
Citation: Hu, A.; Yu, G.; Wang, Q.;

Han, D.; Zhao, S.; Liu, B.; Yu, Y.; Li, Y.;

Wang, C.; Zou, X. Efficient Hardware

Accelerator Design of Non-Linear

Optimization Correlative Scan

Matching Algorithm in 2D LiDAR

SLAM for Mobile Robots. Sensors

2022, 22, 8947. https://doi.org/

10.3390/s22228947

Academic Editors: Hong-Ning Dai,

Fengwei An, Ping Li and Po Yang

Received: 25 October 2022

Accepted: 16 November 2022

Published: 18 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Efficient Hardware Accelerator Design of Non-Linear
Optimization Correlative Scan Matching Algorithm in 2D
LiDAR SLAM for Mobile Robots
Ao Hu 1, Guoyi Yu 1,2,*, Qianjin Wang 1, Dongxiao Han 3, Shilun Zhao 3, Bingqiang Liu 1, Yu Yu 1,2, Yuwen Li 3,
Chao Wang 1,2 and Xuecheng Zou 1,2

1 School of Optical and Electronic Information, Huazhong University of Science and Technology,
Wuhan 430074, China

2 Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology,
Wuhan 430074, China

3 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
* Correspondence: yuguoyi@hust.edu.cn

Abstract: Simultaneous localization and mapping (SLAM) is the major solution for constructing
or updating a map of an unknown environment while simultaneously keeping track of a mobile
robot’s location. Correlative Scan Matching (CSM) is a scan matching algorithm for obtaining the
posterior distribution probability for the robot’s pose in SLAM. This paper combines the non-linear
optimization algorithm and CSM algorithm into an NLO-CSM (Non-linear Optimization CSM)
algorithm for reducing the computation resources and the amount of computation while ensuring
high calculation accuracy, and it presents an efficient hardware accelerator design of the NLO-CSM
algorithm for the scan matching in 2D LiDAR SLAM. The proposed NLO-CSM hardware accelerator
utilizes pipeline processing and module reusing techniques to achieve low hardware overhead, fast
matching, and high energy efficiency. FPGA implementation results show that, at 100 MHz clock,
the power consumption of the proposed hardware accelerator is as low as 0.79 W, while it performs
a scan match at 8.98 ms and 7.15 mJ per frame. The proposed design outperforms the ARM-A9
dual-core CPU implementation with a 92.74% increase and 90.71% saving in computing speed and
energy consumption, respectively. It has also achieved 80.3% LUTs, 84.13% FFs, and 20.83% DSPs
saving, as well as an 8.17× increase in frame rate and 96.22% improvement in energy efficiency
over a state-of-the-art hardware accelerator design in the literature. ASIC implementation in 65 nm
can further reduce the computing time and energy consumption per scan to 5.94 ms and 0.06 mJ,
respectively, which shows that the proposed NLO-CSM hardware accelerator design is suitable for
resource-limited and energy-constrained mobile and micro robot applications.

Keywords: 2D LiDAR SLAM; hardware accelerator; Non-linear Optimization CSM

1. Introduction

SLAM (Simultaneous Localization and Mapping) has been widely used in robots to
solve the problem of localization and navigation in unknown environments [1–3]. Accord-
ing to the type of sensor, SLAM is classified into visual SLAM and LiDAR SLAM, while
according to the dimension of exploration space, SLAM is divided into 2D SLAM and
3D SLAM. Compared with visual SLAM, LiDAR SLAM has higher precision and relia-
bility. The 2D LiDAR SLAM has the advantages of low cost and simple system structure
compared with 3D LiDAR SLAM, and it is sufficient for the localization and mapping of
robots in indoor and a small range of outdoor scenarios. As for complex environments,
geometric information, such as conic features from the 2D LiDAR information, can be
extracted and used to build the map more accurately [4], and sensors such as odometer and

Sensors 2022, 22, 8947. https://doi.org/10.3390/s22228947 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22228947
https://doi.org/10.3390/s22228947
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7460-7628
https://doi.org/10.3390/s22228947
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22228947?type=check_update&version=1

Sensors 2022, 22, 8947 2 of 22

IMU (Inertial Measurement Unit), in robots, can be added to improve the accuracy of local-
ization and mapping [5]. Therefore, 2D LiDAR SLAM is suitable for energy-constrained
and size-limited intelligent mobile robot autonomous navigation [4–6].

Figure 1 presents a classic LiDAR SLAM system framework, which consists of four ma-
jor parts: (i) the frontend part locates the robot according to the environmental information
collected by the sensor; (ii) the backend part mainly performs map and pose optimization;
(iii) the loop closure detection part refers to detecting whether the map information can
be closed to reduce the drift of the map and ensure the global consistency of the map;
(iv) the final mapping part is the generation and maintenance of map information. In a
LiDAR SLAM system, the real-time localization of the intelligent robot itself is the premise
of mapping. As one of the key tasks in the localization, scan matching obtains the current
pose of the mobile robot by matching the current LiDAR frame with the past multiple
frames or maps, which is computationally intensive, time-consuming, and power-hungry.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 24

pared with 3D LiDAR SLAM, and it is sufficient for the localization and mapping of robots
in indoor and a small range of outdoor scenarios. As for complex environments, geometric
information, such as conic features from the 2D LiDAR information, can be extracted and
used to build the map more accurately [4], and sensors such as odometer and IMU (Iner-
tial Measurement Unit), in robots, can be added to improve the accuracy of localization
and mapping [5]. Therefore, 2D LiDAR SLAM is suitable for energy-constrained and size-
limited intelligent mobile robot autonomous navigation [4–6].

Figure 1 presents a classic LiDAR SLAM system framework, which consists of four
major parts: (i) the frontend part locates the robot according to the environmental infor-
mation collected by the sensor; (ii) the backend part mainly performs map and pose opti-
mization; (iii) the loop closure detection part refers to detecting whether the map infor-
mation can be closed to reduce the drift of the map and ensure the global consistency of
the map; (iv) the final mapping part is the generation and maintenance of map infor-
mation. In a LiDAR SLAM system, the real-time localization of the intelligent robot itself
is the premise of mapping. As one of the key tasks in the localization, scan matching ob-
tains the current pose of the mobile robot by matching the current LiDAR frame with the
past multiple frames or maps, which is computationally intensive, time-consuming, and
power-hungry.

Figure 1. Framework of classic LiDAR SLAM system.

There are three major scan matching algorithms of 2D LiDAR SLAM: filter algorithm,
Non-linear Optimization (NLO) algorithm, and Correlation Scan Matching (CSM) algo-
rithm. The filter algorithm includes the classical filter algorithm and particle filter algo-
rithm. The computational complexity of the classical filter algorithm increases quadrati-
cally with the increase in the environment mapping scale. In addition, due to the difficulty
of feature extraction and data association, it is easy to cause oscillation and divergence in
the iterative process of the filter algorithm, which is a drawback to be dealt with [7,8].
Similarly, the particle filter algorithm also has the same shortcoming, i.e., when the envi-
ronmental map gets larger, the number of particles increases to meet the positioning and
mapping on the larger map; therefore, the computational complexity and resource con-
sumption also increase significantly [9–11]. The NLO algorithm transforms the matching
problem into a least square problem, which is solved by the Gauss–Newton Method, but
it is also easy to fall into divergence and requires a more accurate initial LiDAR pose. In
contrast, the CSM algorithm uses the current LiDAR frame and a few historical multi-
frames to match within a range where the best pose may exist, and it evaluates the scores
of different poses to solve the global optimal solution, which not only avoids the situation
of oscillation but also reduces the computation over time. Therefore, the CSM algorithm
has been widely used in 2D LiDAR SLAM for various scenarios [12]. However, the way
that the CSM algorithm evaluates all poses within a space range still involves a huge
amount of computation, imposing a stringent requirement for high computing power for
performing real-time SLAM in mobile robot applications.

Figure 1. Framework of classic LiDAR SLAM system.

There are three major scan matching algorithms of 2D LiDAR SLAM: filter algorithm,
Non-linear Optimization (NLO) algorithm, and Correlation Scan Matching (CSM) algo-
rithm. The filter algorithm includes the classical filter algorithm and particle filter algorithm.
The computational complexity of the classical filter algorithm increases quadratically with
the increase in the environment mapping scale. In addition, due to the difficulty of feature
extraction and data association, it is easy to cause oscillation and divergence in the iterative
process of the filter algorithm, which is a drawback to be dealt with [7,8]. Similarly, the
particle filter algorithm also has the same shortcoming, i.e., when the environmental map
gets larger, the number of particles increases to meet the positioning and mapping on
the larger map; therefore, the computational complexity and resource consumption also
increase significantly [9–11]. The NLO algorithm transforms the matching problem into a
least square problem, which is solved by the Gauss–Newton Method, but it is also easy to
fall into divergence and requires a more accurate initial LiDAR pose. In contrast, the CSM
algorithm uses the current LiDAR frame and a few historical multi-frames to match within
a range where the best pose may exist, and it evaluates the scores of different poses to
solve the global optimal solution, which not only avoids the situation of oscillation but also
reduces the computation over time. Therefore, the CSM algorithm has been widely used in
2D LiDAR SLAM for various scenarios [12]. However, the way that the CSM algorithm
evaluates all poses within a space range still involves a huge amount of computation,
imposing a stringent requirement for high computing power for performing real-time
SLAM in mobile robot applications.

In the literature of CSM algorithms, the Karto SLAM [13] uses brute force search
for scan matching, but it needs high computing-power hardware that results in high
hardware overhead and significant energy consumption. In [14], S. Kohlbrecher et al. use
an NLO algorithm to improve the scan matching accuracy, but this approach makes it
easy to fall into the local optimal solution, and it also requires high frame-rate LiDAR. W.
Hess et al. combine the depth-first search, an improved CSM, and an NLO algorithm to get

Sensors 2022, 22, 8947 3 of 22

a higher matching accuracy, but it still requires a high-performance computing platform to
achieve real-time [15]. In summary, most existing scan matching algorithms have achieved
high-performance scan results at the cost of high computational complexity that results in
high-computation hardware resources and significant energy consumption.

To solve the issues of high computing power and energy consumption, researchers
have started to develop hardware accelerator designs for the existing CSM algorithms
recently. K. Sugiura et al. present an FPGA (Field Programmable Gate Array)-based
hardware accelerator design that has implemented the conventional CSM algorithm on the
programmable logic part by conducting several architectural and algorithmic optimizations
to fully exploit the inherent parallelism, which shows real-time performance and high
accuracy in typical indoor scenarios [16]. However, the hardware overhead of the CSM
core is quite large, and the system power consumption is as high as 2.3 W. M. Bao et al.
present a heterogeneous multi-core SoC (System on Chip) implementation of a Real-time
Impact-Aware CSM (RIA-CSM) [17]. The most time-consuming part of the CSM algorithm
is mapped to an FPGA-based CSM accelerator, while the rest are realized by the quad-
core processor so that both the real-time performance and robust localization have been
improved significantly. However, similar to the hardware accelerator design in [16], both
the hardware overhead and system power consumption of 2.13 W are high. This is because
both the CSM hardware accelerator designs suffer high complexity of the CSM algorithms
and lack efficient hardware architecture design methods or techniques. In summary, the
existing scan matching hardware accelerator designs have not effectively addressed the
design challenges of limited hardware resources and constrained power budgets in mobile
and micro robot applications.

In this paper, a combination of the NLO algorithm and CSM algorithm, i.e., the
NLO-CSM algorithm, is adopted to perform a two-step scan match to address the high
computation and easy to fall into divergence issue while ensuring a high scan match
accuracy. The conventional CSM algorithm is used as a coarse match to acquire a rational
initial pose. The NLO algorithm is then used as a fine match to perform Gaussian–Newton
iteration for obtaining an optimal pose. In addition, an efficient hardware accelerator
design of the NLO-CSM algorithm is proposed to solve the aforementioned issues of high
hardware overhead and energy consumption in the existing works. The major contributions
of this paper are as follows:

(1) For the issue of the high computational cost and resource cost of the conventional
CSM algorithm, a two-step NLO-CSM algorithm is adopted in this paper. The CSM
algorithm performs scanning and matching on a down-sampling low-resolution map
to reduce computation. Based on a good initial pose found by the first-step CSM
algorithm, the second-step NLO algorithm performs iterative operations to obtain the
optimal pose. The optimized NLO-CSM algorithm not only avoids the high computa-
tional complexity of brute force searching on the grid map in the conventional CSM
algorithm but also reduces computation time and energy consumption of computing
hardware, as required. The optimized NLO-CSM algorithm can achieve good scan
match performance by avoiding the divergence caused by poor initial pose while
performing the NLO algorithm only.

(2) This paper also presents a comprehensive algorithmic analysis of the adopted NLO-
CSM algorithm. A corresponding efficient hardware accelerator design is proposed,
based on the analysis, to accelerate the major computation-intensive tasks in the
NLO-CSM algorithm. By exploiting the algorithm similarity and operator sharing
between the two-step algorithm computations, module reusing technique is adopted
to further reduce the hardware overhead, as required by the computation of the
two-step NLO-CSM algorithm. In addition, pipeline processing strategy is adopted to
realize fast computing, therefore achieving high energy efficiency. The algorithmic
analysis and corresponding hardware design provide a practical reference for efficient
hardware design of scan matching algorithms.

Sensors 2022, 22, 8947 4 of 22

(3) Systematic hardware evaluation, based on both FPGA and ASIC (Application Specific
Integrated Circuit) implementations of the proposed NLO-CSM hardware acceler-
ator, has been done. Comparisons among the CPU software solution, FPGA-based
hardware accelerator, and ASIC-based hardware accelerator have been carried out
to prove the effectiveness of the proposed work, in terms of computing speed and
energy efficiency improvements, against existing state-of-the-arts.

The remainder of this paper is organized as follows: Section 2 provides an analysis
of the conventional CSM algorithm and NLO-CSM algorithm. Section 3 describes the
architecture of the proposed NLO-CSM hardware accelerator. Section 4 presents the
implementation results. Section 5 concludes this paper.

2. Algorithm Analysis of NLO-CSM
2.1. Conventional CSM Algorithm

CSM algorithm is a scan matching algorithm, based on occupancy grid maps, which is
robust in feature-rich environments. In the conventional CSM algorithm, the system would
use brute force search in the space range to get the optimal pose of the LiDAR sensor (i.e., a
global optimal solution of the computing observation model). It establishes occupancy
grid maps, and each grid represents one pose of LiDAR sensors. In the space range that
may have the best matching pose, the CSM algorithm maps the currently scanned frame
to the occupancy grid map under different poses and estimates the score according to the
fit between the scanned frame and the grid map. The range of search space for the best
matching pose estimation can be provided by sensors such as odometers, as shown in
Figure 2.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 24

to further reduce the hardware overhead, as required by the computation of the two-
step NLO-CSM algorithm. In addition, pipeline processing strategy is adopted to re-
alize fast computing, therefore achieving high energy efficiency. The algorithmic
analysis and corresponding hardware design provide a practical reference for effi-
cient hardware design of scan matching algorithms.

(3) Systematic hardware evaluation, based on both FPGA and ASIC (Application Spe-
cific Integrated Circuit) implementations of the proposed NLO-CSM hardware accel-
erator, has been done. Comparisons among the CPU software solution, FPGA-based
hardware accelerator, and ASIC-based hardware accelerator have been carried out to
prove the effectiveness of the proposed work, in terms of computing speed and en-
ergy efficiency improvements, against existing state-of-the-arts.
The remainder of this paper is organized as follows: Section II provides an analysis

of the conventional CSM algorithm and NLO-CSM algorithm. Section III describes the
architecture of the proposed NLO-CSM hardware accelerator. Section IV presents the im-
plementation results. Section V concludes this paper.

2. Algorithm Analysis of NLO-CSM
2.1. Conventional CSM Algorithm

CSM algorithm is a scan matching algorithm, based on occupancy grid maps, which
is robust in feature-rich environments. In the conventional CSM algorithm, the system
would use brute force search in the space range to get the optimal pose of the LiDAR
sensor (i.e., a global optimal solution of the computing observation model). It establishes
occupancy grid maps, and each grid represents one pose of LiDAR sensors. In the space
range that may have the best matching pose, the CSM algorithm maps the currently
scanned frame to the occupancy grid map under different poses and estimates the score
according to the fit between the scanned frame and the grid map. The range of search
space for the best matching pose estimation can be provided by sensors such as odome-
ters, as shown in Figure 2.

Figure 2. Search space for scan matching in CSM algorithm.

Figure 3 shows the mapping between scan points and grid map under a LiDAR pose,
illustrating how the scan points are mapped to the occupancy grid map that contains val-
ues of estimating probability occupancy by grids. As depicted in Equation (1), the pose of
the LiDAR sensor in the world coordinate system is represented by L = (lx, ly, lθ), and Si(L)
is the coordinate Si of the ith LiDAR point in the world coordinate system under the pose
L. The sum of these grids’ probability (i.e., Mi[Si(L)]) is considered as the score under the
current sensor pose, as depicted in Equation (2). By this means, the whole local space can
be searched to get the optimal pose with the maximal score [13]. 𝑆௜(𝐿) = ൬𝑐𝑜𝑠 𝑙ఏ − 𝑠𝑖𝑛 𝑙ఏ𝑠𝑖𝑛 𝑙ఏ 𝑐𝑜𝑠 𝑙ఏ ൰ ቀ𝑠௜,௫𝑠௜,௬ቁ + ൬𝑙௫𝑙௬൰ , 𝐿 = (𝑙௫, 𝑙௬, 𝑙ఏ)் (1)

Figure 2. Search space for scan matching in CSM algorithm.

Figure 3 shows the mapping between scan points and grid map under a LiDAR pose,
illustrating how the scan points are mapped to the occupancy grid map that contains values
of estimating probability occupancy by grids. As depicted in Equation (1), the pose of the
LiDAR sensor in the world coordinate system is represented by L = (lx, ly, lθ), and Si(L) is
the coordinate Si of the ith LiDAR point in the world coordinate system under the pose
L. The sum of these grids’ probability (i.e., Mi[Si(L)]) is considered as the score under the
current sensor pose, as depicted in Equation (2). By this means, the whole local space can
be searched to get the optimal pose with the maximal score [13].

Si(L) =
(

coslθ −sinlθ
sinlθ coslθ

)(
si,x
si,y

)
+

(
lx
ly

)
, L = (lx, ly, lθ)

T (1)

score = ∑n
i=1 Mi[Si(L)] (2)

Sensors 2022, 22, 8947 5 of 22

Sensors 2022, 22, x FOR PEER REVIEW 5 of 24

𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑀௜[𝑆௜(𝐿)]௡௜ୀଵ (2)

Figure 3. Mapping between scan points and grid map under a LiDAR pose.

The pseudocode of the conventional CSM algorithm is shown in Algorithm 1. The
function get_score finds the sum of the grids’ probability as the score under the current
sensor pose, and the function CSM corresponds to the aforementioned space-searching
process. It is worth mentioning that the best matching pose calculated by the CSM algo-
rithm can only be expressed by a grid, so the center of the grid is generally used as the
position information in the pose. The angles are generated in increments of the step size,
so the angle accuracy in the pose is limited by the angle step size. When a higher-precision
pose is required, it is necessary to improve the precision of the grid map and reduce the
step size of the angle. In general, the required data amount increases quadratically with
the precision of the grid map, and the number of poses for the calculated scores also in-
creases, which will greatly increase the map’s memory overhead. Meanwhile, the brute
force search requires high-performance general computing platforms, such as multi-core
CPU or GPU, which are very power-hungry and not suitable for mobile and micro robots
with the requirement of limited resources and constrained power budget.

Algorithm 1: Conventional CSM Algorithm
1: Function CSM (Map, xm, xn, ym, yn, θm, θn)

2: max_score = 0, best_pose = (xm, ym, θm),

3: for xi in [xm, xn]

4: for yi in [ym, yn]

5: for θi in [θm, θn]

6: score = get_score (Map, Li), Li = (xi, yi, θi)

7: if score > best_score then best_pose = L, max_score = score

8: end for

9: end for

10: end for

11: return best_pose

12: Function get_score(Map, Li), L = (xi, yi, θi)

13: θi → sin θi, cos θi, Scan_points = [s0, …si, …sk], si = (si,x, si,y), score = 0

14: for si in [s0, …si, …sk]

15:
,

,

cos sin
() , (, ,)

sin cos
θ θ

θ
θ θ

−     
= + =    
    

i x x T
i x y

i y y

s LL L
S L L L L L

s LL L

16: score = score + Map(Si,x, Si,y)

Figure 3. Mapping between scan points and grid map under a LiDAR pose.

The pseudocode of the conventional CSM algorithm is shown in Algorithm 1. The
function get_score finds the sum of the grids’ probability as the score under the current
sensor pose, and the function CSM corresponds to the aforementioned space-searching
process. It is worth mentioning that the best matching pose calculated by the CSM algorithm
can only be expressed by a grid, so the center of the grid is generally used as the position
information in the pose. The angles are generated in increments of the step size, so the
angle accuracy in the pose is limited by the angle step size. When a higher-precision pose is
required, it is necessary to improve the precision of the grid map and reduce the step size of
the angle. In general, the required data amount increases quadratically with the precision
of the grid map, and the number of poses for the calculated scores also increases, which will
greatly increase the map’s memory overhead. Meanwhile, the brute force search requires
high-performance general computing platforms, such as multi-core CPU or GPU, which
are very power-hungry and not suitable for mobile and micro robots with the requirement
of limited resources and constrained power budget.

Algorithm 1: Conventional CSM Algorithm

1: Function CSM (Map, xm, xn, ym, yn, θm, θn)
2: max_score = 0, best_pose = (xm, ym, θm),
3: for xi in [xm, xn]
4: for yi in [ym, yn]
5: for θi in [θm, θn]
6: score = get_score (Map, Li), Li = (xi, yi, θi)
7: if score > best_score then best_pose = L, max_score = score
8: end for
9: end for

10: end for
11: return best_pose
12: Function get_score(Map, Li), L = (xi, yi, θi)
13: θi → sin θi, cos θi, Scan_points = [s0, . . . si, . . . sk], si = (si,x, si,y), score = 0
14: for si in [s0, . . . si, . . . sk]

15: Si(L) =
(

cos Lθ − sin Lθ

sin Lθ cos Lθ

)(
si,x
si,y

)
+

(
Lx
Ly

)
, L = (Lx, Ly, Lθ)

T

16: score = score + Map(Si,x, Si,y)
17: end for
18: return score

Sensors 2022, 22, 8947 6 of 22

2.2. NLO-CSM Algorithm

In this paper, an NLO-CSM algorithm is adopted for low power consumption, fast
computing, and high area efficiency. Algorithm 2 shows the pseudocode of the NLO-
CSM algorithm. The algorithm consists of two parts: coarse match and fine match. The
coarse match process is the same as the aforementioned conventional CSM algorithm,
which is used to determine the local range of the best matching pose on a low-resolution
occupancy grid map. Note that the low-resolution occupancy grid map is obtained by a
down-sampling of the original grid map, with the max pooling method, by a factor of SR.
The NLO algorithm, as the fine match process of NLO-CSM, transforms the scan matching
problem into a least squares problem, which is used to determine the specific position of
the best matching pose on the original grid map. The fine match process is the solution
of a least-square formula solved by the Gauss–Newton method. By this means, the NLO
algorithm gets the step of the pose ∆L for each iteration and updates the pose for the next
iteration, and the iteration stops when the matching accuracy is reached, as shown in the
function Fine_match in Algorithm 2. It should be noted that the core of the pose update
process of the fine match is the calculation of the Hessian matrix H and the residual matrix
K implemented by the function get_HessianDerivs in Algorithm 2.

The coarse match process on the low-resolution grid map provides a rational initial
pose for the non-linear optimization algorithm in the fine match process with a lower
calculation amount. Thus, in order to improve the overall matching accuracy of the
algorithm, the pose provided by the coarse match process can avoid the local optimum
and the non-convergence caused by a poor initial pose. The fine match process utilizes
this initial pose to perform bilinear interpolation on the original grid map for better fitting
and to iteratively solve for the optimal pose. Figure 4 shows the schematic diagram of the
bilinear interpolation, while Equations (3) and (4) depict the interpolation method. Pm
corresponds to the map interpolation of Map and Si.

M(Pm) ≈
y− y0

y1 − y0

(
x− x0

x1 − x0
M(P11) +

x1 − x
x1 − x0

M(P01)

)
+

y1 − y
y1 − y0

(
x− x0

x1 − x0
M(P10) +

x1 − x
x1 − x0

M(P00)

)
(3)

∂M(Pm)
∂x ≈ y−y0

y1−y0
(M(P11)−M(P01)) +

y1−y
y1−y0

(M(P10)−M(P00))
∂M(Pm)

∂y ≈ x−x0
x1−x0

(M(P11)±M(P10)) +
x1−x
x1−x0

(M(P01)−M(P00))
,∇M(Pm) =

(
∂M(Pm)

∂x
,

∂M(Pm)

∂y

)
(4)

Sensors 2022, 22, x FOR PEER REVIEW 7 of 24

y0

y1

x0 x1x

y

P10P00

P01 P11

Figure 4. Schematic diagram of the bilinear interpolation.

The corresponding flow chart of the NLO-CSM algorithm and software–hardware
design partition is shown in Figure 5. The Score Calculation process corresponds to the
CSM-based coarse match process. After all the poses have been retrieved by the coarse
match process, the algorithm enters the NLO-based fine match process. The function
get_HessianDerivs, calculating the Hessian matrix H and the residual matrix K in Algo-
rithm 2, has been divided into six calculation processes in Figure 5, i.e., from the Deriva-
tive and Coordinate Calculation process to the Matrix Inverse process. As shown in Figure
5, the whole coarse match process and H/K matrix calculation process are selected to be
implemented in the proposed NLO-CSM hardware accelerator in this study because the
computation of two processes is highly repetitive and significantly intensive in the NLO-
CSM algorithm, which needs to be executed for each LiDAR point in a LiDAR frame. In
contrast, as the processes of matrix inverse and the final pose update are only executed
once after the H/K matrix, corresponding to the last LiDAR point of a LiDAR frame, is
obtained and, therefore, considering that the hardware utilization of these two processes
is not high, they are selected to be implemented by software executed in a dual-core CPU
in this study.

12: for i in [1, λ]//λ is the number of Gauss-Newton iteration times
13: Li = Li-1+∆L = (Li-1,x, Li-1,y, Li-1,θ) + (∆Lx, ∆Ly, ∆Lθ)
14: (H, K) = get_HessianDerivs(Li)
15: ∆L = (∆Lx, ∆Ly, ∆Lθ) = H−1∙K
16: SubFunction get_score(Li), Li = (xi, yi, θi)
17: θi → sin θi, cos θi, score = 0
18: for si in [s0, …si, …sk]

19: , ,

, ,

cos sin
()

sin cos
i x i xi i i

i
i y i yi i i

s Sx
S L

s Sy
θ θ
θ θ

−       
= + =      
      

20: score = score + Map(Si,x, Si,y)
21: return score
22: SubFunction get_HessianDerivs (Li), Li = (Li,x, Li,y, Li,θ)
23: θi → sin Li,θ, cos Li,θ
24: for i in [1, k]

25: , ,

, ,

cos sin
()

sin cos
i x i xi i i

i i
i y i yi i i

s Sx
S L

s Sy
θ θ
θ θ

−       
= + =      
      

26:
, ,

, ,

1 0 sin cos() ()
0 1 cos sin(, ,)

i x i yi i

i x i yx x

l s l sS L S L
l s l sL l l l

θ θ

θ θθ

− ⋅ − ⋅ ∂ ∂= =  ⋅ − ⋅∂ ∂  

27: (),i mM S P ←∇ () , iMap interpolation Map S

28: J[i] = ∇M(S୧) பୗ౟(୐౟)ப୐౟ , F[i] = 1 − P୫

29: end
30: 𝐻 = 𝐽்𝐽, 𝐾 = 𝐽்𝐹

Figure 4. Schematic diagram of the bilinear interpolation.

Sensors 2022, 22, 8947 7 of 22

Algorithm 2: NLO-CSM Algorithm

1:
Map = matrix[p, q], Scan_points = [s0, . . . si, . . . sk], si = (si,x, si,y)//n is the number of
LiDAR points, n = k+1

2: Function Coarse_match
3: max_score = 0, best_pose = (xm, ym, θm)
4: for xi in [xm, xn]
5: for yi in [ym, yn]
6: for θi in [θm, θn]
7: score = get_score(Li), Li = (xi, yi, θi)
8: if score > best_score then
9: best_pose = L, max_score = score

10: Function Fine_match(L0), L0 = (L0,x, L0,y, L0,θ)
11: ∆L = (∆Lx, ∆Ly, ∆Lθ) = (0, 0, 0), H = 0, K = 0
12: for i in [1, λ]//λ is the number of Gauss-Newton iteration times
13: Li = Li-1+∆L = (Li-1,x, Li-1,y, Li-1,θ) + (∆Lx, ∆Ly, ∆Lθ)
14: (H, K) = get_HessianDerivs(Li)
15: ∆L = (∆Lx, ∆Ly, ∆Lθ) = H−1·K
16: SubFunction get_score(Li), Li = (xi, yi, θi)
17: θi → sin θi, cos θi, score = 0
18: for si in [s0, . . . si, . . . sk]

19: Si(L) =
[

cos θi − sin θi
sin θi cos θi

][
si,x
si,y

]
+

[
xi
yi

]
=

[
Si,x
Si,y

]
20: score = score + Map(Si,x, Si,y)
21: return score
22: SubFunction get_HessianDerivs (Li), Li = (Li,x, Li,y, Li,θ)
23: θi → sin Li,θ , cos Li,θ
24: for i in [1, k]

25: Si(Li) =

[
cos θi − sin θi
sin θi cos θi

][
si,x
si,y

]
+

[
xi
yi

]
=

[
Si,x
Si,y

]
26: ∂Si(L)

∂L = ∂Si(L)
∂(lx ,lx ,lθ)

=

[
1 0 − sin lθ · si,x − cos lθ · si,y
0 1 cos lθ · si,x − sin lθ · si,y

]
27: ∇M(Si), Pm ←Map interpolation(Map, Si)

28: J[i] = ∇M(Si)
∂Si(Li)

∂Li
, F[i] = 1− Pm

29: end
30: H = JT J, K = JT F

The corresponding flow chart of the NLO-CSM algorithm and software–hardware
design partition is shown in Figure 5. The Score Calculation process corresponds to the
CSM-based coarse match process. After all the poses have been retrieved by the coarse
match process, the algorithm enters the NLO-based fine match process. The function
get_HessianDerivs, calculating the Hessian matrix H and the residual matrix K in Algo-
rithm 2, has been divided into six calculation processes in Figure 5, i.e., from the Derivative
and Coordinate Calculation process to the Matrix Inverse process. As shown in Figure 5,
the whole coarse match process and H/K matrix calculation process are selected to be
implemented in the proposed NLO-CSM hardware accelerator in this study because the
computation of two processes is highly repetitive and significantly intensive in the NLO-
CSM algorithm, which needs to be executed for each LiDAR point in a LiDAR frame. In
contrast, as the processes of matrix inverse and the final pose update are only executed
once after the H/K matrix, corresponding to the last LiDAR point of a LiDAR frame, is
obtained and, therefore, considering that the hardware utilization of these two processes is
not high, they are selected to be implemented by software executed in a dual-core CPU in
this study.

Sensors 2022, 22, 8947 8 of 22Sensors 2022, 22, x FOR PEER REVIEW 8 of 24

Figure 5. Flow chart of the NLO-CSM algorithm and the corresponding software and hardware
design partition.

Figure 6 presents the results of evaluating the amount of computation required by
the conventional CSM and NLO-CSM algorithm, on an Intel Core i5-10400 platform, in
terms of the computational time as measured. This test is based on an occupancy grid map
with a resolution of 5 cm in an 8 m × 15 m indoor scene provided by our collaborator from
Shanghai University. The accuracy of used LiDAR is 0.5 mm, the scanning range is 10
m~0.05 m, and the LiDAR frame to be matched contains 90 LiDAR points in this test. The
computation time of the conventional CSM algorithm is 1.55 s, as the CSM algorithm
needs to match a huge number of poses based on the occupancy grid map. In contrast, the
NLO-CSM algorithm only needs about 7.0 ms to complete the overall pose calculation,
which is 225 times faster than the CSM algorithm. Therefore, this improvement by the
NLO-CSM algorithm is significant, especially for the real-time energy-constrained mobile
and micro robot applications.

Figure 5. Flow chart of the NLO-CSM algorithm and the corresponding software and hardware
design partition.

Figure 6 presents the results of evaluating the amount of computation required by
the conventional CSM and NLO-CSM algorithm, on an Intel Core i5-10400 platform, in
terms of the computational time as measured. This test is based on an occupancy grid
map with a resolution of 5 cm in an 8 m × 15 m indoor scene provided by our collaborator
from Shanghai University. The accuracy of used LiDAR is 0.5 mm, the scanning range is
10 m~0.05 m, and the LiDAR frame to be matched contains 90 LiDAR points in this test.
The computation time of the conventional CSM algorithm is 1.55 s, as the CSM algorithm
needs to match a huge number of poses based on the occupancy grid map. In contrast,
the NLO-CSM algorithm only needs about 7.0 ms to complete the overall pose calculation,
which is 225 times faster than the CSM algorithm. Therefore, this improvement by the
NLO-CSM algorithm is significant, especially for the real-time energy-constrained mobile
and micro robot applications.

Sensors 2022, 22, 8947 9 of 22Sensors 2022, 22, x FOR PEER REVIEW 9 of 24

Figure 6. Computation time of the conventional CSM algorithm and the NLO-CSM algorithm based
on Intel Core i5-10400 platform.

Table 1 shows the comparison of the localization error between the adopted NLO-
CSM and the RIA-CSM published in the latest literature [17]. There are two publicly avail-
able datasets that have been used, i.e., the Deutsches Museum dataset and the Revo LDS
dataset [15], which have been recorded for testing the Cartographer SLAM system by uti-
lizing the NLO-CSM algorithm for scan matching. The optimal values of the positions and
the rotation angles have been verified by the comparison with the results from Cartogra-
pher, which incorporates Google’s Ceres, a large-scale nonlinear optimization library, to
solve the above nonlinear least square problem [15]. The differences in the position and
in the rotation angle, as well as the corresponding standard deviation, are listed in the
table for each dataset. It can be seen that the difference in the position by utilizing the
adopted NLO-CSM algorithm does not exceed 5 cm, and the difference in the rotation
angle does not exceed 0.5 degrees. Even though the difference in the rotation angle of this
work, based on the Revo LDS dataset, is a little higher than the RIA-CSM, it should be
mentioned that all the localization error types of this work based on the Deutsches Mu-
seum dataset are superior to the RIA-CSM, which means a high scan match accuracy has
been achieved by the NLO-CSM algorithm.

Table 1. Comparison of the localization error between the adopted NLO-CSM and the RIA-CSM.

Dataset Error Type
Localization Error

This Work
IEEE Sensors Journal’

2022 [15]

Deutsches
Museum

Abs translational error (m) 0.02332 ± 0.01634 0.03034 ± 0.02193
Sqr translational error (mଶ) 0.00081 ± 0.00155 0.00140 ± 0.00241
Abs rotational error (deg) 0.14480 ± 0.13388 0.15550 ± 0.15115
Sqr rotational error (deg2) 0.03889 ± 0.08288 0.04687 ± 0.09481

Revo LDS

Abs translational error (m) 0.02092 ± 0.02595 0.03185 ± 0.01916
Sqr translational error (mଶ) 0.00111 ± 0.00299 0.00138 ± 0.00156
Abs rotational error (deg) 0.23718 ± 0.23081 0.22776 ± 0.16350
Sqr rotational error (deg2) 0.10941 ± 0.19017 0.07839 ± 0.09769

Figure 6. Computation time of the conventional CSM algorithm and the NLO-CSM algorithm based
on Intel Core i5-10400 platform.

Table 1 shows the comparison of the localization error between the adopted NLO-CSM
and the RIA-CSM published in the latest literature [17]. There are two publicly avail-
able datasets that have been used, i.e., the Deutsches Museum dataset and the Revo LDS
dataset [15], which have been recorded for testing the Cartographer SLAM system by utiliz-
ing the NLO-CSM algorithm for scan matching. The optimal values of the positions and the
rotation angles have been verified by the comparison with the results from Cartographer,
which incorporates Google’s Ceres, a large-scale nonlinear optimization library, to solve
the above nonlinear least square problem [15]. The differences in the position and in the
rotation angle, as well as the corresponding standard deviation, are listed in the table for
each dataset. It can be seen that the difference in the position by utilizing the adopted
NLO-CSM algorithm does not exceed 5 cm, and the difference in the rotation angle does
not exceed 0.5 degrees. Even though the difference in the rotation angle of this work, based
on the Revo LDS dataset, is a little higher than the RIA-CSM, it should be mentioned that
all the localization error types of this work based on the Deutsches Museum dataset are
superior to the RIA-CSM, which means a high scan match accuracy has been achieved by
the NLO-CSM algorithm.

Table 1. Comparison of the localization error between the adopted NLO-CSM and the RIA-CSM.

Dataset Error Type
Localization Error

This Work IEEE Sensors Journal’ 2022 [15]

Deutsches Museum

Abs translational error (m) 0.02332 ± 0.01634 0.03034 ± 0.02193

Sqr translational error (m2) 0.00081 ± 0.00155 0.00140 ± 0.00241

Abs rotational error (deg) 0.14480 ± 0.13388 0.15550 ± 0.15115

Sqr rotational error (deg2) 0.03889 ± 0.08288 0.04687 ± 0.09481

Revo LDS

Abs translational error (m) 0.02092 ± 0.02595 0.03185 ± 0.01916

Sqr translational error (m2) 0.00111 ± 0.00299 0.00138 ± 0.00156

Abs rotational error (deg) 0.23718 ± 0.23081 0.22776 ± 0.16350

Sqr rotational error (deg2) 0.10941 ± 0.19017 0.07839 ± 0.09769

Sensors 2022, 22, 8947 10 of 22

3. NLO-CSM Algorithm Hardware Accelerator Design
3.1. Overall System Architecture

In order to identify the major computation-intensive tasks in the algorithm for hard-
ware acceleration, a statistical analysis of the pose iteration calculation process in the
NLO-CSM algorithm, in Algorithm 2, has been carried out. In this study, considering a typ-
ical case of a single-line LiDAR scanning 600 points at a time and 50 times Gauss–Newton
iterations on the Intel Core i5-10400 platform, the computation load results of major tasks,
by calculating the numbers of addition, shift, and multiplication, are shown in Figure 7. It
is found that the main computation-intensive tasks are get_score and get_HessianDerivs,
which take up 92% and 87% of computing resources in the CSM-based coarse match and
NLO-based fine match processes, respectively. Notably, according to Algorithm 2, the main
calculation operator of get_score and get_HessianDerivs is a matrix calculation that is one
of the most time-consuming and power-hungry operations. Thus, a hardware accelerator
design is proposed to accelerate these two major computation-intensive tasks, which are
get_score and get_HessianDerivs in the NLO-CSM algorithm, as highlighted in the blue
color in Algorithm 2, in this study.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 24

3. NLO-CSM Algorithm Hardware Accelerator Design
3.1. Overall System Architecture

In order to identify the major computation-intensive tasks in the algorithm for hard-
ware acceleration, a statistical analysis of the pose iteration calculation process in the
NLO-CSM algorithm, in Algorithm 2, has been carried out. In this study, considering a
typical case of a single-line LiDAR scanning 600 points at a time and 50 times Gauss–
Newton iterations on the Intel Core i5-10400 platform, the computation load results of
major tasks, by calculating the numbers of addition, shift, and multiplication, are shown
in Figure 7. It is found that the main computation-intensive tasks are get_score and
get_HessianDerivs, which take up 92% and 87% of computing resources in the CSM-based
coarse match and NLO-based fine match processes, respectively. Notably, according to
Algorithm 2, the main calculation operator of get_score and get_HessianDerivs is a matrix
calculation that is one of the most time-consuming and power-hungry operations. Thus,
a hardware accelerator design is proposed to accelerate these two major computation-in-
tensive tasks, which are get_score and get_HessianDerivs in the NLO-CSM algorithm, as
highlighted in the blue color in Algorithm 2, in this study.

(a)

(b)

Figure 7. Computational load analysis of major tasks in the NLO-CSM algorithm in: (a) coarse match
process; (b) fine match process.

Worth noting, the matrix calculation of 𝐻 = 𝐽்𝐽 and 𝐾 = 𝐽்𝐹 of the get_Hessian-
Derivs operation in Algorithm 2 of Section 2 could be transformed into 𝐻 = 𝛴𝐽௜்𝐽௜ and 𝐾 = 𝛴𝐽௜்𝑓௜, as shown in Figure 8a. In the direct parallel implementation of the matrix cal-
culation, as shown in Figure 8b, multiple multipliers and a large-scale adder tree are used
for calculating the matrix H/K from J and F. When the number of LiDAR points per frame
increases, the size of the matrix J and F will become larger, resulting in large memory
overhead for storing the matrix J and F. In order to reduce the hardware overhead, the
proposed accelerator design uses a serial multiplication scheme to perform multiply-ac-
cumulate operations, as described in Figure 8c. In contrast to the parallel method using
larger hardware resources of 3n multipliers and 3𝑛(1 − ଵଶ(೗೚೒మ೙మశభ)) adders (n represents

the number of LiDAR points), the proposed accelerator design only uses 3 multipliers and
3 adders by performing multiply-accumulate operation for the single ji or fi once it has
been obtained. In terms of the processing speed, the proposed serial implementation
scheme uses 6n clock cycles (6 clock cycles for one LiDAR point, which will be introduced

92%

8%

0% 20% 40% 60% 80% 100%

get_score

others

87%

13%

0% 20% 40% 60% 80% 100%

get_HessianDerivs

others

Figure 7. Computational load analysis of major tasks in the NLO-CSM algorithm in: (a) coarse match
process; (b) fine match process.

Worth noting, the matrix calculation of H = JT J and K = JT F of the get_HessianDerivs
operation in Algorithm 2 of Section 2 could be transformed into H = ΣJi

T Ji and K = ΣJi
T fi,

as shown in Figure 8a. In the direct parallel implementation of the matrix calculation, as
shown in Figure 8b, multiple multipliers and a large-scale adder tree are used for calculat-
ing the matrix H/K from J and F. When the number of LiDAR points per frame increases,
the size of the matrix J and F will become larger, resulting in large memory overhead
for storing the matrix J and F. In order to reduce the hardware overhead, the proposed
accelerator design uses a serial multiplication scheme to perform multiply-accumulate
operations, as described in Figure 8c. In contrast to the parallel method using larger hard-
ware resources of 3n multipliers and 3n

(
1− 1

2(log2
n
2 +1)

)
adders (n represents the number of

LiDAR points), the proposed accelerator design only uses 3 multipliers and 3 adders by
performing multiply-accumulate operation for the single ji or fi once it has been obtained.
In terms of the processing speed, the proposed serial implementation scheme uses 6n clock
cycles (6 clock cycles for one LiDAR point, which will be introduced later in this section) to

Sensors 2022, 22, 8947 11 of 22

complete the matrix multiplication. The direct parallel uses (3+ 15n
2) clock cycles because it

takes 6n clock cycles to buffer the input LiDAR frame points (i.e., 90 points in this study)
and (3+ 3n

2) clock cycles for the adder tree to perform accumulation.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 24

later in this section) to complete the matrix multiplication. The direct parallel uses (3+ଵହ୬ଶ)
clock cycles because it takes 6n clock cycles to buffer the input LiDAR frame points (i.e.,
90 points in this study) and (3+ଷ୬ଶ) clock cycles for the adder tree to perform accumulation.

Figure 8. (a) Matrix calculation of the H/K matrix; (b) direct parallel implementation method; (c)
proposed serial implementation scheme of the H/K matrix calculation.

Figure 9 shows the hardware architecture of the proposed NLO-CSM hardware ac-
celerator design, which consists of three major parts:
(1) The preprocessing module performs the storage update of the pose, as well as the

input-data processing of the pose angles, i.e., the 𝑠𝑖𝑛 𝜃 and 𝑐𝑜𝑠 𝜃 calculation, in the
get_score and get_HessianDerivs processes.

(2) The local memory module stores the matched occupancy grid map and the LiDAR
points obtained by scanning frames of the LiDAR sensor.

(3) The score/K&H matrix calculation module is the core calculation unit of the acceler-
ator, including derivative and coordinate calculator, Grid map read controller, matrix
multiplier, gradient calculator, and matrix MAC unit.
The score/K&H matrix calculation module can be used to calculate both the score

under a certain pose in the CSM-based coarse match process and the Gauss–Newton iter-
ation of a certain pose in the NLO-based fine match process, so the operation speed of the

Figure 8. (a) Matrix calculation of the H/K matrix; (b) direct parallel implementation method;
(c) proposed serial implementation scheme of the H/K matrix calculation.

Figure 9 shows the hardware architecture of the proposed NLO-CSM hardware accel-
erator design, which consists of three major parts:

(1) The preprocessing module performs the storage update of the pose, as well as the
input-data processing of the pose angles, i.e., the sin θ and cos θ calculation, in the
get_score and get_HessianDerivs processes.

(2) The local memory module stores the matched occupancy grid map and the LiDAR
points obtained by scanning frames of the LiDAR sensor.

(3) The score/K&H matrix calculation module is the core calculation unit of the accelera-
tor, including derivative and coordinate calculator, Grid map read controller, matrix
multiplier, gradient calculator, and matrix MAC unit.

Sensors 2022, 22, 8947 12 of 22

Sensors 2022, 22, x FOR PEER REVIEW 12 of 24

matrix calculation module affects the overall calculation speed of the accelerator and, ul-
timately, determines the acceleration performance of the NLO-CSM algorithm. The pro-
posed accelerator design adopts the strategy of matrix splitting and pipeline calculation,
in the hardware implementation of the K and H matrix calculation part, to achieve fast
computing. Furthermore, by exploiting the operator sharing between the two-step algo-
rithm computation (i.e., CSM and NLO algorithms), module reusing technique is also
adopted to further reduce the hardware overhead of the proposed hardware accelerator.

Figure 9. Overall architecture of the proposed NLO-CSM hardware accelerator design.

The data processing flow of the proposed NLO-CSM hardware accelerator is de-
scribed in the following discussion. The initial pose from the LiDAR sensor is sent into the
preprocessing module, and the pose updater performs the storage update of the pose. The
angle calculator computes the 𝑠𝑖𝑛 𝜃 and 𝑐𝑜𝑠 𝜃 in the function get_score and get_Hessi-
anDerivs by a CORDIC (Coordinate Rotation Digital Computer) hardware unit [18]. For
the score/K&H matrix calculation module, there are two operation modes for accelerating
CSM and NLO algorithms, respectively: during the CSM-based coarse match process, the
grid probability value of each scan point is read from the local memory module to com-
pute the summation of probability value of the corresponding grids and return the pose
with the maximum score, according to line 12–16 in Algorithm 2, so a rational initial pose
for the non-linear optimization algorithm is computed; for the NLO-based fine match pro-
cess, the calculations shown in line 25–29 of Algorithm 2 can also be implemented in the
score/K&H matrix calculation module. Firstly, the score/K&H matrix calculation module
receives the pose information and the trigonometric calculation results from the Prepro-
cessing module, and then, it calculates the coordinates of the LiDAR points. After calcu-
lating the addresses of the grids, according to Equations (3) and (4), the grid map data
could be read out from the local memory module. Finally, the score/K&H matrix calcula-
tion module completes the calculation of K and H matrix, as described in Algorithm 2,
and the results of K and H matrix would be sent to the processing system for further pro-
cessing.

To realize fast computing of the NLO algorithm, this proposed accelerator design
adopts the pipeline processing by segmenting the computation task of K&H matrix calcu-
lation into five subtasks and mapping the subtasks into the score/K&H matrix calculation
module. By analyzing the computational load and type of tasks in the K&H matrix calcu-
lation, the segmentation of subtasks is depicted in Table 2:
(1) According to Equation (1), the calculation of డௌ೔(௅)డ௅ and 𝑆௜(𝐿) in the function

get_score and get_HessianDerivs shares the same trigonometric functions and mul-
tiplication calculations, and it is segmented into subtask 1. The same hardware circuit
in the score/K&H matrix calculation module can be reused to reduce the repeated
calculation and hardware overhead, as shown in Figure 10a.

Figure 9. Overall architecture of the proposed NLO-CSM hardware accelerator design.

The score/K&H matrix calculation module can be used to calculate both the score
under a certain pose in the CSM-based coarse match process and the Gauss–Newton it-
eration of a certain pose in the NLO-based fine match process, so the operation speed
of the matrix calculation module affects the overall calculation speed of the accelerator
and, ultimately, determines the acceleration performance of the NLO-CSM algorithm. The
proposed accelerator design adopts the strategy of matrix splitting and pipeline calcula-
tion, in the hardware implementation of the K and H matrix calculation part, to achieve
fast computing. Furthermore, by exploiting the operator sharing between the two-step
algorithm computation (i.e., CSM and NLO algorithms), module reusing technique is also
adopted to further reduce the hardware overhead of the proposed hardware accelerator.

The data processing flow of the proposed NLO-CSM hardware accelerator is described
in the following discussion. The initial pose from the LiDAR sensor is sent into the prepro-
cessing module, and the pose updater performs the storage update of the pose. The angle
calculator computes the sin θ and cos θ in the function get_score and get_HessianDerivs by
a CORDIC (Coordinate Rotation Digital Computer) hardware unit [18]. For the score/K&H
matrix calculation module, there are two operation modes for accelerating CSM and NLO
algorithms, respectively: during the CSM-based coarse match process, the grid probability
value of each scan point is read from the local memory module to compute the summation
of probability value of the corresponding grids and return the pose with the maximum
score, according to line 12–16 in Algorithm 2, so a rational initial pose for the non-linear
optimization algorithm is computed; for the NLO-based fine match process, the calculations
shown in line 25–29 of Algorithm 2 can also be implemented in the score/K&H matrix
calculation module. Firstly, the score/K&H matrix calculation module receives the pose
information and the trigonometric calculation results from the Preprocessing module, and
then, it calculates the coordinates of the LiDAR points. After calculating the addresses of
the grids, according to Equations (3) and (4), the grid map data could be read out from
the local memory module. Finally, the score/K&H matrix calculation module completes
the calculation of K and H matrix, as described in Algorithm 2, and the results of K and H
matrix would be sent to the processing system for further processing.

To realize fast computing of the NLO algorithm, this proposed accelerator design
adopts the pipeline processing by segmenting the computation task of K&H matrix calcula-
tion into five subtasks and mapping the subtasks into the score/K&H matrix calculation
module. By analyzing the computational load and type of tasks in the K&H matrix calcula-
tion, the segmentation of subtasks is depicted in Table 2:

(1) According to Equation (1), the calculation of ∂Si(L)
∂L and Si(L) in the function get_score

and get_HessianDerivs shares the same trigonometric functions and multiplication
calculations, and it is segmented into subtask 1. The same hardware circuit in the

Sensors 2022, 22, 8947 13 of 22

score/K&H matrix calculation module can be reused to reduce the repeated calcula-
tion and hardware overhead, as shown in Figure 10a.

(2) In the local memory module, the two-dimensional grid map is stored in the one-
dimensional form. The values of four LiDAR points in the grid map need to be read
at a time, so the access to the local memory is segmented into subtask 2.

(3) As shown in Figure 10b, both of ∇Minter(Si(L)) and Minter(Si(L)) use the same input
data, and the calculation of relevant coordinates are consistent. Therefore, the same
operation can be reused to reduce the repeated computation and hardware overhead,
and it is segmented into subtask 3.

(4) The small size matrix multiplication calculation is set as subtask 4, which finishes the

calculation of ji = ∇Minter(Si(L)) · ∂Si(L)
∂L .

(5) The matrix multiplication and summation of the H and K matrix is segmented into
subtask 5.

Table 2. Segmentation of Computation Tasks in the Fine Match Process.

Computing Task Hardware Module

Subtask 1 ∂Si(L)
∂L , Si(L) Derivative & Coordinate calculator

Subtask 2 M(P11) M(P01) M(P10) M(P00) Grid map read controller

Subtask 3 ∇Minter(Si(L)),
fi = 1−Minter(Si(L)) Gradient calculator

Subtask 4 ji = ∇Minter(Si(L)) · ∂Si(L)
∂L

Matrix multiplier

Subtask 5 H = H + jT
i jiK = K + jT

i fi Matrix MAC unit

Note that, for the calculation of the CSM-based coarse match process, the subtask 1
and subtask 2 calculate the address of the grid map, according to the coordinates of the
LiDAR point, and find the probability value of the corresponding grids, and then, only
subtask 5 completes the score calculation.

The 5-stage pipeline diagram of the proposed NLO-CSM hardware accelerator is
shown in Figure 11. In the 1st pipeline stage, the Derivative and Coordinate calculator
performs the 1st subtask of ∂Si(L)

∂L and Si(L) calculation by the first 3 clock cycles, and
it passes the coordinate result to the grid map read controller. During the next 6 clock
cycles in the 2nd pipeline stage, the grid map read controller computes the corresponding
address based on the coordinates and reads grid map data from the SRAM in the local
memory module. In the 3rd pipeline stage, the gradient calculator uses the grid map data to
compute ∇Minter(Si(L)) in 5 clock cycles and, then, sends the gradient result to the matrix
multiplier. In the 4th pipeline stage, the matrix multiplier performs the multiplication of
the gradient and derivative of Si(L) by 3 clock cycles. In the 5th pipeline stage, the matrix
MAC unit performs the serial multiplication accumulation to compute the H and K matrix.
Although the pipeline hardware utilization does not achieve a full 100%, the proposed
NLO-CSM hardware accelerator employs the 5-stage pipeline scheme to effectively improve
the processing throughput of computing tasks on LiDAR point stream, thus achieving fast
computing speed. The pipeline latency of the proposed NLO-CSM hardware accelerator is
30 clock cycles, and the processing speed of the LiDAR point stream is only 6 clock cycles
per LiDAR point.

Sensors 2022, 22, 8947 14 of 22
Sensors 2022, 22, x FOR PEER REVIEW 14 of 24

(a)

(b)

Figure 10. Hardware reuse scheme in (a) Subtask 1 and (b) Subtask 3 of the proposed NLO-CSM
hardware accelerator design.

The 5-stage pipeline diagram of the proposed NLO-CSM hardware accelerator is
shown in Figure 11. In the 1st pipeline stage, the Derivative and Coordinate calculator
performs the 1st subtask of డௌ೔(௅)డ௅ and 𝑆௜(𝐿) calculation by the first 3 clock cycles, and it
passes the coordinate result to the grid map read controller. During the next 6 clock cycles
in the 2nd pipeline stage, the grid map read controller computes the corresponding ad-
dress based on the coordinates and reads grid map data from the SRAM in the local
memory module. In the 3rd pipeline stage, the gradient calculator uses the grid map data
to compute 𝛻𝑀௜௡௧ ௘௥(𝑆௜(𝐿)) in 5 clock cycles and, then, sends the gradient result to the
matrix multiplier. In the 4th pipeline stage, the matrix multiplier performs the multiplica-
tion of the gradient and derivative of Si(L) by 3 clock cycles. In the 5th pipeline stage, the

Figure 10. Hardware reuse scheme in (a) Subtask 1 and (b) Subtask 3 of the proposed NLO-CSM
hardware accelerator design.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 24

matrix MAC unit performs the serial multiplication accumulation to compute the H and
K matrix. Although the pipeline hardware utilization does not achieve a full 100%, the
proposed NLO-CSM hardware accelerator employs the 5-stage pipeline scheme to effec-
tively improve the processing throughput of computing tasks on LiDAR point stream,
thus achieving fast computing speed. The pipeline latency of the proposed NLO-CSM
hardware accelerator is 30 clock cycles, and the processing speed of the LiDAR point
stream is only 6 clock cycles per LiDAR point.

Figure 11. Pipeline diagram of the proposed NLO-CSM hardware accelerator.

3.2. Architectures of Subunits
The hardware architectures of the above five sub-circuit units are presented in Figure

12. As shown in Figure 12a, the Derivative and Coordinate calculator corresponds to the
Derivative and Coordinate Calculation process in Figure 5, which is realized by four mul-
tipliers and four adders. The four multipliers calculate 𝑠𝑖𝑛 𝑙ఏ ⋅ 𝑠௜,௫, 𝑐𝑜𝑠 𝑙ఏ ⋅ 𝑠௜,௬, 𝑐𝑜𝑠 𝑙ఏ ⋅ 𝑠௜,௫,
and 𝑠𝑖𝑛 𝑙ఏ ⋅ 𝑠௜,௬, and then, the four adders calculate the derivatives according to line 26 in
Algorithm 2.

Figure 11. Pipeline diagram of the proposed NLO-CSM hardware accelerator.

Sensors 2022, 22, 8947 15 of 22

3.2. Architectures of Subunits

The hardware architectures of the above five sub-circuit units are presented in Figure 12.
As shown in Figure 12a, the Derivative and Coordinate calculator corresponds to the
Derivative and Coordinate Calculation process in Figure 5, which is realized by four
multipliers and four adders. The four multipliers calculate sin lθ · si,x, cos lθ · si,y, cos lθ · si,x,
and sin lθ · si,y, and then, the four adders calculate the derivatives according to line 26 in
Algorithm 2.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 24

Figure 12. Hardware architectures of (a) Derivative and Coordinate calculator; (b) grid map read
controller; (c) gradient calculator; (d) matrix multiplier; (e) matrix MAC unit in the proposed NLO-
CSM hardware accelerator design.

The grid map read controller calculates the address of the corresponding grid map
in the local memory, according to the coordinates of the LiDAR point, as shown in Figure
12b. Specifically, due to the bilinear interpolation of the grid map, as shown in Figure 4,
the coordinates of the LiDAR points and the probability values of the corresponding grids
of the three surrounding points are required. The coordinates of these four points can be
obtained according to the way the map is stored in the local memory, as shown in Equa-
tions (5)–(8). 𝐴𝑑𝑑𝑟(𝑃଴଴) = 𝑆௜(𝐿)௬ ⋅ 𝑟𝑜𝑤_𝑙𝑒𝑛 + 𝑆௜(𝐿)௫ (5) 𝐴𝑑𝑑𝑟(𝑃ଵ଴) = 𝑆௜(𝐿)௬ ⋅ 𝑟𝑜𝑤_𝑙𝑒𝑛 + 𝑆௜(𝐿)௫ + 1 (6)𝐴𝑑𝑑𝑟(𝑃଴ଵ) = 𝑆௜(𝐿)௬ ⋅ 𝑟𝑜𝑤_𝑙𝑒𝑛 + 𝑆௜(𝐿)௫ + 𝑟𝑜𝑤௟௘௡ (7)𝐴𝑑𝑑𝑟(𝑃ଵଵ) = 𝑆௜(𝐿)௬ ⋅ 𝑟𝑜𝑤_𝑙𝑒𝑛 + 𝑆௜(𝐿)௫ + 𝑟𝑜𝑤_𝑙𝑒𝑛 + 1 (8)

The gradient calculator completes the bilinear interpolation fitting of discrete grids
to obtain the probability value and gradient of the LiDAR point, as shown in Figure 12c.
The probability values M(P00), M(P01), M(P10), and M(P11) are multiplied with (y − y0) and
(x − x0), respectively, by the MUX and multiplier, according to Equation (3). Then, the
products are added and the results are multiplied with (y − y0) and (y1 − y). Finally, the
interpolated values fi are obtained from the last adder.

Figure 12. Hardware architectures of (a) Derivative and Coordinate calculator; (b) grid map read
controller; (c) gradient calculator; (d) matrix multiplier; (e) matrix MAC unit in the proposed NLO-
CSM hardware accelerator design.

The grid map read controller calculates the address of the corresponding grid map in
the local memory, according to the coordinates of the LiDAR point, as shown in Figure 12b.
Specifically, due to the bilinear interpolation of the grid map, as shown in Figure 4, the
coordinates of the LiDAR points and the probability values of the corresponding grids
of the three surrounding points are required. The coordinates of these four points can
be obtained according to the way the map is stored in the local memory, as shown in
Equations (5)–(8).

Addr(P00) = Si(L)y · row_len + Si(L)x (5)

Addr(P10) = Si(L)y · row_len + Si(L)x + 1 (6)

Sensors 2022, 22, 8947 16 of 22

Addr(P01) = Si(L)y · row_len + Si(L)x + rowlen (7)

Addr(P11) = Si(L)y · row_len + Si(L)x + row_len + 1 (8)

The gradient calculator completes the bilinear interpolation fitting of discrete grids
to obtain the probability value and gradient of the LiDAR point, as shown in Figure 12c.
The probability values M(P00), M(P01), M(P10), and M(P11) are multiplied with (y − y0) and
(x − x0), respectively, by the MUX and multiplier, according to Equation (3). Then, the
products are added and the results are multiplied with (y − y0) and (y1 − y). Finally, the
interpolated values fi are obtained from the last adder.

The matrix multiplier performs gradient and derivative multiplication, as shown in
Figure 12d. Note that, in the derivative ∂Si(L)

∂L , part of the data is constant 0 or 1, so the
multiplication of the derivative and gradient can be expressed by Equation (9). There are
two multipliers and adders that are utilized to calculate ji,3, while ji,1 ~ ji,2 are obtained
directly from the input.(

∂Minter(Si(L))
∂x

,
∂Minter(Si(L))

∂y

)[
1 0 ∂Si(L)

∂L [1, 3]
0 1 ∂Si(L)

∂L [2, 3]

]
= (ji,1, ji,2, ji,3) (9)

H = H + jT
i ji K = K + jT

i fi (10)

The architecture of the matrix MAC unit is shown in Figure 12e. The matrix MAC unit
includes three multipliers, three adders, and the Reg File that stores H and K matrices. There
are three multipliers that are utilized to finish the calculation of jiTji and jiTfi, according
to Equation (10), and three adders perform serial accumulation to calculate the H and K
matrix. The Reg File is divided into three parts, which store the diagonal data of the H
matrix, the remaining data of the H matrix, and the data of the K matrix, respectively.

4. Implementation Results and Discussion

This section presents the results of the proposed NLO-CSM hardware accelerator
based on both Xilinx’s Zynq-7020 FPGA and 65 nm ASIC implementations. In the NLO-
CSM algorithm, the number of Gauss–Newton iteration times λ is set to 50, the number of
LiDAR point n is set to 90, and the down-sampling rate of the CSM-based coarse match
process SR is set to 4 in this study. The software used for algorithm-level fixed-point
modeling and simulation is Matlab; the platform used for RTL design and simulation is
Xilinx’s Vivado; the tool used for ASIC simulation is Mentor’s Modelsim; the tool used for
ASIC synthesis is Synopsys’s Design Compiler; the tool used for ASIC layout place and
route is Cadence’s Innovus.

4.1. FPGA Implementation and Evaluation

The proposed NLO-CSM hardware accelerator is implemented on a Xilinx’s Zynq-
7020 FPGA device. The data used to calculate the trigonometric functions, sin and cos,
of the pose angle is represented in a 15-bit fixed-point number. The map coordinates,
interpolation, gradient, and matrix operations of the LiDAR point are all represented in
an 8-bit fixed-point number. In order to verify the proposed hardware accelerator fixed-
point design, this study uses the test scenario provided by our collaborator from Shanghai
University to simulate the NLO-CSM hardware accelerator, and it compares the results
with the CPU software floating-point algorithm model.

As the proposed NLO-CSM hardware accelerator is designed to mainly accelerate
the computation of H and K matrices by the Gauss–Newton method in the fine match
process, the fixed-point results of H and K matrices are evaluated in terms of compu-
tation error. By using 200 different poses as the initial value of the fine match process
to calculate the corresponding H and K matrices, this study uses the normalized root
mean square error (NRMSE) to evaluate errors of the NLO-CSM hardware accelerator

Sensors 2022, 22, 8947 17 of 22

against the CPU software results. The NRMSEs of the H and K matrices are defined by
Equations (11) and (12), respectively.

NRMSE(H) =
1

M− N

√
∑3

i=1 ∑3
j=1

(
H f loat

i,j − H f ixed
i,j

)2
, M = max(H f loat) N = min(H f ixed) (11)

NRMSE(K) =
1

M− N

√
∑3

j=1

(
K f loat

i − K f ixed
i

)2
, M = max(K f loat) N = min(K f ixed) (12)

The NRMSE results of H and K matrices for the fine match process under 200 different
poses are shown in Figure 13. The NRMSE of the H matrix is less than 0.05, and the
NRMSE of the K matrix is less than 0.04, which meets the accuracy requirements for the
H and K matrices of the 2D LiDAR SLAM, using the NLO-CSM algorithm as the scan
matching algorithm.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 24

NRMSE of the K matrix is less than 0.04, which meets the accuracy requirements for the
H and K matrices of the 2D LiDAR SLAM, using the NLO-CSM algorithm as the scan
matching algorithm.

N
R

M
SE

 o
f H

Times
(a)

N
R

M
SE

 o
f K

Times
(b)

Figure 13. The NRMSE results of (a) H matrix and (b) K matrix computed by the proposed NLO-
CSM hardware accelerator design.

Table 3 presents the implementation results of resource utilization and power con-
sumption of the proposed design on the Xilinx’s Zynq-7020 FPGA device. At 100 MHz
clock, the proposed FPGA design performs a scan matching at 8.98 ms and 7.15 mJ. It
outperforms the CPU (Arm-A9*2 @650 MHz) computation of a floating-point software,
design with a scan matching at 123.76 ms and 76.98 mJ, by a 92.74% increase and 90.71%
saving in computing speed and energy consumption, respectively. This result means a
significant improvement in energy efficiency for the scan matching in 2D LiDAR SLAM.

Table 3. Resource Utilization and Power Consumption of the Proposed Hardware Accelerator SoC
Design on a Xilinx Zynq FPGA.

LUT 4142
FF 3193

DSP 19
BRAM 297 KB
Power 0.79 W@100 MHz

Figure 14 shows the scan matching result of an indoor corner in a grid map (i.e., a 10
m × 16 m rectangle) whose resolution is 5 cm. The initial pose value is (790 cm, 1410 cm,
0.5°). Figure 14a shows the mapping between scan points and the grid map under the
initial pose, while Figure 14b shows the matching result of (799.2294 cm, 1402.9074 cm,
0.0572°) calculated by the proposed hardware accelerator. The baseline result, calculated
by a floating-point software design, is (799.2798 cm, 1402.8616 cm, 0.0594°). The error of
matching results of the proposed accelerator is around 0.05 cm and 0.002°, which is negli-
gible at 5 cm resolution, meaning there is a high matching accuracy.

Figure 13. The NRMSE results of (a) H matrix and (b) K matrix computed by the proposed NLO-CSM
hardware accelerator design.

Table 3 presents the implementation results of resource utilization and power con-
sumption of the proposed design on the Xilinx’s Zynq-7020 FPGA device. At 100 MHz
clock, the proposed FPGA design performs a scan matching at 8.98 ms and 7.15 mJ. It
outperforms the CPU (Arm-A9*2 @650 MHz) computation of a floating-point software,
design with a scan matching at 123.76 ms and 76.98 mJ, by a 92.74% increase and 90.71%
saving in computing speed and energy consumption, respectively. This result means a
significant improvement in energy efficiency for the scan matching in 2D LiDAR SLAM.

Table 3. Resource Utilization and Power Consumption of the Proposed Hardware Accelerator SoC
Design on a Xilinx Zynq FPGA.

LUT 4142

FF 3193
DSP 19

BRAM 297 KB
Power 0.79 W@100 MHz

Sensors 2022, 22, 8947 18 of 22

Figure 14 shows the scan matching result of an indoor corner in a grid map (i.e., a
10 m × 16 m rectangle) whose resolution is 5 cm. The initial pose value is (790 cm, 1410 cm,
0.5◦). Figure 14a shows the mapping between scan points and the grid map under the
initial pose, while Figure 14b shows the matching result of (799.2294 cm, 1402.9074 cm,
0.0572◦) calculated by the proposed hardware accelerator. The baseline result, calculated
by a floating-point software design, is (799.2798 cm, 1402.8616 cm, 0.0594◦). The error
of matching results of the proposed accelerator is around 0.05 cm and 0.002◦, which is
negligible at 5 cm resolution, meaning there is a high matching accuracy.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 24

799.2294cm

1402.9074cm

0.0572°

790cm

0.5°

1410cm

(a) (b)

Figure 14. Mapping between scan points and grid map under the (a) initial pose; (b) the pose from
the proposed NLO-CSM hardware accelerator.

As shown in Figure 15a, this work uses a Xilinx’s Zynq-7020 FPGA device to realize
the SoC system of the NLO-CSM hardware accelerator, and it realizes the overall acceler-
ated calculation of NLO-CSM algorithm through software and hardware co-design. When
the SoC system initiates, the Processing System (PS) of the FPGA writes control com-
mands to the AXI DMA module through the AXI-Lite bus pathway, and it sends com-
mands to the NLO-CSM hardware accelerator to write grid map and LiDAR frame data.
Then, the accelerator enters the state of receiving data. After that, the AXI DMA module
completes the transfer of grid map and LiDAR frame data to BRAM through the AXI-
Stream data path, and the PS sends the calculation instruction to the hardware accelerator
through the AXI-Lite bus path, and subsequently, the accelerator starts the calculation
task. When the accelerator completes the acceleration task, it sends the interrupt signal
through the IRQ port of the PS side, and the PS will read the final result through the AXI-
Lite bus path. Finally, the PS sends the matching results to the HMI screen through UART
port for a result demonstration. The demo photo of the proposed NLO-CSM hardware
accelerator SoC system’s result for the scan matching of a corner is shown in Figure 15b.

Figure 14. Mapping between scan points and grid map under the (a) initial pose; (b) the pose from
the proposed NLO-CSM hardware accelerator.

As shown in Figure 15a, this work uses a Xilinx’s Zynq-7020 FPGA device to realize the
SoC system of the NLO-CSM hardware accelerator, and it realizes the overall accelerated
calculation of NLO-CSM algorithm through software and hardware co-design. When the
SoC system initiates, the Processing System (PS) of the FPGA writes control commands
to the AXI DMA module through the AXI-Lite bus pathway, and it sends commands to
the NLO-CSM hardware accelerator to write grid map and LiDAR frame data. Then, the
accelerator enters the state of receiving data. After that, the AXI DMA module completes
the transfer of grid map and LiDAR frame data to BRAM through the AXI-Stream data
path, and the PS sends the calculation instruction to the hardware accelerator through the
AXI-Lite bus path, and subsequently, the accelerator starts the calculation task. When the
accelerator completes the acceleration task, it sends the interrupt signal through the IRQ
port of the PS side, and the PS will read the final result through the AXI-Lite bus path.
Finally, the PS sends the matching results to the HMI screen through UART port for a result
demonstration. The demo photo of the proposed NLO-CSM hardware accelerator SoC
system’s result for the scan matching of a corner is shown in Figure 15b.

4.2. ASIC Implementation and Discussion

In this study, the proposed NLO-CSM hardware accelerator is also implemented in
a 65 nm CMOS process node, and the ASIC layout is shown in Figure 16. Note that,
because of relatively low data throughput from a single-line LiDAR sensor, this work
adopts high-density single-port SRAM in the ASIC implementation to realize the storage
of local memory for the grid map and LiDAR points to reduce hardware overhead. The
256-KB SRAM is used for storing the grid map, while 3-KB SRAM is used for buffering
LiDAR points. The ASIC implementation results of the proposed NLO-CSM hardware
accelerator core are summarized in Table 4.

Sensors 2022, 22, 8947 19 of 22Sensors 2022, 22, x FOR PEER REVIEW 20 of 24

(a)

(b)

Figure 15. (a) SoC architecture and (b) a photo of the proposed NLO-CSM hardware accelerator’s
demo for scan matching of an indoor corner based on a Zynq FPGA kit.

4.2. ASIC Implementation and Discussion
In this study, the proposed NLO-CSM hardware accelerator is also implemented in

a 65 nm CMOS process node, and the ASIC layout is shown in Figure 16. Note that, be-
cause of relatively low data throughput from a single-line LiDAR sensor, this work adopts
high-density single-port SRAM in the ASIC implementation to realize the storage of local
memory for the grid map and LiDAR points to reduce hardware overhead. The 256-KB
SRAM is used for storing the grid map, while 3-KB SRAM is used for buffering LiDAR
points. The ASIC implementation results of the proposed NLO-CSM hardware accelerator
core are summarized in Table 4.

Figure 15. (a) SoC architecture and (b) a photo of the proposed NLO-CSM hardware accelerator’s
demo for scan matching of an indoor corner based on a Zynq FPGA kit.

Table 4. ASIC Implementation Results of the Proposed NLO-CSM Hardware Accelerator Core.

Process 65 nm

Area 1.49 × 1.23 mm2

Supply Voltage 1.08 V
Gates 1.37 M

Memory 259 KB
Power 11.2 mW@116 MHz

Figure 17 presents the comparison of different implementation solutions of the NLO-
CSM algorithm. Compared with the FPGA results, the ASIC implementation of the pro-
posed NLO-CSM hardware accelerator design reduces the computing time and the energy
consumption, per LiDAR frame, to 5.94 ms and 0.06 mJ at the maximum clock rate of
116 MHz, respectively, which shows that faster computing and higher energy efficiency
can be achieved by the ASIC-based hardware accelerator core design of scan matching in
2D LiDAR SLAM for mobile and micro robot applications.

Sensors 2022, 22, 8947 20 of 22Sensors 2022, 22, x FOR PEER REVIEW 21 of 24

Figure 16. ASIC layout of the proposed NLO-CSM hardware accelerator core in 65 nm process.

Figure 17 presents the comparison of different implementation solutions of the NLO-
CSM algorithm. Compared with the FPGA results, the ASIC implementation of the pro-
posed NLO-CSM hardware accelerator design reduces the computing time and the energy
consumption, per LiDAR frame, to 5.94 ms and 0.06 mJ at the maximum clock rate of 116
MHz, respectively, which shows that faster computing and higher energy efficiency can
be achieved by the ASIC-based hardware accelerator core design of scan matching in 2D
LiDAR SLAM for mobile and micro robot applications.

Table 4. ASIC Implementation Results of the Proposed NLO-CSM Hardware Accelerator Core.

Process 65 nm
Area 1.49 × 1.23 mm2

Supply Voltage 1.08 V
Gates 1.37 M

Memory 259 KB
Power 11.2 mW@116 MHz

Figure 16. ASIC layout of the proposed NLO-CSM hardware accelerator core in 65 nm process.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 24

Figure 16. ASIC layout of the proposed NLO-CSM hardware accelerator core in 65 nm process.

Figure 17 presents the comparison of different implementation solutions of the NLO-
CSM algorithm. Compared with the FPGA results, the ASIC implementation of the pro-
posed NLO-CSM hardware accelerator design reduces the computing time and the energy
consumption, per LiDAR frame, to 5.94 ms and 0.06 mJ at the maximum clock rate of 116
MHz, respectively, which shows that faster computing and higher energy efficiency can
be achieved by the ASIC-based hardware accelerator core design of scan matching in 2D
LiDAR SLAM for mobile and micro robot applications.

Table 4. ASIC Implementation Results of the Proposed NLO-CSM Hardware Accelerator Core.

Process 65 nm
Area 1.49 × 1.23 mm2

Supply Voltage 1.08 V
Gates 1.37 M

Memory 259 KB
Power 11.2 mW@116 MHz

Figure 17. Comparison of computing time and energy consumption, per LiDAR frame, among the
CPU software solution, FPGA hardware accelerator core, and ASIC accelerator core of the NLO-
CSM algorithm.

4.3. Comparison with the State-of-the-Art and Discussions

Table 5 presents the performance evaluation results of the proposed FPGA-based
NLO-CSM accelerator SoC (System-on-Chip) against the state-of-the-art designs in the
literature. The design in [16] is based on the conventional CSM, while the design in [17] is
based on a complicated RIA-CSM that requires significantly more hardware resources in
terms of computation logic and storage memory. As compared to the design in [17] that
has an impact-aware feature to implement real-time robot impact detection, our proposed
NLO-CSM accelerator design is less robust to robot impact. As the NLO-CSM adopted
in this work is actually based on the conventional CSM algorithm, the conventional CSM
hardware accelerator design in [16] is chosen for a fair comparison in this study.

Sensors 2022, 22, 8947 21 of 22

Table 5. The proposed NLO-CSM accelerator, based SoC’s characteristics and performance evaluation
results, compared to the state-of-the-arts.

Publication IEEE Access’2022 [16] IEEE Sensors Journal’2022 [17] This Work

FPGA Platform
Zynq-7020

(SoC)
(28 nm FPGA)

AX7Z100
(SoC)

(28 nm FPGA)

Zynq-7020
(SoC)

(28 nm FPGA)

Algorithm Conventional CSM
RIA-CSM

(Real-Time
Impact-Aware CSM)

NLO-CSM

Abs translational error (m) 0.0376 ± 0.0307
(Based on MIT-CSAIL dataset)

0.03185 ± 0.01916
(Based on Revo LDS dataset)

0.02092 ± 0.02595
(Based on Revo LDS dataset)

Grid Resolution (cm) 5 5 5

Frequency (MHz) 100 133 100

LUTs 21026 13870 4142

FFs 20121 22747 3193

BRAM (KB) 444 1962.5 297

DSPs 24 32 19

Frame Rate (fps) 12.13
@100 MHz

89.58 @133 MHz
(67.19 @100 MHz)

111.29
@100 MHz

Power Consumption 2.3 W
@100 MHz

2.113 W @133 MHz
(1.58 W @100 MHz)

0.79 W
@100 MHz

Energy Efficiency 189.52 mJ/frame 23.58 mJ/frame 7.15 mJ/frame

For the hardware resources, the proposed NLO-CSM accelerator design has saved
80.3% LUTs, 84.13% FFs, and 20.83% DSPs against the hardware accelerator of the con-
ventional CSM in [16], thanks to the adopted low-computation NLO-CSM algorithm, as
well as the proposed module reuse technique. For the processing speed, benefiting from
the low-computation algorithm and the adopted pipeline processing scheme, a frame
rate of 111.29 fps has been achieved by the proposed design at the same 100 MHz clock,
i.e., 8.17× higher than the design in [17]. For energy efficiency, the proposed design has
achieved 7.15 mJ/frame, which is 96.22% lower than the design in [16]. The improvement
of energy efficiency is benefited from two aspects. In one hand, the adopted NLO-CSM
algorithm has a much lower amount of computation that results in lower computation
power and shorter computation time. In the other hand, the pipeline processing has further
improved the processing speed of the proposed hardware accelerator.

In summary, the comparison results show that the proposed NLO-CSM accelerator
design has achieved significantly lower hardware resource consumption and higher energy
efficiency, while ensuring a much higher frame rate, as compared to the state-of-the-art
designs. This study indicates that the proposed NLO-CSM accelerator design is more
suitable for resource-limited and energy-constrained mobile and micro robot applications.

5. Conclusions

This paper proposes an efficient hardware accelerator design of the NLO-CSM al-
gorithm for scan matching in 2D LiDAR SLAM. An optimized NLO-CSM algorithm is
adopted in this work to reduce the computation resources and the amount of computation,
as well as avoid the high computational complexity of brute force searching on the grid
map in the conventional CSM algorithm, while maintaining a good scan match perfor-
mance. By exploiting the algorithm’s similarity and operator sharing between the two-step
algorithm computations, the module reusing technique is adopted to further reduce the
hardware overhead, and the pipeline processing scheme is also adopted for fast computing,
therefore achieving high energy efficiency. The FPGA implementation results, based on

Sensors 2022, 22, 8947 22 of 22

Xilinx Zynq-7020 FPGA, show that the proposed hardware accelerator has achieved a
92.74% increase and 90.71% saving in computing speed and energy consumption per frame,
as compared to the conventional ARM-A9 dual-core CPU implementation. Compared
with a state-of-the-art design, the proposed hardware accelerator has achieved 80.3% LUTs,
84.13% FFs, and 20.83% DSPs saving, as well as 8.17× increase in frame rate and a 96.22%
improvement in energy efficiency. The 65 nm ASIC implementation result of 5.94 ms and
0.06 mJ per frame is a further improvement in both the scan speed and energy efficiency,
which shows that the proposed NLO-CSM hardware accelerator design is suitable for the
resource-limited and energy-constrained intelligent mobile and micro robot applications.

Author Contributions: Conceptualization, G.Y., C.W. and Y.L.; methodology, C.W., G.Y. and Y.L.;
literature search and review, Q.W., A.H. and D.H.; writing—original draft preparation A.H., Q.W.,
B.L. and S.Z.; writing—review and editing C.W., B.L., G.Y., Y.Y. and X.Z.; supervision, C.W. and X.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by National Key R&D Program of China (2019YFB1310001)
and in part by the Fundamental Research Funds of the Central Universities under Grant 2019KFYXJJS049.
This paper was recommended by Associate Editor XXX.XXX. (Corresponding author: Guoyi Yu:
yuguoyi@hust.edu.cn).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thrun, S. Probabilistic robotics. Commun. ACM 2002, 45, 52–57. [CrossRef]
2. Smith, R.C.; Cheeseman, P. On the representation and estimation of spatial uncertainty. Int. J. Robot. Res. 1986, 5, 56–68. [CrossRef]
3. Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [CrossRef]
4. Zhao, J.; Huang, S.; Zhao, L.; Chen, Y.; Luo, X. Conic Feature Based Simultaneous Localization and Mapping in Open Environment

via 2D Lidar. IEEE Access 2017, 7, 173703–173718. [CrossRef]
5. Zhang, C.; Yong, L.; Chen, Y.; Zhang, S.; Ge, L.; Wang, S.; Li, W. A rubber-tapping robot forest navigation and information

collection system based on 2D LiDAR and a gyroscope. Sensors 2019, 19, 2136. [CrossRef] [PubMed]
6. Santos, J.M.; Portugal, D.; Rocha, R.P. An evaluation of 2D SLAM techniques available in Robot Operating System. In Proceedings

of the 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Linköping, Sweden, 21–26 October
2013; pp. 1–6.

7. Barczyk, M.; Bonnabel, S.; Deschaud, J.-E.; Goulette, F. Invariant EKF Design for Scan Matching-Aided Localization. IEEE Trans.
Control. Syst. Technol. 2015, 23, 2440–2448. [CrossRef]

8. Wang, D.; Liang, H.; Mei, T.; Zhu, H.; Fu, J.; Tao, X. Lidar Scan matching EKF-SLAM using the differential model of vehicle
motion. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013;
pp. 908–912.

9. Murphy, K.; Russell, S. Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks; Springer: Berlin/Heidelberg, Germany,
2001; pp. 2440–2448.

10. Pitt, M.K.; Shephard, N. Filtering via simulation: Auxiliary particle filters. J. Am. Stat. Assoc. 2012, 94, 590–599. [CrossRef]
11. Jo, H.; Cho, H.M.; Jo, S.; Kim, E. Efficient Grid-Based Rao–Blackwellized Particle Filter SLAM With Interparticle Map Sharing.

IEEE/ASME Transactions on Mechatronics 2018, 23, 714–724. [CrossRef]
12. Olson, E.B. Real-time correlative scan matching. In Proceedings of the 2009 IEEE International Conference on Robotics and

Automation (ICRA), Kobe, Japan, 12–17 May 2009; pp. 4387–4393.
13. Karto SLAM. Available online: http://www.ros.org/wiki/karto (accessed on 15 September 2015).
14. Kohlbrecher, S.; von Stryk, O.; Meyer, J.; Klingauf, U. A flexible and scalable SLAM system with full 3D motion estimation.

In Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Kyoto, Japan, 1–5
November 2011; pp. 155–160.

15. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278.

16. Sugiura, K.; Matsutani, H. A Universal LiDAR SLAM Accelerator System on Low-Cost FPGA. IEEE Access 2022, 10, 26931–26947.
[CrossRef]

17. Bao, M.; Wang, K.; Li, R.; Ma, B.; Fan, Z. RIA-CSM: A Real-Time Impact-Aware Correlative Scan Matching Using Heterogeneous
Multi-Core SoC. IEEE Sens. J. 2022, 22, 5787–5796. [CrossRef]

18. Wang, C.; Luo, J.; Zhou, J. A 1-V to 0.29-V sub-100-pJ/operation ultra-low power fast-convergence CORDIC processor in 0.18-µm
CMOS. In Microelectronics Journal (MEJ); Elsevier: Amsterdam, The Netherlands, 2018; Volume 76, pp. 52–62.

http://doi.org/10.1145/504729.504754
http://doi.org/10.1177/027836498600500404
http://doi.org/10.1109/MRA.2006.1638022
http://doi.org/10.1109/ACCESS.2019.2956563
http://doi.org/10.3390/s19092136
http://www.ncbi.nlm.nih.gov/pubmed/31072051
http://doi.org/10.1109/TCST.2015.2413933
http://doi.org/10.1080/01621459.1999.10474153
http://doi.org/10.1109/TMECH.2018.2795252
http://www.ros.org/wiki/karto
http://doi.org/10.1109/ACCESS.2022.3157822
http://doi.org/10.1109/JSEN.2022.3146283

	Introduction
	Algorithm Analysis of NLO-CSM
	Conventional CSM Algorithm
	NLO-CSM Algorithm

	NLO-CSM Algorithm Hardware Accelerator Design
	Overall System Architecture
	Architectures of Subunits

	Implementation Results and Discussion
	FPGA Implementation and Evaluation
	ASIC Implementation and Discussion
	Comparison with the State-of-the-Art and Discussions

	Conclusions
	References

