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Abstract: Actuator, mostly valve, wearing is an important factor of the overall industrial control
system operational cost. Actuator operational wear strongly depends on its operation. Highly utilized
elements have a tendency to degrade faster. Therefore, the maintenance teams prefer to minimize
their moves. In contrary, control engineers need the actuators to actively operate in their control
loops to mitigate disturbances and follow the desired trajectories. Higher control performance is
often achieved with an active use of actuators. Control loop quality depends on the controller setup
and loop auxiliary functionality. Properly designed filtering not only facilitates controller action, but
also impacts actuator operational wear. Industrial control templates are built using the blockware
that is embedded in the existing control system. Distributed control system (DCS) and programmable
logic controller (PLC) have a limited number of control algorithms. An engineer has to design the
control structure and the associated sensor noise filtering using available functionality. This paper
evaluates and measures the impact of noise filtering on the loop performance and on the actuator
weariness. Relations between noise filtering time constant, loop performance and valve travel deliver
recommendations for control engineers.

Keywords: noise filtering; loop performance; actuator weariness; valve travel; process control

1. Introduction

The industrial univariate control loop template differs from the scientific textbook
configuration. The raw single-element controller is often enriched with several auxiliary
blocks and functionalities that make its operation robust and reliable. The overall system
performance is improved, which results in a wider operating regime scope. These auxiliary
functionalities consist of measurement noise filtering and conditioning for process variable
and measured disturbances, actuator characteristics linearization, setpoint shaping, track-
ing, gain scheduling, AUTO/MANUAL mode switching, control error shaping and others.
The orchestration of these elements allows reliable and robust loop operation, and gives
the plant operator comfort and safety.

This work focuses on the measurement noise filtering. In general, the filtering, which
depends on the loop positioning, might be organized in two ways. Independent univariate
control loops need filtering on the process variable (PV) measurement input, as they are the
origin of noises. Cascaded control configuration introduces a new degree of freedom for the
downstream loop, as the noise can be also introduced through the setpoint. In such a case,
PV feedback filtering will not work, and the filtering must be introduced into the control
error signal, i.e., at the input to the controller. Such permanent fluctuations are transferred
through the controller to its output and affect an actuator and the process [1]. Ref. [2]
shows that the measurement noise has a serious impact on the control loop performance.
Permanent fluctuations added to the measured process variable are transported through
the negative feedback to the controller input as shown by [3]. This feature appears in
any feedback control configuration. Process variable measurement filtering is used to
counteract this issue. PID loops, being a majority of industrial control templates, seriously
require effective filtering [4]. As the filters are implemented inside of the feedback loop,
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their design affects not only the loop performance, but PID tuning as well. Filtering should
be implemented before the PID design.

One has to remember that any industrial control system, DCS or PLC, exhibits func-
tional limitations. An engineer does not have unconstrained freedom in the selection of
wished algorithms or approaches. A system-dependent embedded blockware list is limited
to some basic (and popular) algorithms. This property also applies to the measurement
noise filtering. Advanced filter strategies are often used in process industry, not only for
measurement filtering, but also for data validation and reconciliation [5]. They are hardly
available and cannot be used in many cases, though they would improve the process
performance significantly. Moreover, they require specific expert knowledge, which is
seldom available in industrial life. Control engineer may only use existing blocks, such as
delay, lag, function generator, deadband (deadzone), hysteresis or saturation.

Filtering uses first-order lag and the function generator in most cases. This analysis
focuses on the filter selection and its impact on the loop performance with a specific focus on
the behavior of an actuator. The valve is the most popular actuator in the process industry.
Once we consider its maintenance, we should evaluate some indicators that would measure
its quality. One of the valve main weariness indicators is the measure, how much the
valve is used, and how many position changes it encounters. The total path covered by the
actuator, i.e., the valve in the considered case is called the valve travel, while the counter
for its travel direction changes is called the valve stroke [6]. This measure is used as the
main indicator for maintenance, allowing to detect element stiction or oscillations.

The rationale for this research comes from the industrial experience of, and discussions
with, site control engineers. The subject has big practical importance, as expert tuners find
it important to filter the feedback signal. The simulation analysis is selected intentionally,
as the phenomenon is independent of the valve. It is even independent of the type of
actuator. The same issue happens for dampers, pumps, ventilators, engines, etc. The
research assumes the ideal actuator performance, which ideally realizes the controller
output. The phenomenon appears in the feedback loop through the measurement noises,
disturbances and cross-correlations between cooperating control loops in the multi-loop
environment. The valve merely “lends” its name to the naming of the index. Nowadays,
the subject starts to be even more important, especially if we bring the energy consumption
into the picture. Lower “actuator travel” means lower energy consumption and smaller
carbon footprint generated by the actuator. It should be taken into account as one discusses
the energy-aware control system.

The aim of this paper is to analyze the effect of noise filtering on the overall loop
performance (which should decrease with increasing the filter time constant) versus de-
creasing the valve travel index. Both configurations, i.e., PV and control error filtering, are
investigated. Suggestions for filter design are given, showing how far an engineer can go
with filtering without a heavy loss on a loop performance.

The paper starts with a description of the methods, i.e., filter design, control per-
formance assessment (CPA) measures and valve travel index. The next section shows
simulation results for PID benchmarks, while the last one concludes the work, showing
possible open issues for further research.

2. Methods and Algorithm

The analysis uses methods and algorithms of engineering areas, such as filter design,
CPA measures and valve travel index as a maintenance indicator.

2.1. Noise Filter Design

There are many approaches to filtering. The selected method depends on the engi-
neering experience, procedures, good practices, control vendor templates or just the habits.
Three exemplary industrial configurations for noise filtering used in process industry are
sketched in Figure 1 using SAMA (Scientific Apparatus Makers Association) function
blocks. They use first-order inertia (depicted as ∼∼∼ ) and a static non-linear function gener-
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ator denoted as f (x) which allows to realize a static relationship parameterized by a set
of x-y relation. The function generator realizes the deadband.
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Figure 1. Noise filter industrial design configurations.

In the present research, the simplest ∼∼∼ block configuration of a first-order filter (1)
without the deadband is analyzed. It has a single tuning parameter: filter time constant TF,

GF(s) =
1

TF · s + 1
. (1)

2.2. Loop CPA Measures

There are dozens of methods used in industrial CPA as shown in [7–9]. This work
uses three indexes, which are frequently used as loop key performance indicators (KPI):
mean square error (MSE), integral absolute error (IAE) and robust standard deviation σH .

Mean square error is the mean sum of the N points collected with some sampling
period (time decrement) (2), while the integral absolute error is the mean sum of the
absolute errors as in (3):

MSE =
1
N

k=N

∑
k=1

ε(k)2 =
1
N

k=N

∑
k=1

[y0(k)− y(k)]2 (2)

IAE =
1
N

k=N

∑
k=1
|ε(k)| = 1

N

k=N

∑
k=1
|y0(k)− y(k)| (3)

The ε(k) denotes the control error, y0(k) the setpoint and y(k) the process output.

Robust Statistics

If data are free of outliers, we may incorporate classical methods based on normal
Gaussian distribution. In the opposite case, robust statistics, which aims at outliers removal,
should be applied. It was introduced long ago, but [10] made it popular. A robust approach
delivers location, scale and regression parameters estimates for time series infected with
outliers. The M-estimator with logistic ψ-function is used.

2.3. Valve Travel Index

The valve travel index is a quantitative representation of how the valve moves in time.
The valve travel index (KVT) is calculated as a cumulative sum of absolute moves made by
an actuator. This is a practical performance measure for a control loop, formulating one of
the main measures for valve wear, giving indications of when the preventive maintenance
activities should be performed [11]. Additionally, travel valve analysis is used to evaluate
another indicator in the form of a number of direction changes in control valve travel per
some time period (KVS).
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3. Simulations

The analysis uses simulations carried out with a template shown in Figure 2. The
PID control algorithm in the standard parallel form is applied as a benchmark algorithm.
The standard octave function (optiPID.m) is used to find their optimal tuning. It uses an
optimization routine that minimizes the weighted performance index, which incorporates
three elements: the ITAE (integral time absolute error) criterion (weighting factor µ1 = 1),
maximum overshoot (µ2 = 10) and sensitivity (µ3 = 20) [12]. The prepared template allows
to investigate the effect of PV filtering in the univariate PID loop (CASE 1) and control error
tuning in a downstream cascaded loop configuration. Each simulation consists of 1000 s
sampled at 0.1 s.

CASE 1

CASE 2

PROCESS
actuator
VALVE

PID
controller

+

−

+ +
++

+

+
control error

FILTER

setpoint

Gaussian noise Gaussian noisestable (α=1.9) noise

control
error

process
output

PV
FILTER

Figure 2. Simulation environment for noise filter analysis. The actuator device, the valve in the
considered case, is separately isolated.

There are several reasons behind such a choice. The main one says that the PID
constitutes the majority (95 %) of industrial controls in process industry, as shown in [12].
Four PID benchmarks proposed by [13] are used:

• Multiple equal poles transfer function

G1(s) =
1

(s + 1)4 , (4)

• A time-delay and double lag plant

G2(s) =
1

(0.2s + 1)2 e−s, (5)

• An oscillatory transfer function

G3(s) =
1

(s + 1)(0.04s2 + 0.04s + 1)
(6)

• A non-minimum-phase process

G4(s) =
(1− α · s)
(s + 1)3 , α = 0.5. (7)

Optimal controller transfer functions denoted by Ropt
1 (s) are designed. Table 1 shows

the obtained tuning parameters.

Table 1. Optimal PID settings for benchmarks.

kp Ti Td

Ropt
1 (s) 1.050 2.998 0.929

Ropt
2 (s) 0.265 0.607 0.212

Ropt
3 (s) 0.133 0.259 0.081

Ropt
4 (s) 0.885 2.481 0.664
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3.1. Process Variable Filtering—Case 1

Process variable filtering analysis starts with multiple equal poles transfer function
G1(s). Undisturbed and noisy scenarios are compared. Selected CPA measures are cal-
culated and shown in Table 2 that compares ideal undisturbed loop with a noisy unfil-
tered one.

MSE does not aim at the noises; the impact of measurement noise is small. It is due to
the squared higher incidents, such as setpoint changes, which are much more important
than the noise variations. Absolute error reflects the steady-state operation (and noises)
more, while robust standard deviation represents noises at most. It is also visible that the
noise has a tremendous effect on the actuator performance measured by indexes KVT and
KVS. Further, the controlled variable (CV) measurement filter is introduced. The loop is
simulated using filter time constant values from TF = 0 s up to TF = 1.0 s incremented
every 0.01 s. The filter impact on the loop is shown in Figure 3a with a relative index change
versus unfiltered one. A similar relation for travel indexes is shown in Figure 3b. Even
small values of the filter time constant improve the actuator performance, once, for larger
values, the effect flattens.

Table 2. G1(s) CPA indexes.

Without Noise Noisy Relative Change

MSE 3.299 3.459 4.8%
IAE 0.500 0.647 29.4%
σH 0.261 0.479 83.5%

KVT 8.3 195.3 2253%
KVS 241 6546 2616%

MSE shows that the small time constant of the filter improves the loop performance,
while slower ones (TF > 0.45) start to degrade the loop control quality. A similar effect
is visible with IAE, but the range of loop improvement is more narrow and degradation
starts sooner (TF > 0.09). Robust standard deviation starts to degrade just with the
implementation of the filter. The effect of measurement filter on actuator performance is
evaluated. Table 3 shows a comparison of the TF values: no filter, values when MSE and
IAE start to degrade, and the value when σH is degraded by 2.5% for TF = 0.21.

Table 3. Filtering impact on G1(s) loop.

TF = 0.00 TF = 0.09 TF = 0.21 TF = 0.45

MSE 3.46 3.45 −0.4% 3.44 −0.6% 3.46 0.0%
IAE 0.65 0.65 0.0% 0.65 0.6% 0.67 3.7%
σH 0.48 0.48 0.2% 0.49 1.9% 0.59 5.9%

KVT 195 91 −53% 50 −75% 28 −86%
KVS 6546 5190 −21% 4526 −31% 4180 −36%

Undisturbed and noisy scenarios for a process with a time delay and double lag G2(s)
are compared. Time trends are qualitatively similar for all plants and they are not further
shown. CPA measures are evaluated and presented in Table 4. Similar to the previous G1(s)
case, MSE does not aim at the noises, while IAE focuses on the steady-state noisy operation.
As in previous case, the noise has a serious impact on actuator travel indexes KVT and KVS.
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Table 4. G2(s) CPA indexes.

Without Noise Noisy Relative Change

MSE 2.710 2.846 5.0%
IAE 0.505 0.624 23.6%
σH 0.370 0.545 47.3%

KVT 2.6 18.2 600%
KVS 1358 6900 408%

The transfer function G2(s) loop is simulated using varying noise filter time constant
values starting from TF = 0 s up to TF = 1.0 s incremented every 0.01 s. The measurement
noise filter relative CPA index changes versus the unfiltered case on loop performance are
shown in Figure 4a. The relationship for valve travel indexes KVT and KVS is sketched in
Figure 4b.

In contrary to the previous case, valve travel index improvement starts for relatively
high filter time constants. Valve travel indexes first increase (TF ∈ (0.0, 0.1)) and start to
diminish with higher filtering. Additionally, the effect on KVT saturates, while change index
KVS decreases rather slowly and linearly. Although this effect is rather strange and differs
from an engineering intuition, it might be explained by the coordination between process
(5) and filter time constants. The same effect can be seen in the next example as well (6),
confirming such an explanation. MSE index shows that filters with a small time constant
may even improve loop performance, while slower ones (TF > 0.39) start to degrade the
loop control quality. The effect is visible with IAE but the range of loop improvement is
narrow, and degradation starts sooner (TF > 0.15). Robust standard deviation does not
show that effect and starts to degrade just with the smallest time constant of the filter.

Table 5 shows four filters, i.e., no filter, the value when MSE starts to degrade, the
value when IAE starts decrease and the value when σH degrades by 2.5% for TF = 0.23.

Table 5. Filtering impact on G2(s) loop.

TF = 0.00 TF = 0.15 TF = 0.23 TF = 0.39

MSE 2.85 2.83 −0.6% 2.83 −0.6% 2.85 0.0%
IAE 0.62 0.62 0.0% 0.63 0.3% 0.64 2.1%
σH 0.55 0.55 1.3% 0.56 2.0% 0.57 4.8%

KVT 18 14 −23% 10 −45% 7 −63%
KVS 6900 6566 −5% 6336 −8% 6036 −13%

Undisturbed and noisy scenario CPA indexes are presented in Table 6. They behave in
the same way as for G1(s) and G2(s). The impact of the measurement noise filter on the
loop performance is observed in the same way as for previous loops and is presented in
Figure 5a,b. The results exhibit properties similar to G2(s). The explanation seems to be the
same, as the process and filter are similar.

Table 6. G3(s) CPA indexes.

Without Noise Noisy Relative Change

MSE 2.129 2.316 8.8%
IAE 0.420 0.562 33.8%
σH 0.280 0.482 72.1%

KVT 2.2 7.2 227%
KVS 524 6156 1075%

MSE starts to increase with a large value of the filter time constant TF = 0.73, while the
same effect for IAE starts very soon with a small time constant TF = 0.06. The filter impact
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on actuator performance is shown in Table 7. Time constant TF = 0.17 reflects robust σH
degraded by 2.5%.

Table 7. Filtering impact on G3(s) loop.

TF = 0.00 TF = 0.6 TF = 0.17 TF = 0.73

MSE 2.32 2.29 −0.9% 2.26 −2.3% 2.32 0.0%
IAE 0.56 0.56 0.0% 0.56 0.4% 0.62 9.6%
σH 0.48 0.29 −40.9% 0.49 2.1% 0.54 12.9%

KVT 7 7 −1% 5 −38% 3 −60%
KVS 6156 6282 2% 5526 −10% 2926 −52%

A non-minimum-phase plant G4(s) behaves similarly to G1(s). The relationship
between CPA measures and the measurement noise is presented in Table 8. The observed
behavior is very similar to the previously analyzed plants. The measurement noise filter
impact on loop performance is presented in Figure 6a. It shows the relative index change
versus the unfiltered case. The relation for travel indexes is sketched in Figure 6b.

Table 8. G4(s) CPA indexes.

Without Noise Noisy Relative Change

MSE 3.426 3.576 4.4%
IAE 0.482 0.630 30.7%
σH 0.263 0.477 81.4%

KVT 6.8 172.7 2440%
KVS 466 6870 1374%

All indexes exhibit a constant increase almost linearly as the filter time constant
increases. The measurement filter impact on actuator performance is shown in Table 9.
Filter TF = 0.18 reflects σH degraded by 2.3%. Shapes for both indexes exhibit a similar
behavior with short initial rise followed by the exponential decrease saturating for slower
filters.

Table 9. Filtering impact on G4(s) loop.

TF = 0.00 TF = 0.5 TF = 0.18 TF = 0.20

MSE 3.58 3.57 −0.1% 3.57 −0.1% 3.58 0.0%
IAE 0.63 0.63 0.0% 0.63 0.0% 0.64 0.8%
σH 0.48 0.48 0.4% 0.49 2.3% 0.49 2.5%

KVT 173 123 −29% 50 −71% 46 −73%
KVS 6870 6258 −9% 5302 −23% 5256 −23%

3.2. Control Error Filtering

Control error filtering analysis starts with multiple equal poles transfer function G1(s).
At first, scenarios of undisturbed and noisy environment are compared. CPA measures are
calculated and presented in Table 10 that compare ideal undisturbed loop with the noisy
unfiltered one.

Indexes show that MSE is not aiming at noises, as the impact of measurement noise is
relatively small. It is due to the fact that because of the squared values higher incidents,
such as setpoint, changes are much more important. Absolute error reflects the steady-state
operation (and noises) more, while robust standard deviation reflects mostly noises. It is
shown that the noise has a tremendous effect on the actuator performance measured by
valve travel indexes KVT and KVS.
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Table 10. G1(s) CPA indexes.

Without Noise Noisy Relative Change

MSE 0.797 0.895 12.24%
IAE 0.711 0.742 4.40%
σH 0.898 0.926 3.12%

KVT 186.5 244.5 31.1%
KVS 6581 6583 0.0%

Next, the controlled variable measurement, i.e., the process output filter, is turned
on. The loop is simulated with different filter time constants varying from TF = 0 s up
to TF = 1.0 s incremented every 0.01 s. The impact of the control error filter on the loop
performance is presented in Figure 7a. It shows relative index change versus the unfiltered
case. A similar relationship for valve travel indexes is sketched in Figure 7b.
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Figure 3. Process variable filtering relationships for G1(s).
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Figure 6. Process variable filtering relationships for G4(s).

MSE features much faster degradation, compared to the other two indexes. Respec-
tive curves are close to the linear. In contrast, even filtering with a small time constant
significantly improves the actuator performance, once, for larger time constants, the effect
starts to flatten. The curve character is exponential. Thus adding of a small time constant
should give much larger improvements in the valve operational wear, without serious
loop performance degradation. This observation confirms the common practice that the
filtering with a small time constant is always good for a loop. Finally, the effect of the
measurement filter on the actuator performance is evaluated. Table 11 shows a comparison
of the four filter TF values, i.e., no filter and values of MSE, IAE and σH when they degrade
by 2.0%. We see that robust estimator allows the largest time constants, as it does not focus
on squared errors (similar to IAE). Slight 2.0% degradation in the loop performance gives
tremendous improvement in valve travel (70∼80%) and a significant one in valve strokes
(25∼30%).

Table 11. Control error filter impact on G1(s).

TF = 0.00 TF = 0.14 TF = 0.26 TF = 0.27

MSE 0.90 0.91 2.0% 0.93 3.8% 0.93 4.0%
IAE 0.74 0.75 1.1% 0.76 2.0% 0.76 2.0%
σH 0.93 0.94 1.1% 0.94 2.0% 0.95 2.2%

KVT 245 77 −68% 45 −81% 44 −82%
KVS 6583 4933 −25% 4551 −31% 4529 −31%

Undisturbed and noisy CPA indicators are calculated and sketched in Table 12. Time
trends are qualitatively similar for all plants, and they are not further shown. Similar to the
previous G1(s) case, MSE is not aiming at the noises, while IAE focuses at the steady-state
noisy operation. As in the previous case, the noise has a significant impact on both actuator
valve travel indexes KVT and KVS.

Table 12. G2(s) CPA indexes.

Without Noise Noisy Relative Change

MSE 0.935 1.028 9.94%
IAE 0.710 0.745 4.87%
σH 0.852 0.890 4.49%

KVT 17.6 22.3 26.5%
KVS 9614 6910 −0.1%

The transfer function G2(s) loop is simulated using varying control error filter time
constant values from TF = 0 s up to TF = 1.0 s incremented every 0.01 s. The filter relative
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CPA index changes versus unfiltered case on loop performance are shown in Figure 8a.
The relations for KVT and KVS are shown in Figure 8b.

In contrast to the previous case, valve travel indicator improvement starts for higher
filter values. Operational wear indexes first increase (TF ∈ (0.0, 0.1)) and start to diminish
with higher filter time constants. The effect on KVT saturates, while change index KVS
decreases slower. Though this effect is rather strange and differs from an engineering
intuition, it might be explained by the dynamic coordination between process (5) and filter
time constants. A similar effect is seen in the next example.

All CPA indexes increase almost linearly. MSE has the highest increase gain, while
the Huber robust index has the slowest one. It is due to the outliers and squared errors
that are cut off by the robust M-estimator. The effect of the measurement filter on actuator
performance is evaluated. Table 13 shows a comparison of four filter TF values, i.e., no
filter, and the value when MSE, IAE and σH degrade by 2.0%. We see that the previous
effect is observed to a smaller extent; however, still, filtering improves the valve operational
wear indicators. One has to be cautious with MSE, as it is misleading—higher filtering is
required as indicated by MSE.

Table 13. Control error filter impact on G2(s).

TF = 0.00 TF = 0.7 TF = 0.17 TF = 0.23

MSE 1.03 1.05 2.0% 1.08 5.1% 1.10 6.8%
IAE 0.75 0.75 0.8% 0.76 2.0% 0.77 2.7%
σH 0.89 0.90 0.7% 0.90 1.6% 0.91 2.0%

KVT 22 29 29% 16 −30% 12 −46%
KVS 6910 6886 −0.3% 6464 −6.5% 6254 −9.5%

Undisturbed and noisy indexes in Table 14. The indexes behave in the same way as
for G2(s) plant. The impact of the control error filter on the loop performance is evaluated
similarly and is presented in Figure 9a,b. The results exhibit properties as in G2(s) plant.
The explanation is the same, as the process dynamics and filter are quite close.

Table 14. G3(s) CPA indexes.

Without Noise Noisy Relative Change

MSE 0.524 0.627 19.59%
IAE 0.564 0.611 8.24%
σH 0.694 0.746 7.47%

KVT 6.7 8.4 26.1%
KVS 5830 6104 4.7%

The filter effect on actuator performance is shown in Table 15. Highlighted values
show degradation of the respective index by 2.0%. All CPA indexes increase almost linearly,
with MSE exhibiting the highest gain and σH the smallest.

Table 15. Control error filter impact on G3(s).

TF = 0.00 TF = 0.12 TF = 0.24 TF = 0.25

MSE 0.63 0.64 2.0% 0.65 4.3% 0.66 4.5%
IAE 0.61 0.62 1.0% 0.62 2.0% 0.62 2.1%
σH 0.75 0.75 0.9% 0.76 1.9% 0.76 2.0%

KVT 8 6 −29% 4 −52% 4 −52%
KVS 6104 5648 −7% 4512 −26% 4402 −28%

Selected non-minimum-phase plant G4(s) behaves similarly to G1(s). The relation
between CPA measures and the noise is shown in Table 16. The behavior is also very similar.
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Table 16. G4(s) CPA indexes.

Without Noise Noisy Relative Change

MSE 0.815 0.904 10.8%
IAE 0.718 0.752 4.86%
σH 0.910 0.947 3.98%

KVT 165.2 212.4 28.5%
KVS 9819 6767 −0.8%

The impact of the measurement noise filter on the loop performance is presented in
Figure 10a. It shows relative index change versus the unfiltered case. A similar relationship
for valve travel indexes is sketched in Figure 10b.

As previously shown, all CPA indexes increase almost linearly, with MSE exhibiting
the highest gain and σH the smallest. The effect of the measurement filter on the actua-
tor performance is presented in Table 17. Highlighted values show degradation of the
respective index by 2.0%. The shapes for valve wear indexes show similar properties with
exponential decrease and impact saturation for slower filters.

Table 17. Control error filter impact on G4(s).

TF = 0.00 TF = 0.12 TF = 0.21 TF = 0.23

MSE 0.90 0.92 2.0% 0.94 3.7% 0.94 4.1%
IAE 0.75 0.76 1.1% 0.77 2.0% 0.77 2.0%
σH 0.95 0.96 1.1% 0.97 2.0% 0.97 2.2%

KVT 212 82 −61% 50 −76% 46 −78%
KVS 6767 5600 −17% 5296 −22% 5246 −22%
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Figure 7. Control error filtering relationships for G1(s).
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Figure 9. Control error filtering relationships for G3(s).
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Figure 10. Control error filtering relationships for G4(s).

4. Conclusions and Further Research

The analysis addresses the impact of process variable measurement noise on the loop
performance and the actuator wear. The noise causes permanent movement of the actuator.
Industrial valve travel and valve stroke indexes KVT and KVS measure that effect. Simple
but representative, first-order lag filtering is proposed as a solution. The results show
a large impact of the process variable measurement noise on the loop performance and
actuator travel.

Different CPA indexes may indicate unlike properties. Mean square error focuses on
large deviations. Measurement noise effects are not well reflected by them. The MSE value
first decreases with an introduction of the filter. Analogous impact on IAE exhibits with a
smaller range, while robust standard deviation almost does not show such an effect. It can
be explained with outlier robustness properties of the estimators. It is recommended not
to use MSE in process variable noise analysis, as it is sensitive to setpoint or disturbance
variations. A robust indicator, such as σH , is more suitable.

An impact of the process variable filter time constant on valve travel indexes reveals
two other observations. Actuator travel indexes diminish with the increase in noise filter
time constant and exhibit exponential decay. Thus, there is no need to use high filter
time constant values, as they do not improve actuator weariness, while simultaneously
degrading loop performance. The speed of decay differs between KVT and KVS. An
engineer decides which indicator is more appropriate.

There is an exception from that rule. In two cases, the general exponential decay is
disturbed in a beginning, where travel indexes first increase for a short period of time.
It appears for time-delayed and oscillatory processes. It may be explained by a existing
correlation between the filter and the plant time constants. This observation raises some
concerns and requires further cautiousness during the filter design. The noise filter design
is not an easy compromise between the actuator wear benefits and the loop performance.
The MSE might be misleading, and further research is required.
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The control error filter design is also a compromise between the valve wear and
loop performance. The difference is that CPA indexes increase monotonically, and small
values of the filter time constant do not improve the loop performance. Proper loop
design may improve actuator wear indicators, extending their operational period between
maintenance activities.
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8. Domański, P.D. Control Performance Assessment: Theoretical Analyses and Industrial Practice; Springer Nature Switzerland AG:
Cham, Switzerland, 2020.
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