLUs), and the number of channels for the convolutional layers increases with the depth
of the network. During training, the input image is a fixed size of 224 × 224 pixels, while

Sensors 2022, 22, 8830 7 of 29

the receptive fields for all filters are 3 × 3 pixels throughout the whole network. This config-
uration allows the FCN (fully convolutional networks) to learn approximately 140 million
parameters. Prediction is performed using upsampling layers with four channels for all
classes [ncl] in the reference data. Upsampling layers are fused with 1 × 1 convolutions of
the third and fourth pooling layers with the same channel dimension [x,y,ncl]. The final
upsampling layer predicts fine details using fused information from the last convolutional
layer, with the third and fourth pooling layers being upsampled at stride 8.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 31

(ReLUs), and the number of channels for the convolutional layers increases with the depth
of the network. During training, the input image is a fixed size of 224 × 224 pixels, while
the receptive fields for all filters are 3 × 3 pixels throughout the whole network. This con-
figuration allows the FCN (fully convolutional networks) to learn approximately 140 mil-
lion parameters. Prediction is performed using upsampling layers with four channels for
all classes [ncl] in the reference data. Upsampling layers are fused with 1 × 1 convolutions
of the third and fourth pooling layers with the same channel dimension [x,y,ncl]. The final
upsampling layer predicts fine details using fused information from the last convolutional
layer, with the third and fourth pooling layers being upsampled at stride 8.

Figure 8. Structure of VGG19 [16].

Table 1 shows a summary of the described CNN learning methods.
The last parameter that should be considered in the learning models is time complex-

ity. The quantity of fundamental operations, such as multiplications and summations, that
an algorithm performs determines its time complexity. Typically, the time complexity is
stated as a function of the size n of the input. The size of the input, or n, which indicates
how many items are taken into account for the input, must first be known in order to
determine the time complexity. How many operations are made in relation to the amount
of the input is the second parameter that affects time complexity (number of epochs). so
the linear time complexity is O(2 × n) = O(n).

The following table compares the structure and different working conditions of each
of the learning systems considered in this study.

Figure 8. Structure of VGG19 [16].

Table 1 shows a summary of the described CNN learning methods.

Table 1. Comparison of structure and input in different CNN learning models.

Model Size Top-1/Top-5 Error # Layer Model Description

AlexNet 227 × 227 41.00/18.00 8 5 conv + fc layers

VGG 16 224 × 224 28.07/9.00 16 13 Conv + 3 fc layers

VGG 19 224 × 224 27.30/9.33 19 16 Conv +3fc layers

ResNet 50 224 × 224 22.85/6.71 50 49 conv + 1 fc layers

ResNet 18 224 × 224 20.47/5.25 18 17 conv + 1 fc layers

ResNet 32 224 × 224 21.53/5.60 34 33 conv + 1 fc layers

XResNet 50 (C) 224 × 224 - 50
1 conv 3 × 3, s = 2 +2 conv

3 × 3 +1 MaxPool 3 × 3,
s = 2

DenseNet 121 224 × 224 25.35/7.83 125

1 7 × 7 conv +
58 3 × 3 conv +
61 1 × 1 conv +

4 AvgPool
1 fc Layers

DenseNet 169 224 × 224 24.00/7.00 169
7 × 7 stride 2 Conv Layer

followed by a 3 × 3 stride-2
MaxPooling layer

Sensors 2022, 22, 8830 8 of 29

Table 1. Cont.

Model Size Top-1/Top-5 Error # Layer Model Description

DenseNet 201 224 × 224 22.8/6.43 201
7 × 7 stride 2 Conv Layer

followed by a 3 × 3 stride-2
MaxPooling layer

SqueezeNet
1-0 227 × 227 41.90/19.58 18 1 Conv layer + 8 fire

modules + 10 conv layer

SqueezeNet
1-1 227 × 227 41.81/19.38 18 1 Conv layer + 8 fire

modules + 10 conv layer

The last parameter that should be considered in the learning models is time complexity.
The quantity of fundamental operations, such as multiplications and summations, that an
algorithm performs determines its time complexity. Typically, the time complexity is stated
as a function of the size n of the input. The size of the input, or n, which indicates how
many items are taken into account for the input, must first be known in order to determine
the time complexity. How many operations are made in relation to the amount of the input
is the second parameter that affects time complexity (number of epochs). so the linear time
complexity is O(2 × n) = O(n).

The following table compares the structure and different working conditions of each
of the learning systems considered in this study.

3. Dataset

Traffic signs seen from a vehicle present themselves in various conditions that make
it difficult to recognize them, such as different distances (low image resolution), lighting,
vandalism, or even some obstacles, such as leaves on trees, which can compromise visibility.
With this in mind, it is necessary to use a database with multiple images that can cover
these different conditions during training [31].

The database used is called “The German Traffic Sign Recognition Benchmark”, or
GTSRB, and was used for neural network competitions in 2011. It has 43 different classes
of signs found in Germany and about 50,000 images in total. Due to its large number of
images, it is possible to achieve very good results, but it also has some defects that will be
discussed later [32].

The images for the model were loaded and prepared with fastai tools so that each class
was divided between images and a label, which, in this case, is the name of the folder where
the images of each class are located. Folders have been renamed from the original basis
so that the results can be presented more clearly. In addition, the images were randomly
divided into training images and validation images at a ratio of 4 training images to each
validation image, resulting in approximately 40 thousand for training and 10 thousand for
validation, and, finally, resized for training [31].

4. Models and Methods

The recognition model was trained several times by different types of CNN-learners,
observing the accuracy at the end of the training, the amount of processing used, and
the time to perform the training. Some examples of the employed dataset are shown in
Figure 9. The learner models used in this article and whose results will be reviewed and
compared, are ResNet 18, 34, and 50; DenseNet 121, 169, and 201; Vgg 16_bn and Vgg19_bn;
SqueezeNet1_0 and SqueezeNet1_1; and AlexNet and XresNet50.

Sensors 2022, 22, 8830 9 of 29

Sensors 2022, 22, x FOR PEER REVIEW 10 of 31

4. Models and Methods
The recognition model was trained several times by different types of CNN-learners,

observing the accuracy at the end of the training, the amount of processing used, and the
time to perform the training. Some examples of the employed dataset are shown in Figure
9. The learner models used in this article and whose results will be reviewed and com-
pared, are ResNet 18, 34, and 50; DenseNet 121, 169, and 201; Vgg 16_bn and Vgg19_bn;
SqueezeNet1_0 and SqueezeNet1_1; and AlexNet and XresNet50.

Figure 9. Some of the images from the dataset.

To find the most efficient way to train the model, some elements were changed: the
size of each training batch, the number of training iterations (fine tuning), and the number
of layers (for example, for the ResNet model), so that the loss rate (similar to Figure 10b)
for training and validation at the end of training is as close as possible, indicating training
with little overfitting or underfitting. In addition, the outcome of each learner system is
displayed in a confusion matrix similar to Figure 10a. For each method of learning, there
is a table that shows the result of train loss, valid loss, accuracy, error rate, and the desired
time of training for each epoch.

The results can vary due to some other factors, the main ones being the random ini-
tialization of the values and the scrambling of the training data implemented by the fastai
algorithm. However, it was possible to notice some patterns in the different trainings per-
formed, where changing values considerably improved the result to the point of stagna-
tion.

5. Result
The batch size, number of iterations, training model, and number of layers were

changed while training the recognition model multiple times. Accuracy was measured at
the end of each training cycle, along with the processing power and training time re-
quired. Large batches were shown to take less time, use more computer memory, but lose
a significant amount of accuracy after training.

The best outcome was 16, whereas the largest batch value tested was 128, where
lower values did not indicate greater accuracy, and longer training sessions did not result
in any appreciable gains.

Figure 9. Some of the images from the dataset.

To find the most efficient way to train the model, some elements were changed: the
size of each training batch, the number of training iterations (fine tuning), and the number
of layers (for example, for the ResNet model), so that the loss rate (similar to Figure 10b)
for training and validation at the end of training is as close as possible, indicating training
with little overfitting or underfitting. In addition, the outcome of each learner system is
displayed in a confusion matrix similar to Figure 10a. For each method of learning, there is
a table that shows the result of train loss, valid loss, accuracy, error rate, and the desired
time of training for each epoch.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 31

5.1. ResNet
5.1.1. ResNet 18

The first note that should be considered is that in the number of iterations , up to four
iterations, the training loss rate decreases considerably; from 4 to 5, it presents a consider-
able increase, but again after iteration 5, it decreases again.

Table 2 and Figure 9 shown the results of the ResNet 18 CNN learner.

Table 2. Results of the ResNet 18.

Epoch Train Loss Valid Loss Accuracy Error Rate Time
0 0.858337 0.478402 0.847979 0.152021 42:37
0 0.142488 0.051000 0.982910 0.017090 46:55
1 0.089376 0.051660 0.985461 0.014539 51:24
2 0.072999 0.040365 0.989542 0.010458 51:32
3 0.034141 0.010321 0.996684 0.003316 52:10
4 0.010182 0.006904 0.997832 0.002168 52:41
5 0.015726 0.005160 0.998597 0.001403 51:56
6 0.008586 0.007243 0.997959 0.002041 51:01
7 0.000352 0.002578 0.998980 0.001020 51:11
8 0.000050 0.001568 0.999362 0.000638 51:17
9 0.000053 0.001247 0.999490 0.000510 52:05

As shown in Figure 10a, after 10 iterations, only one of the ResNet 18 predictions had
an error, and it was the single-curve-left sign predicted as the children’s warning sign. For
the others, all the predictions were correct.

(a)

Figure 10. Cont.

Sensors 2022, 22, 8830 10 of 29

Sensors 2022, 22, x FOR PEER REVIEW 12 of 31

(b)

Figure 10. (a) Confusion matrix and (b) loss rate during training with ResNet18.

5.1.2. ResNet 34
The number of iterations in ResNet 34 is similar to ResNet 18, which has 10 iterations.

Used in fine tuning, it was observed that up to 3 iterations the training loss rate decreased
considerably; from 3 to 4, it presented an increase, but again after iteration 4, it totally
decreased again. So as a very simple result, it can be concluded that, in this case compared
with ResNet 18, the error tends to zero faster than in the other case. The results are shown
in Table 3 and Figure 11.

Table 3. Results of the ResNet 34.

Epoch Train Loss Valid Loss Accuracy Error Rate Time
0 0.656895 0.345476 0.890065 0.109935 1:09:47
0 0.118535 0.036422 0.989415 0.010585 1:40:23
1 0.052004 0.037212 0.990817 0.009183 1:38:41
2 0.045372 0.015638 0.995919 0.004081 1:34:24
3 0.024831 0.012060 0.997322 0.002678 1:32:30
4 0.025713 0.006691 0.998215 0.001785 1:34:21
5 0.018851 0.006416 0.998342 0.001658 1:35:12
6 0.004856 0.002991 0.999107 0.000893 1:32:53
7 0.001296 0.000732 0.999745 0.000255 1:30:48
8 0.001313 0.000481 0.999617 0.000383 1:34:05
9 0.000018 0.000238 1.000000 0.000000 1:35:50

Figure 10. (a) Confusion matrix and (b) loss rate during training with ResNet18.

The results can vary due to some other factors, the main ones being the random
initialization of the values and the scrambling of the training data implemented by the
fastai algorithm. However, it was possible to notice some patterns in the different train-
ings performed, where changing values considerably improved the result to the point
of stagnation.

5. Result

The batch size, number of iterations, training model, and number of layers were
changed while training the recognition model multiple times. Accuracy was measured
at the end of each training cycle, along with the processing power and training time
required. Large batches were shown to take less time, use more computer memory, but lose
a significant amount of accuracy after training.

The best outcome was 16, whereas the largest batch value tested was 128, where lower
values did not indicate greater accuracy, and longer training sessions did not result in any
appreciable gains.

5.1. ResNet
5.1.1. ResNet 18

The first note that should be considered is that in the number of iterations, up to
four iterations, the training loss rate decreases considerably; from 4 to 5, it presents a
considerable increase, but again after iteration 5, it decreases again.

Table 2 and Figure 9 shown the results of the ResNet 18 CNN learner.

Table 2. Results of the ResNet 18.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

0 0.858337 0.478402 0.847979 0.152021 42:37
0 0.142488 0.051000 0.982910 0.017090 46:55
1 0.089376 0.051660 0.985461 0.014539 51:24
2 0.072999 0.040365 0.989542 0.010458 51:32
3 0.034141 0.010321 0.996684 0.003316 52:10
4 0.010182 0.006904 0.997832 0.002168 52:41
5 0.015726 0.005160 0.998597 0.001403 51:56

Sensors 2022, 22, 8830 11 of 29

Table 2. Cont.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

6 0.008586 0.007243 0.997959 0.002041 51:01
7 0.000352 0.002578 0.998980 0.001020 51:11
8 0.000050 0.001568 0.999362 0.000638 51:17
9 0.000053 0.001247 0.999490 0.000510 52:05

As shown in Figure 10a, after 10 iterations, only one of the ResNet 18 predictions had
an error, and it was the single-curve-left sign predicted as the children’s warning sign. For
the others, all the predictions were correct.

5.1.2. ResNet 34

The number of iterations in ResNet 34 is similar to ResNet 18, which has 10 iterations.
Used in fine tuning, it was observed that up to 3 iterations the training loss rate decreased
considerably; from 3 to 4, it presented an increase, but again after iteration 4, it totally
decreased again. So as a very simple result, it can be concluded that, in this case compared
with ResNet 18, the error tends to zero faster than in the other case. The results are shown
in Table 3 and Figure 11.

Table 3. Results of the ResNet 34.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

0 0.656895 0.345476 0.890065 0.109935 1:09:47
0 0.118535 0.036422 0.989415 0.010585 1:40:23
1 0.052004 0.037212 0.990817 0.009183 1:38:41
2 0.045372 0.015638 0.995919 0.004081 1:34:24
3 0.024831 0.012060 0.997322 0.002678 1:32:30
4 0.025713 0.006691 0.998215 0.001785 1:34:21
5 0.018851 0.006416 0.998342 0.001658 1:35:12
6 0.004856 0.002991 0.999107 0.000893 1:32:53
7 0.001296 0.000732 0.999745 0.000255 1:30:48
8 0.001313 0.000481 0.999617 0.000383 1:34:05
9 0.000018 0.000238 1.000000 0.000000 1:35:50

5.1.3. ResNet 50

Among the ResNet learning models, ResNet 50 has the best performance because its
train loss trend is completely downward. The results are shown in Table 4. The only place
where there is some improvement in this process is in the last iteration, which has increased
somewhat. Moreover, as shown in Figure 12a, only one error occurred in the detection of
traffic signs.

Sensors 2022, 22, 8830 12 of 29

Sensors 2022, 22, x FOR PEER REVIEW 13 of 31

(a)

(b)

Figure 11. (a) Confusion matrix and (b) loss rate during training with ResNet 34.

Figure 11. (a) Confusion matrix and (b) loss rate during training with ResNet 34.

Sensors 2022, 22, 8830 13 of 29

Table 4. Results of the ResNet 50.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

0 0.494744 0.228529 0.926668 0.073332 2:04:54
0 0.093774 0.023691 0.992858 0.007142 2:43:09
1 0.055501 0.012457 0.995791 0.004209 2:40:10
2 0.053681 0.010073 0.996939 0.003061 2:38:37
3 0.018222 0.016950 0.993878 0.006122 2:38:05
4 0.017393 0.003013 0.999107 0.000893 2:35:11
5 0.006129 0.000881 0.999745 0.000255 2:28:34
6 0.001446 0.002066 0.999490 0.000510 2:32:31
7 0.000552 0.000578 0.999745 0.000255 3:00:53
8 0.000033 0.000318 0.999872 0.000128 3:02:22
9 0.000536 0.000964 0.999745 0.000255 3:18:05

Sensors 2022, 22, x FOR PEER REVIEW 14 of 31

5.1.3. ResNet 50
Among the ResNet learning models, ResNet 50 has the best performance because its

train loss trend is completely downward. The results are shown in Table 4. The only place
where there is some improvement in this process is in the last iteration, which has in-
creased somewhat. Moreover, as shown in Figure 12a, only one error occurred in the de-
tection of traffic signs.

Table 4. Results of the ResNet 50.

Epoch Train Loss Valid Loss Accuracy Error Rate Time
0 0.494744 0.228529 0.926668 0.073332 2:04:54
0 0.093774 0.023691 0.992858 0.007142 2:43:09
1 0.055501 0.012457 0.995791 0.004209 2:40:10
2 0.053681 0.010073 0.996939 0.003061 2:38:37
3 0.018222 0.016950 0.993878 0.006122 2:38:05
4 0.017393 0.003013 0.999107 0.000893 2:35:11
5 0.006129 0.000881 0.999745 0.000255 2:28:34
6 0.001446 0.002066 0.999490 0.000510 2:32:31
7 0.000552 0.000578 0.999745 0.000255 3:00:53
8 0.000033 0.000318 0.999872 0.000128 3:02:22
9 0.000536 0.000964 0.999745 0.000255 3:18:05

(a)

Figure 12. Cont.

Sensors 2022, 22, 8830 14 of 29
Sensors 2022, 22, x FOR PEER REVIEW 15 of 31

(b)

Figure 12. (a) Confusion matrix and (b) loss rate during training with ResNet 50.

5.2. Squeezenet
About the train loss of both SqueezeNet 1_0 and SqueezeNet 1_1, both of them have

a downward trend, just as the accuracy has an upward trend. However, the problem starts
when we examine the valid loss and error rate. As shown in Tables 5 and 6, as well as
Figures 13b and 14b, a lot of fluctuation can be seen in these two parameters. As a result,
these two cases are not suitable for this purpose because they had weak validation results.
The proof of this claim can be seen in Figures 13a and 14b. This is because the system
errors in detecting traffic signs are very high.

Table 5. Results of the SqueezeNet 1-0.

Epoch Train Loss Valid Loss Accuracy Error Rate Time
0 0.914806 0.471145 0.841602 0.158398 16:19
0 0.185827 0.066723 0.980232 0.019768 30:13
1 0.114141 0.135726 0.985334 0.014666 30:24
2 0.081658 0.377006 0.980870 0.019130 30:22
3 0.039321 0.065290 0.992220 0.007780 29:52
4 0.043154 0.705668 0.994006 0.005994 29:54
5 0.013735 0.314177 0.993496 0.006504 30:21
6 0.008455 0.249811 0.996301 0.003699 27:08
7 0.011575 0.512464 0.997322 0.002678 26:54
8 0.002557 0.397922 0.997704 0.002296 27:04
9 0.002186 0.592725 0.996557 0.003443 26:49

Figure 12. (a) Confusion matrix and (b) loss rate during training with ResNet 50.

5.2. Squeezenet

About the train loss of both SqueezeNet 1_0 and SqueezeNet 1_1, both of them have a
downward trend, just as the accuracy has an upward trend. However, the problem starts
when we examine the valid loss and error rate. As shown in Tables 5 and 6, as well as
Figures 13b and 14b, a lot of fluctuation can be seen in these two parameters. As a result,
these two cases are not suitable for this purpose because they had weak validation results.
The proof of this claim can be seen in Figures 13a and 14b. This is because the system errors
in detecting traffic signs are very high.

Table 5. Results of the SqueezeNet 1-0.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

0 0.914806 0.471145 0.841602 0.158398 16:19
0 0.185827 0.066723 0.980232 0.019768 30:13
1 0.114141 0.135726 0.985334 0.014666 30:24
2 0.081658 0.377006 0.980870 0.019130 30:22
3 0.039321 0.065290 0.992220 0.007780 29:52
4 0.043154 0.705668 0.994006 0.005994 29:54
5 0.013735 0.314177 0.993496 0.006504 30:21
6 0.008455 0.249811 0.996301 0.003699 27:08
7 0.011575 0.512464 0.997322 0.002678 26:54
8 0.002557 0.397922 0.997704 0.002296 27:04
9 0.002186 0.592725 0.996557 0.003443 26:49

Table 6. Results of the SqueezeNet 1-1.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

0 1.092300 0.615839 0.799643 0.200357 08:38
0 0.294047 0.126106 0.961867 0.038133 17:22
1 0.157563 0.079483 0.972325 0.027675 16:59
2 0.112692 0.250555 0.974238 0.025762 17:01
3 0.085473 0.076384 0.987757 0.012243 17:31
4 0.053619 0.081055 0.992986 0.007014 16:57
5 0.027114 0.018042 0.996429 0.003571 16:51
6 0.010796 0.220587 0.996684 0.003316 16:51
7 0.010787 0.028796 0.998852 0.001148 17:09
8 0.003092 0.322757 0.996939 0.003061 17:06
9 0.000727 0.002551 0.999107 0.000893 16:32

Sensors 2022, 22, 8830 15 of 29

Sensors 2022, 22, x FOR PEER REVIEW 16 of 31

(a)

(b)

Figure 13. (a) Confusion matrix and (b) loss rate during training with SqueezeNet1_0.

Figure 13. (a) Confusion matrix and (b) loss rate during training with SqueezeNet1_0.

Sensors 2022, 22, 8830 16 of 29

Sensors 2022, 22, x FOR PEER REVIEW 17 of 31

Table 6. Results of the SqueezeNet 1-1.

Epoch Train Loss Valid Loss Accuracy Error Rate Time
0 1.092300 0.615839 0.799643 0.200357 08:38
0 0.294047 0.126106 0.961867 0.038133 17:22
1 0.157563 0.079483 0.972325 0.027675 16:59
2 0.112692 0.250555 0.974238 0.025762 17:01
3 0.085473 0.076384 0.987757 0.012243 17:31
4 0.053619 0.081055 0.992986 0.007014 16:57
5 0.027114 0.018042 0.996429 0.003571 16:51
6 0.010796 0.220587 0.996684 0.003316 16:51
7 0.010787 0.028796 0.998852 0.001148 17:09
8 0.003092 0.322757 0.996939 0.003061 17:06
9 0.000727 0.002551 0.999107 0.000893 16:32

(a)

Sensors 2022, 22, x FOR PEER REVIEW 18 of 31

(b)

Figure 14. (a) Confusion matrix and (b) loss rate during training with SqueezeNet1_1.

5.3. VGG
One of the best methods studied so far is VGG. This issue can be seen further.

5.3.1. VGG16_bn
In the case of the VGG16_bn method, as shown in Table 7 and Figure 15, the train

loss trend is completely downward, and the accuracy of the system reaches 100% in the
last epoch. On the other hand, valid loss reached a very low number of 0.000127, and the
error rate completely reached zero. As a result, this is one of the methods that has the
ability to be introduced as the best method at the end.

Table 7. Results of the SqueezeNet1-1.

Epoch Train Loss Valid Loss Accuracy Error Rate Time
0 0.624660 0.282934 0.907537 0.092463 3:05:02
0 0.074642 0.023860 0.992475 0.007525 4:11:43
1 0.054696 0.015138 0.996301 0.003699 3:57:00
2 0.022167 0.020754 0.995791 0.004209 3:49:24
3 0.021000 0.021600 0.996046 0.003954 4:46:25
4 0.002759 0.005120 0.999107 0.000893 4:21:58
5 0.004077 0.004919 0.998725 0.001275 4:12:50
6 0.000342 0.002219 0.999235 0.000765 4:17:23
7 0.000396 0.000540 0.999872 0.999128 4:15:03
8 0.000033 0.000209 0.999872 0.000128 4:14:16
9 0.000009 0.000127 1.000000 0.000000 4:36:52

Figure 14. (a) Confusion matrix and (b) loss rate during training with SqueezeNet1_1.

Sensors 2022, 22, 8830 17 of 29

5.3. VGG

One of the best methods studied so far is VGG. This issue can be seen further.

5.3.1. VGG16_bn

In the case of the VGG16_bn method, as shown in Table 7 and Figure 15, the train loss
trend is completely downward, and the accuracy of the system reaches 100% in the last
epoch. On the other hand, valid loss reached a very low number of 0.000127, and the error
rate completely reached zero. As a result, this is one of the methods that has the ability to
be introduced as the best method at the end.

Table 7. Results of the SqueezeNet1-1.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

0 0.624660 0.282934 0.907537 0.092463 3:05:02
0 0.074642 0.023860 0.992475 0.007525 4:11:43
1 0.054696 0.015138 0.996301 0.003699 3:57:00
2 0.022167 0.020754 0.995791 0.004209 3:49:24
3 0.021000 0.021600 0.996046 0.003954 4:46:25
4 0.002759 0.005120 0.999107 0.000893 4:21:58
5 0.004077 0.004919 0.998725 0.001275 4:12:50
6 0.000342 0.002219 0.999235 0.000765 4:17:23
7 0.000396 0.000540 0.999872 0.999128 4:15:03
8 0.000033 0.000209 0.999872 0.000128 4:14:16
9 0.000009 0.000127 1.000000 0.000000 4:36:52

Sensors 2022, 22, x FOR PEER REVIEW 19 of 31

(a)

(b)

Figure 15. (a) Confusion matrix and (b) loss rate during training with VGG16_bn.

Figure 15. Cont.

Sensors 2022, 22, 8830 18 of 29

Sensors 2022, 22, x FOR PEER REVIEW 19 of 31

(a)

(b)

Figure 15. (a) Confusion matrix and (b) loss rate during training with VGG16_bn. Figure 15. (a) Confusion matrix and (b) loss rate during training with VGG16_bn.

5.3.2. VGG19_bn

Another method from the VGG group that was investigated is VGG19_bn. As shown
in Table 8, the train loss in this method was 0.00004 in the last epoch, its accuracy reached
100 percent in the eighth epoch, and the error rate reached 0 in this epoch. The only negative
point about this method compared to the previous one is that the time required for each
epoch is a bit longer. Other data is shown in Figure 16.

Table 8. Results of the VGG19_bn.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

0 0.741779 0.309815 0.901288 0.098712 5:19:59
0 0.074820 0.032293 0.991328 0.008672 6:03:03
1 0.076397 0.048556 0.989160 0.010840 5:50:49
2 0.024736 0.013608 0.997067 0.002933 6:41:47
3 0.051280 0.009662 0.997194 0.002806 6:51:02
4 0.006818 0.007519 0.998342 0.001658 5:49:44
5 0.000993 0.002135 0.999490 0.000510 5:40:14
6 0.000986 0.001120 0.999872 0.000128 5:45:10
7 0.002016 0.000211 0.999872 0.000128 5:28:46
8 0.000020 0.000031 1.000000 0.000000 5:29:33
9 0.000004 0.000002 1.000000 0.000000 5:25:54

Sensors 2022, 22, 8830 19 of 29

Sensors 2022, 22, x FOR PEER REVIEW 20 of 31

5.3.2. VGG19_bn
Another method from the VGG group that was investigated is VGG19_bn. As shown

in Table 8, the train loss in this method was 0.00004 in the last epoch, its accuracy reached
100 percent in the eighth epoch, and the error rate reached 0 in this epoch. The only neg-
ative point about this method compared to the previous one is that the time required for
each epoch is a bit longer. Other data is shown in Figure 16.

Table 8. Results of the VGG19_bn.

Epoch Train Loss Valid Loss Accuracy Error Rate Time
0 0.741779 0.309815 0.901288 0.098712 5:19:59
0 0.074820 0.032293 0.991328 0.008672 6:03:03
1 0.076397 0.048556 0.989160 0.010840 5:50:49
2 0.024736 0.013608 0.997067 0.002933 6:41:47
3 0.051280 0.009662 0.997194 0.002806 6:51:02
4 0.006818 0.007519 0.998342 0.001658 5:49:44
5 0.000993 0.002135 0.999490 0.000510 5:40:14
6 0.000986 0.001120 0.999872 0.000128 5:45:10
7 0.002016 0.000211 0.999872 0.000128 5:28:46
8 0.000020 0.000031 1.000000 0.000000 5:29:33
9 0.000004 0.000002 1.000000 0.000000 5:25:54

(a)

Sensors 2022, 22, x FOR PEER REVIEW 21 of 31

(b)

Figure 16. (a) Confusion matrix and (b) loss rate during training with VGG19_bn.

5.4. XresNet 50
Another method that has been investigated is XresNet 50. This method is one of the

most widely used for image classification. As shown in Table 9, in this method, the valid
loss has reached 0.000869 in the last epoch. Moreover, by considering Figure 17a, a large
error can be seen in the detection of traffic signs. Another important parameter, which is
very important, is the accuracy, which reached 99.8852% in this method. As a result, if we
compare with the previous methods, we realize that this model cannot be among the can-
didates for the best investigated methods.

Table 9. Results of the XResNet50.

Epoch Train Loss Valid Loss Accuracy Error Rate Time
0 0.011813 1.375518 0.603750 0.396250 2:05:28
0 0.738159 0.465996 0.866854 0.133146 2:33:33
1 0.372449 0.182658 0.945543 0.054457 2:29:01
2 0.164344 0.076088 0.975258 0.024742 2:32:48
3 0.087024 0.038646 0.986354 0.013646 2:31:17
4 0.065194 0.022141 0.993113 0.006887 2:33:16
5 0.043767 0.010952 0.996812 0.003188 2:40:05
6 0.015639 0.009900 0.997832 0.002168 2:34:36
7 0.004813 0.005847 0.998342 0.001275 2:37:55
8 0.001854 0.005514 0.998725 0.001275 2:40:18
9 0.000869 0.004230 0.998852 0.001148 2:34:35

Figure 16. (a) Confusion matrix and (b) loss rate during training with VGG19_bn.

5.4. XresNet 50

Another method that has been investigated is XresNet 50. This method is one of the
most widely used for image classification. As shown in Table 9, in this method, the valid
loss has reached 0.000869 in the last epoch. Moreover, by considering Figure 17a, a large
error can be seen in the detection of traffic signs. Another important parameter, which is
very important, is the accuracy, which reached 99.8852% in this method. As a result, if

Sensors 2022, 22, 8830 20 of 29

we compare with the previous methods, we realize that this model cannot be among the
candidates for the best investigated methods.

Table 9. Results of the XResNet50.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

0 0.011813 1.375518 0.603750 0.396250 2:05:28
0 0.738159 0.465996 0.866854 0.133146 2:33:33
1 0.372449 0.182658 0.945543 0.054457 2:29:01
2 0.164344 0.076088 0.975258 0.024742 2:32:48
3 0.087024 0.038646 0.986354 0.013646 2:31:17
4 0.065194 0.022141 0.993113 0.006887 2:33:16
5 0.043767 0.010952 0.996812 0.003188 2:40:05
6 0.015639 0.009900 0.997832 0.002168 2:34:36
7 0.004813 0.005847 0.998342 0.001275 2:37:55
8 0.001854 0.005514 0.998725 0.001275 2:40:18
9 0.000869 0.004230 0.998852 0.001148 2:34:35

Sensors 2022, 22, x FOR PEER REVIEW 22 of 31

(a)

(b)

Figure 17. (a) Confusion matrix and (b) loss rate during training with XResNet5.

Figure 17. Cont.

Sensors 2022, 22, 8830 21 of 29

Sensors 2022, 22, x FOR PEER REVIEW 22 of 31

(a)

(b)

Figure 17. (a) Confusion matrix and (b) loss rate during training with XResNet5. Figure 17. (a) Confusion matrix and (b) loss rate during training with XResNet5.

5.5. Densenet

By looking at the results of the DenseNet group, it can be seen that this group is also
one of the best for detecting traffic signs. As seen in Tables 10–12, train loss experiences a
downward trend with low volatility in these models. Moreover, the error rate in DenseNet
121, 169, and 201 reaches 0.000128, 0.000255, and 0.000510, respectively. However, in the
case of DenseNet 121, there is no error in detection. For example, one of these errors is
shown in Figure 18. As shown in this figure, there is a traffic sign with a speed limit of
80 km/h, which is correctly recognized by model DenseNet 121, but by models DenseNet
169 and DenseNet 201, it is wrongly recognized as a speed limit of 60 km/h. The superiority
of DenseNet 121 over DenseNet 169 and 201 is clearly evident in the parameters of the table.
In DenseNet 169 and 201, an error in detecting traffic signs is also observed, as shown in
Figure 19a, Figure 20a, and Figure 21a.

Table 10. Results of DenseNet 121.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

0 0.347987 0.165432 0.945033 0.054967 2:11:49
0 0.073293 0.024991 0.992475 0.007525 2:28:01
1 0.073558 0.013193 0.995791 0.004209 2:25:48
2 0.043090 0.016201 0.995664 0.004336 2:22:41
3 0.022192 0.009309 0.997449 0.002551 2:17:25
4 0.010602 0.002526 0.999235 0.000638 2:15:31
5 0.010123 0.011439 0.997449 0.002551 2:12:21
6 0.006923 0.001362 0.999362 0.000638 2:11:33
7 0.000690 0.000671 0.999745 0.000255 2:13:32
8 0.000207 0.000368 0.999745 0.000255 0:22:54
9 0.000408 0.000253 0.999872 0.000128 2:29:03

Sensors 2022, 22, 8830 22 of 29

Table 11. Results of the DenseNet 169.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

0 0.288913 0.120378 0.960337 0.039663 2:44:14
0 0.059531 0.021940 0.992220 0.007780 3:00:51
1 0.057521 0.022707 0.993241 0.006759 2:55:58
2 0.058411 0.014491 0.995664 0.004336 2:52:39
3 0.031062 0.003245 0.999107 0.000893 2:51:29
4 0.015365 0.007066 0.998980 0.001020 2:51:46
5 0.004845 0.001774 0.999617 0.000383 2:51:51
6 0.000463 0.000892 0.999872 0.000128 2:57:59
7 0.000893 0.001066 0.999617 0.000383 3:27:21
8 0.000666 0.001539 0.999745 0.000255 3:50:44
9 0.000290 0.001327 0.999745 0.000255 3:25:05

Table 12. Results of the DenseNet 201.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

0 0.249325 0.106139 0.969902 0.030098 3:35:21
0 0.069267 0.013129 0.995791 0.004209 4:01:31
1 0.072991 0.021794 0.993623 0.006377 3:35:10
2 0.039306 0.014805 0.995536 0.004464 3:52:20
3 0.006408 0.006150 0.998215 0.001785 3:51:30
4 0.018931 0.004701 0.999235 0.000765 3:52:36
5 0.000636 0.003969 0.998597 0.000765 3:54:19
6 0.000636 0.003969 0.998597 0.001403 3:54:19
7 0.000484 0.111607 0.999235 0.000765 3:52:54
8 0.000013 0.001383 0.999490 0.000510 3:53:46
9 0.000450 0.001325 0.999490 0.000510 3:58:08

Sensors 2022, 22, x FOR PEER REVIEW 23 of 31

5.5. Densenet
By looking at the results of the DenseNet group, it can be seen that this group is also

one of the best for detecting traffic signs. As seen in Tables 10–12, train loss experiences a
downward trend with low volatility in these models. Moreover, the error rate in DenseNet
121, 169, and 201 reaches 0.000128, 0.000255, and 0.000510, respectively. However, in the
case of DenseNet 121, there is no error in detection. For example, one of these errors is
shown in Figure 18. As shown in this figure, there is a traffic sign with a speed limit of 80
km/h, which is correctly recognized by model DenseNet 121, but by models DenseNet 169
and DenseNet 201, it is wrongly recognized as a speed limit of 60 km/h. The superiority
of DenseNet 121 over DenseNet 169 and 201 is clearly evident in the parameters of the
table. In DenseNet 169 and 201, an error in detecting traffic signs is also observed, as
shown in Figures 19a, 20a, and 21a.

Figure 18. Comparing the performance of one of the wrong diagnoses by model DenseNet 169 and
DenseNet 201, which was correctly diagnosed by model DenseNet 121.

Table 10. Results of DenseNet 121.

Epoch Train Loss Valid Loss Accuracy Error Rate Time
0 0.347987 0.165432 0.945033 0.054967 2:11:49
0 0.073293 0.024991 0.992475 0.007525 2:28:01
1 0.073558 0.013193 0.995791 0.004209 2:25:48
2 0.043090 0.016201 0.995664 0.004336 2:22:41
3 0.022192 0.009309 0.997449 0.002551 2:17:25
4 0.010602 0.002526 0.999235 0.000638 2:15:31
5 0.010123 0.011439 0.997449 0.002551 2:12:21
6 0.006923 0.001362 0.999362 0.000638 2:11:33
7 0.000690 0.000671 0.999745 0.000255 2:13:32
8 0.000207 0.000368 0.999745 0.000255 0:22:54
9 0.000408 0.000253 0.999872 0.000128 2:29:03

Figure 18. Comparing the performance of one of the wrong diagnoses by model DenseNet 169 and
DenseNet 201, which was correctly diagnosed by model DenseNet 121.

Sensors 2022, 22, 8830 23 of 29

Sensors 2022, 22, x FOR PEER REVIEW 24 of 31

(a)

(b)

Figure 19. (a) Confusion matrix and (b) loss rate during training with DenseNet 121. Figure 19. (a) Confusion matrix and (b) loss rate during training with DenseNet 121.

Sensors 2022, 22, 8830 24 of 29

Sensors 2022, 22, x FOR PEER REVIEW 25 of 31

Table 11. Results of the DenseNet 169.

Epoch Train Loss Valid Loss Accuracy Error Rate Time
0 0.288913 0.120378 0.960337 0.039663 2:44:14
0 0.059531 0.021940 0.992220 0.007780 3:00:51
1 0.057521 0.022707 0.993241 0.006759 2:55:58
2 0.058411 0.014491 0.995664 0.004336 2:52:39
3 0.031062 0.003245 0.999107 0.000893 2:51:29
4 0.015365 0.007066 0.998980 0.001020 2:51:46
5 0.004845 0.001774 0.999617 0.000383 2:51:51
6 0.000463 0.000892 0.999872 0.000128 2:57:59
7 0.000893 0.001066 0.999617 0.000383 3:27:21
8 0.000666 0.001539 0.999745 0.000255 3:50:44
9 0.000290 0.001327 0.999745 0.000255 3:25:05

(a)

Sensors 2022, 22, x FOR PEER REVIEW 26 of 31

(b)

Figure 20. (a) Confusion matrix and (b) loss rate during training with DenseNet 169.

Table 12. Results of the DenseNet 201.

Epoch Train Loss Valid Loss Accuracy Error Rate Time
0 0.249325 0.106139 0.969902 0.030098 3:35:21
0 0.069267 0.013129 0.995791 0.004209 4:01:31
1 0.072991 0.021794 0.993623 0.006377 3:35:10
2 0.039306 0.014805 0.995536 0.004464 3:52:20
3 0.006408 0.006150 0.998215 0.001785 3:51:30
4 0.018931 0.004701 0.999235 0.000765 3:52:36
5 0.000636 0.003969 0.998597 0.000765 3:54:19
6 0.000636 0.003969 0.998597 0.001403 3:54:19
7 0.000484 0.111607 0.999235 0.000765 3:52:54
8 0.000013 0.001383 0.999490 0.000510 3:53:46
9 0.000450 0.001325 0.999490 0.000510 3:58:08

Figure 20. (a) Confusion matrix and (b) loss rate during training with DenseNet 169.

Sensors 2022, 22, 8830 25 of 29
Sensors 2022, 22, x FOR PEER REVIEW 27 of 31

(a)

(b)

Figure 21. (a) Confusion matrix and (b) loss rate during training with DenseNet 201. Figure 21. (a) Confusion matrix and (b) loss rate during training with DenseNet 201.

Sensors 2022, 22, 8830 26 of 29

5.6. AlexNet

The last method that is examined in this article is AlexNet. A very positive point that
can be seen in Table 13 of this method is the time required for each epoch. This time is only
12 min on average. On the other hand, if we have a tradeoff between the time required for
each epoch, train loss, and accuracy, we realize that this system can be introduced as one of
the best methods. The results are shown in Figure 22.

Table 13. Results of the AlexNet.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

0 1.442523 0.915624 0.705395 0.294605 14:18
0 0.365056 0.176912 0.947583 0.052417 11:48
1 0.186873 0.071719 0.980105 0.019895 13:04
2 0.109797 0.051216 0.982910 0.017090 13:26
3 0.087441 0.024694 0.992475 0.007525 14:14
4 0.061551 0.030640 0.990562 0.009438 12:47
5 0.031753 0.017091 0.994771 0.005229 13:32
6 0.008760 0.010013 0.997067 0.002933 13:27
7 0.003137 0.006157 0.998470 0.001530 13:04
8 0.001259 0.005411 0.998470 0.001530‘ 13:16
9 0.001717 0.004910 0.998725 0.001275 13:02

Sensors 2022, 22, x FOR PEER REVIEW 28 of 31

5.6. AlexNet
The last method that is examined in this article is AlexNet. A very positive point that

can be seen in Table 13 of this method is the time required for each epoch. This time is
only 12 min on average. On the other hand, if we have a tradeoff between the time re-
quired for each epoch, train loss, and accuracy, we realize that this system can be intro-
duced as one of the best methods. The results are shown in Figure 22.

Table 13. Results of the AlexNet.

Epoch Train Loss Valid Loss Accuracy Error Rate Time
0 1.442523 0.915624 0.705395 0.294605 14:18
0 0.365056 0.176912 0.947583 0.052417 11:48
1 0.186873 0.071719 0.980105 0.019895 13:04
2 0.109797 0.051216 0.982910 0.017090 13:26
3 0.087441 0.024694 0.992475 0.007525 14:14
4 0.061551 0.030640 0.990562 0.009438 12:47
5 0.031753 0.017091 0.994771 0.005229 13:32
6 0.008760 0.010013 0.997067 0.002933 13:27
7 0.003137 0.006157 0.998470 0.001530 13:04
8 0.001259 0.005411 0.998470 0.001530` 13:16
9 0.001717 0.004910 0.998725 0.001275 13:02

(a)

Figure 22. Cont.

Sensors 2022, 22, 8830 27 of 29
Sensors 2022, 22, x FOR PEER REVIEW 29 of 31

(b)

Figure 22. (a) Confusion matrix and (b) loss rate during training with AlexNet.

On the other hand, all the parameters of this system follow a completely uniform
trend without fluctuations during different epochs, which is another reason for the good-
ness of this method.

6. Comparison
As shown in the above figures and tables, models SqueezeNet1_0 and

SqueezeNet1_1 could not be used for this project because they did not learn correctly, and
therefore they are not used in comparison. For the other methods, we use the last epoch
of each learning model to compare them with each other.

As shown in the above table, and by considering that each iteration is equivalent to
1960 batches for training and 491 for validation, if maximum accuracy and minimum sys-
tem error are important, the best results can be VGG16_bn and VGG19_bn. However, for
these two models, the time required is the longest compared to other systems. But if less
training time is desired with acceptable accuracy and error, AlexNet is the best option. As
shown in Table 14, after ten epochs, the accuracy of the system is 0.998725 and the error
rate is just 0.001275, very close to zero. Moreover, with these parameters, the time needed
for the training for the last epoch is just about 13 min.

Table 14. Comparison between different systems.

Epoch Train loss Valid Loss Accuracy Error Rate Time
ResNet18 0.000053 0.001247 0.999490 0.000510 52:05
ResNet34 0.000018 0.000238 1.000000 0.000000 1:35:50
RedNet50 0.000536 0.000964 0.999745 0.000255 3:18:05

DenseNet 121 0.000408 0.000253 0.999872 0.000128 2:29:03
DenseNet 169 0.000290 0.001327 0.999745 0.000255 3:25:05
DenseNet 201 0.000450 0.001325 0.999490 0.000510 3:58:08

VGG16_bn 0.000009 0.000127 1.000000 0.000000 4:36:52
VGG19_bn 0.000004 0.000002 1.000000 0.000000 5:25:54
XresNet50 0.000869 0.004230 0.998852 0.001148 2:34:35
AlexNet 0.001717 0.004910 0.998725 0.001275 13:02

7. Conclusions

Figure 22. (a) Confusion matrix and (b) loss rate during training with AlexNet.

On the other hand, all the parameters of this system follow a completely uniform trend
without fluctuations during different epochs, which is another reason for the goodness of
this method.

6. Comparison

As shown in the above figures and tables, models SqueezeNet1_0 and SqueezeNet1_1
could not be used for this project because they did not learn correctly, and therefore they
are not used in comparison. For the other methods, we use the last epoch of each learning
model to compare them with each other.

As shown in the above table, and by considering that each iteration is equivalent
to 1960 batches for training and 491 for validation, if maximum accuracy and minimum
system error are important, the best results can be VGG16_bn and VGG19_bn. However,
for these two models, the time required is the longest compared to other systems. But if
less training time is desired with acceptable accuracy and error, AlexNet is the best option.
As shown in Table 14, after ten epochs, the accuracy of the system is 0.998725 and the error
rate is just 0.001275, very close to zero. Moreover, with these parameters, the time needed
for the training for the last epoch is just about 13 min.

Table 14. Comparison between different systems.

Epoch Train Loss Valid Loss Accuracy Error Rate Time

ResNet18 0.000053 0.001247 0.999490 0.000510 52:05
ResNet34 0.000018 0.000238 1.000000 0.000000 1:35:50
RedNet50 0.000536 0.000964 0.999745 0.000255 3:18:05

DenseNet 121 0.000408 0.000253 0.999872 0.000128 2:29:03
DenseNet 169 0.000290 0.001327 0.999745 0.000255 3:25:05
DenseNet 201 0.000450 0.001325 0.999490 0.000510 3:58:08

VGG16_bn 0.000009 0.000127 1.000000 0.000000 4:36:52
VGG19_bn 0.000004 0.000002 1.000000 0.000000 5:25:54
XresNet50 0.000869 0.004230 0.998852 0.001148 2:34:35
AlexNet 0.001717 0.004910 0.998725 0.001275 13:02

7. Conclusions

As a result, this article demonstrates that in the same situation, with the same data
set structure and processor (Intel(R) Core(TM) i5-4300M CPU @ 2.60 GHz, 2.59 GHz), we

Sensors 2022, 22, 8830 28 of 29

can compare the mentioned models and find the best training model for a traffic sign
detection system.

So, as shown in Table 14, the best system with acceptable error and accuracy and the
shortest time required for training is the VGG19_bn model.

Two very important limitations that can be seen in the results are: (1) the speed of
CNN learning systems and (2) the problem of classification with different positions. As for
the second problem, when there is some tilt or rotation in the images, CNNs usually have
trouble classifying them.

After further study and after finding the best method, in future studies this method
can be examined online and on video in real time, exactly what is needed in driverless cars.

Each classifier relies on its own properties, which are determined by the specific
classifier. The optimal parameter values depend on the scenario in which the classifier
is to be applied. This study showed that it is not always possible to set the parameters
accurately when applying classifiers to different data sets. If we study the future, firstly, we
will work with different learning models similar XceptionV2, MobileNetV2, also we will
likely do network searches to find different parameter values and then choose a parameter
that is the best match. This maximizes accuracy because it is not guaranteed to find
the absolute optimal value for a given classifier in a given data set, but it constitutes a
good approximation.

Author Contributions: Conceptualization, H.F.G.; Data curation, H.F.G.; Investigation, L.C. and
H.F.G.; Supervision, G.C.C. and M.R.; Validation, L.D.N. and R.F.; Writing—original draft, H.F.G.;
Writing—review & editing, S.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]
2. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [PubMed]
3. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
4. Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Re, M.; Ricci, A.; Spanò, S. An FPGA-based multi-agent reinforcement

learning timing synchronizer. Comput. Electr. Eng. 2022, 99, 107749. [CrossRef]
5. Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Nannarelli, A.; Re, M.; Spanò, S. A pseudo-softmax function for

hardware-based high speed image classification. Sci. Rep. 2021, 11, 15307. [CrossRef] [PubMed]
6. Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Matta, M.; Re, M.; Spanò, S. Approximated computing for low power

neural networks. Telkomnika Telecommun. Comput. Electron. Control 2019, 17, 1236–1241. [CrossRef]
7. Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F. Voronoi-based multi-robot autonomous exploration in unknown environments

via deep reinforcement learning. IEEE Trans. Veh. Technol. 2020, 69, 14413–14423. [CrossRef]
8. Ciregan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the 2012

IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3642–3649.
9. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
10. Google’s AlphaGo AI Wins Three-Match Series against the World’s Best Go Player. TechCrunch. 25 May 2017. Available online:

https://techcrunch.com/2017/05/24/alphago-beats-planets-best-human-go-player-ke-jie/ (accessed on 9 November 2022).
11. Tang, Y.; Zhu, M.; Chen, Z.; Wu, C.; Chen, B.; Li, C.; Li, L. Seismic performance evaluation of recycled aggregate concrete-filled

steel tubular columns with field strain detected via a novel mark-free vision method. In Structures; Elsevier: Amsterdam, The
Netherlands, 2022; pp. 426–441.

12. Tang, Y.; Li, L.; Wang, C.; Chen, M.; Feng, W.; Zou, X.; Huang, K. Real-time detection of surface deformation and strain in recycled
aggregate concrete-filled steel tubular columns via four-ocular vision. Robot. Comput. -Integr. Manuf. 2019, 59, 36–46. [CrossRef]

13. Wang, X.; Guo, J.; Yi, J.; Song, Y.; Xu, J.; Yan, W.; Fu, X. Real-time and efficient multi-scale traffic sign detection method for
driverless cars. Sensors 2022, 22, 6930. [CrossRef] [PubMed]

14. Deng, J. A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern
Recognition, Miami, FL, USA, 20–25 June 2009.

15. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.

http://doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1016/j.compeleceng.2022.107749
http://doi.org/10.1038/s41598-021-94691-7
http://www.ncbi.nlm.nih.gov/pubmed/34321514
http://doi.org/10.12928/telkomnika.v17i3.12409
http://doi.org/10.1109/TVT.2020.3034800
http://doi.org/10.1145/3065386
https://techcrunch.com/2017/05/24/alphago-beats-planets-best-human-go-player-ke-jie/
http://doi.org/10.1016/j.rcim.2019.03.001
http://doi.org/10.3390/s22186930
http://www.ncbi.nlm.nih.gov/pubmed/36146283

Sensors 2022, 22, 8830 29 of 29

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

17. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International
Conference on Machine Learning, Beach, CA, USA, 10–15 June 2019; pp. 6105–6114.

18. Valueva, M.; Nagornov, N.; Lyakhov, P.; Valuev, G.; Chervyakov, N. Application of the residue number system to reduce hardware
costs of the convolutional neural network implementation. Math. Comput. Simul. 2020, 177, 232–243. [CrossRef]

19. Dai, J.; Li, Y.; He, K.; Sun, J. Object Detection via Region-Based Fully Convolutional Networks. arXiv 2016, arXiv:1605.06409.
20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2015, 1, 91–99. [CrossRef] [PubMed]
21. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the 2017 IEEE International Conference on Computer

Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969.
22. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
23. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In European

Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37.
24. Lu, E.H.-C.; Gozdzikiewicz, M.; Chang, K.-H.; Ciou, J.-M. A hierarchical approach for traffic sign recognition based on shape

detection and image classification. Sensors 2022, 22, 4768. [CrossRef] [PubMed]
25. Chowdhary, C.L.; Reddy, G.T.; Parameshachari, B.D. Computer Vision and Recognition Systems: Research Innovations and Trends; CRC

Press: Boca Raton, FL, USA, 2022.
26. Ravi, C.; Tigga, A.; Reddy, G.T.; Hakak, S.; Alazab, M. Driver Identification Using Optimized Deep Learning Model in Smart

Transportation. ACM Trans. Internet Technol. 2020. [CrossRef]
27. He, T.; Zhang, Z.; Zhang, H.; Zhang, Z.; Xie, J.; Li, M. Bag of tricks for image classification with convolutional neural networks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 558–567.

28. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

29. Wurm, M.; Stark, T.; Zhu, X.X.; Weigand, M.; Taubenböck, H. Semantic segmentation of slums in satellite images using transfer
learning on fully convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2019, 150, 59–69. [CrossRef]

30. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

31. Da Costa, L.J. Análise de Métodos de Detecção e Reconhecimento de Faces Utilizando Visão Computacional e Algoritmos de
Aprendizado de Máquina. Colloq. Exactarum 2021, 13, 1–11; ISSN 2178-8332. [CrossRef]

32. Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The German traffic sign recognition benchmark: A multi-class classification
competition. In Proceedings of the International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August
2011; pp. 1453–1460.

http://doi.org/10.1016/j.matcom.2020.04.031
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.3390/s22134768
http://www.ncbi.nlm.nih.gov/pubmed/35808265
http://doi.org/10.1145/3412353
http://doi.org/10.1016/j.isprsjprs.2019.02.006
http://doi.org/10.5747/ce.2021.v13.n2.e354

	Introduction
	Structure of Different CNN Models
	Dataset
	Models and Methods
	Result
	ResNet
	ResNet 18
	ResNet 34
	ResNet 50

	Squeezenet
	VGG
	VGG16_bn
	VGG19_bn

	XresNet 50
	Densenet
	AlexNet

	Comparison
	Conclusions
	References

