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Abstract: Smart indoor living advances in the recent decade, such as home indoor localization and
positioning, has seen a significant need for low-cost localization systems based on freely available
resources such as Received Signal Strength Indicator by the dense deployment of Wireless Local Area
Networks (WLAN). The off-the-shelf user equipment (UE’s) available at an affordable price across
the globe are well equipped with the functionality to scan the radio access network for hearable
single strength; in complex indoor environments, multiple signals can be received at a particular
reference point with no consideration of the height of the transmitter and possible broadcasting
coverage. Most effective fingerprinting algorithm solutions require specialized labor, are time-
consuming to carry out site surveys, training of the data, big data analysis, and in most cases,
additional hardware requirements relatively increase energy consumption and cost, not forgetting
that in case of changes in the indoor environment will highly affect the fingerprint due to interferences.
This paper experimentally evaluates and proposes a novel technique for Received Signal Indicator
(RSSI) distance prediction, leveraging transceiver height, and Fresnel ranging in a complex indoor
environment to better suit the path loss of RSSI at a particular Reference Point (RP) and time, which
further contributes greatly to indoor localization. The experimentation in different complex indoor
environments of the corridor and office lab during work hours to ascertain real-life and time feasibility
shows that the technique’s accuracy is greatly improved in the office room and the corridor, achieving
lower average prediction errors at low-cost than the comparison prediction algorithms. Compared
with the conventional prediction techniques, for example, with Access Point 1 (AP1), the proposed
Height Dependence Path–Loss (HEM) model at 0 dBm error attains a confidence probability of 10.98%,
higher than the 2.65% for the distance dependence of Path–Loss New Empirical Model (NEM), 4.2%
for the Multi-Wall dependence on Path-Loss (MWM) model, and 0% for the Conventional one-slope
Path-Loss (OSM) model, respectively. Online localization, amongst the hearable APs, it is seen the
proposed HEM fingerprint localization based on the proposed HEM prediction model attains a
confidence probability of 31% at 3 m, 55% at 6 m, 78% at 9 m, outperforming the NEM with 26%, 43%,
62%, 62%, the MWM with 23%, 43%, 66%, respectively. The robustness of the HEM fingerprint using
diverse predicted test samples by the NEM and MWM models indicates better localization of 13%
than comparison fingerprints.

Keywords: path–loss modeling; fingerprinting; WLAN; indoor localization

1. Introduction

Wireless communication in recent years has seen a gradual growth of reliance on
services-based localization, justified by Artificial Intelligence optimization algorithms [1,2],
opening up huge prospects. Even though outdoor Global Navigation Satellite Systems
(GNNS) such as the Global Positioning System (GPS) [3,4], BeiDou (BDS) [5], Global’nalya
Navigastsionnaya Sputnikovaya Sistema (GLONASS) [6], have been applied in outdoors
scenarios, they render inadequate assistance within a complex in indoor environments [7],
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attributed to the complexity of indoor environment [8], due to multipath interference,
shadowing, dynamic environmental changes due to observed variation effects of different
materials inside the building on the dissemination of signal and the need for higher
accuracy at a lower cost and no extra hardware support [9]. The widespread use of sensors,
smartphones, and the mobile Internet has allowed precise mobile positioning [10]. A
milestone in the realization of the Internet of Things (IoT) has seen a vast increase in
the deployment and application of smart indoor environments that dramatically drive
the Location-Based Services (LBS) concept, ranging from increased social networking to
health applications such as healthy aging monitoring, personal tracking, enhanced 911
(E911) emergency response indoor route analysis, inventory control, wall through intruder
detection, drone tracking and robotics, peer file sharing and printing applications, in-airport
passage assisted navigation [11] and several other indoor location-aware applications
proportionally contributed to the research objectives and motivation, without forgetting
location side-information that can enable environment aware communication network
design, operations, and optimization in high radio spectrum of the 5G new radio and
the 6G networks [12–15]. The key enablers can be attributed to new frequencies, the
development of Artificial Intelligence (AI), and Machine Learning (ML) techniques over
the years.

Research has considered specific sensors and emitters installed inside a target indoor
space to localize user equipment and objects. It is not scalable and includes a specific
overhead cost to install and maintain the extra infrastructure. Different technologies such
as ultra-wideband [16], Bluetooth [17,18], Radio Frequency Identification (RFID) [19], Micro-
electro-mechanical (MEMS) [20], magnetic field [21], ultrasonic [22], computer vision [23],
infrared signal [24] and other’s utilize existing infrastructure such as the WLAN [25], that
considers wireless RSSI to localize the user equipment, RSSI values readings are widely and
freely available in most mobile devices of this IoT era, not forgetting the availability in the
most popular operation system such as the android and the Microsoft windows [26,27]. This
approach normally needs comprehensive pre-surveying and training efforts to establish
radio frequency (RF) characteristics of the complex indoor environment.

Measuring the distance between the unknown node and beacons is an essential
part of the positioning process within indoor environments. Most of the existing UE
localization algorithms used nowadays can be divided into two categories depending on
whether distance measurements are required or not. One of these categories is the range-
free measurement localization algorithm, and the other is the range-based measurement
localization algorithm [28]. The distance measurement algorithm calculates the distance
between the known beacon node and the unknown node connected to it, utilizing their
communication link parameters. The main categories of distance measurement algorithms
are the Angle of Arrival (AOA) based algorithm [29,30], Time of Arrival (TOA) based
algorithm, and Time-Difference of Arrival (TDOA) based algorithm [31–33]. The TOA and
TDOA require synchronization and accurate timing for components, thus, increasing the
complexity of the system, and AOA for localization will require realistic antenna arrays
that require high energy consumption, cost, time, additional hardware, and the RSSI based-
algorithm [34–39]. Keeping in mind that each of these considerably increases the cost of the
positioning system, thus, the proposed HEM indoor technique is based on RSSI prediction
and distance measurement.

Indoor radio propagation environment has in the past and currently been perceived
as a random component of advancing wireless communication systems, which has led
researchers to introduce Intelligent Reflective Surfaces (IRSSI) as a promising solution to
control scattering, reflection and refraction by allowing dynamic shaping and control of the
electromagnetic waves responses of the environmental objects through the phase, ampli-
tude, frequency and polarization parameters [40] IRSSI could enable tracking/surveillance
application in Non-Line of Sight (NLOS) communications and autonomous localization.
Amongst the breakthroughs, utilization of the RSSI-based localization approach, such as
fingerprinting, has been adopted for location estimation and wireless coverage estima-
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tion methods [41–45]. In [46], a fingerprint-based positioning algorithm is proposed by
collecting RSSI samples into the fingerprint database. In [47], the authors have executed
and analyzed several positioning algorithms such as centroid localization, proximity lo-
calization based on RSSI, fingerprinting, and trilateration localization, conclusive that
the fingerprinting positioning algorithm is the most fitting one. Fingerprint positioning
methodologies require a large amount of a priori information support, which adds a high–
cost issue. Moreover, suffering from multipath effects and electromagnetic interference due
to different types of materials have a significant impact on wave propagation and as a func-
tion of the frequency in complex indoor environments. Such an approach considers two
phases, the offline phase, and the online phase. During the off-line calibration phase, the
target indoor environment is calibrated with the help of a pre-site survey to predetermine
grid reference points at which time-stamped sampled signal values as fingerprints from
various transceivers are recorded and stored in a database commonly known as the “radio
map.” The online phase, commonly known as the “Localization” phase, will deploy various
algorithmic approaches to effectively match the stored radio map values to find the best
match, whose location is presented as the localization result. This approach’s drawback
relates to the size of the database when handling a large number of observations and the
time spent. The mode for the indoor propagation channel has a significant impact on RSSI
value, which shows variability with changing locations [48]. This variability is based on
many effects of the separation distances, the geometrical, different materials used, and the
movement of the objects. Additionally, multipath and shadow fading have a great effect
on RSSI values [49]. In contrast, RSSI-based location estimation is significantly affected
by the position of the AP and the position of received points. Several researchers have
proposed AP location estimation using neural networks [50] as well as studying the effect of
transmitter placement in the wireless sensor network and Line of Sight (LOS) investigation
of different AP heights on RSSI measurement variation as in [51]. These proposed methods
have not leveraged the indoor Fresnel ranging coverage of interest based on transceiver
height in LOS and NLOS in a multi-wall indoor environment to improve the path–loss
RSSI prediction model that, in turn, reduces the cost of the RSSI fingerprinting.

This paper proposes a novel indoor positioning technique based on a new RSSI dis-
tance prediction HEM model that leverages the transceiver height, the signal wavelength,
and its assumed Fresnel coverage of interest on the target floor. The proposed technique
based on a novel method for RSSI prediction improves both the estimation and localization
accuracy for complex indoor environments at a low cost of fingerprinting since no addi-
tional hardware is required. Our proposed method is experimentally tested and verified
in an indoor laboratory environment and a corridor using six WLAN APs. In addition,
real RSSI data measurement was collected using our developed android application (APP),
and data were processed for conventional assessment of the performance of the proposed
methodology. In this paper, our contributions may be summarized in the following parts:

• Novel transceiver height and signal wavelength dependence on RSSI path–loss model
prediction are proposed. A large number of RSSI samples are predicted, and each RSSI
sample is formulated into fingerprints quickly. Reducing the complexity and technical
know-how required for offline conventional fingerprinting.

• We propose an indoor radio fingerprint-based approach to the calculation of the value
of k as in the number of nearest neighbors for the K-Nearest Neighbors algorithm
leveraging the surface area of the target space to the number of sampling points.

The organization of this paper is as follows. Section 2 presents related works on
the propagation models for fingerprint architectures. In Section 3, the presentation of
the proposed transceiver height dependence model (HEM), data collection, Wi-Fi signal
acquisition setup, model prediction setup, and prediction accuracy discussion. Section 4
presents the Localization evaluation of the proposed fingerprint toward existing approaches.
The final remarks are presented in Section 5.
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2. Related Work

RSSI localization techniques measure signal strength from a UE to several hearable
APs and then combine this information with a propagation model to determine the distance
between the client device and the access points. RSSI is considered the simplest approach
for ranging since almost no additional cost is required for collecting the RSSI data, which
is provided by most systems enabled with wireless Network Interface Cards (NICs) [52].
In basics, it is the measurement of received radio signal power as the ratio of measured
power decibels (dB) to one mill watt (mW). However, it is also a less accurate way due
to complicated environmental impacts on the Radio Frequency (RF) signal propagation
with multipath fading. Therefore, the RSSI radio map, which is used to translate the signal
strength into distance estimation, should be calibrated for every single antenna to achieve
better results. The initial solution is to measure the RSSI values at all possible RP’s with
predefined density and renew the mapping periodically, which is not practical to maintain
such a system in ever-changing complex environments.

2.1. Fingerprint Architecture

RSSI fingerprinting architecture, widely viewed as the improved version of the RSSI
technique, considers the preliminary offline calibration phase and the secondary local-
ization online phase. The underlying difference is that its focuses on pre-recording the
signal strength values from detectable RF transceivers such as Base Stations (BTS) (for GSM
signals), AP (for Wi-Fi signals), and Frequency Modulation (for FM). The pre-recorded
signal strength values information paired with the client UE’s known Cartesian coordinates
of calibrated RP’s are stored in a database structure [53], with dimensionality directly
proportional to the detectable number of transceivers at a particular point. During the sec-
ondary localization online phase, the current detectable transceiver signal strength vector
at an unknown location is correlated to the stored fingerprint vectors in the database struc-
ture to find the closest match, then returns it’s known and tagged Cartesian coordinates
as the estimated UE location subject to the localization algorithm criterion. In literature,
these algorithms deploy various approaches to estimate the locality. Among these, we
find distance-based (deterministic) approaches, neural networks approach, probabilistic
approaches, etc. [54–57]. Amongst indoor probabilistic approaches, a Bayesian network
that leverages fingerprinting to model a 3D Bayesian model (3D-BGM) was presented by
bounding the predicted UE’s location by the testbed dimension, resulting in high localiza-
tion accuracy with the use of a small-size radio map [58] than the author’s introduced 2D
Bayesian network [59]. Fingerprinting is advantageous since it does not require the UE’s
LOS to RF transceivers to estimate the unknown location; however, it is time-consuming
in cases of larger target environments. Figure 1 illustrates the RF system architecture of a
fingerprint-based localization system. This system comprises the infrastructure module,
the offline RF sampling, the database construction module, and the online localization
phase module.

Fingerprinting approaches rely on big data acquisition, which in turn leads to the
considerable time and effort required to build the preliminary offline database, which
highly relays on the indoor dimensionality in terms of size to calibrate RP’s and number
of location candidates [60], with each RP fingerprint, is an average of total RSSI samples
received within a specific time window. If the indoor localization target floor space is huge
in dimensionality, then the cost of the survey increases dramatically, not forgetting the effect
of environmental changes. This kind of approach encounters disadvantages not limited
to the changes in the environment, such as demarcating the indoor space, which may
change the fingerprint correspondence to each location, thus, the requirement to update
the fingerprint database.
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Figure 1. Fingerprint-based Localization System Architecture.

2.2. Path–Loss Prediction Methods

Building a radio fingerprint database has proven to be intense, involving but not lim-
ited to the extensive calibration phase and expertise. Several approaches have been thought
about, such as interest in predicting the path–loss of the indoor WLAN-based Real-time
Locating Systems (RTLSs), though an extremely challenging task because there are too
many indoor-specific parameters [61]. On the other hand, many studies have attempted to
approximately predict the RSSI fingerprint instead of discovering an omnipotent model
that accounts for every parameter. One category is very accurate and site-specific, and
it can predict wide-band parameters (Deterministic approach). However, it has a higher
computational complexity and requires pre-processing and simplification procedures. The
second category, although not as accurate as the deterministic model, can be easily com-
puted because of its simple design and its smaller size input (Empirical approach). Based
on these observations, we chose to use the empirical model for our propagation model
while paying attention to three well-known empirical models: the one-slope model (OSM),
the multi-wall model (MWM) [62], and the new empirical model (NEM) [63], respectively.

2.2.1. Conventional One-Slope Path-Loss (OSM)

RSSI ranging methods predict the distance between the receiving signal node and the
transmitting signal node by measuring the received signal strength since the propagation
loss affects the transmitted wireless signal. The model of signal propagation follows the
log-distance distribution as shown in Equation (1).

PL(d)[dB] = PL(d0)[dB] + 10nlog
(

d
d0

)
(1)

where PL(d0) is the RSSI reference path–loss at separation distance d0 from the transceiver;
PL(d) is the RSSI at the receiving node at separation distance d from the transceiver
and n specifies the path–loss propagation exponent that takes diverse behavior for a
particular type of building. In complex indoor environments, d0 is assumed to be 1 m, and
n may considerably vary from approximately 2 for the LOS paths up to 6.5 for the highly
abstracted path.
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2.2.2. Multi-Wall Dependence on Path–Loss (MWM)

A complex indoor environment complies with multiple walls and floors of different
build materials that contribute highly towards the decomposing signal; as the signal
traverses each wall or floor, it imposes a loss (dBm), thus, lower signal power at the point
of the receiving UE. Signal prediction with the wall and floor dependence on path–loss can
be defined as in Equation (2).

PL(d)[dB] = PL
(

d
d0

)n
+ ∑P

p=1 WAF(p) + ∑Q
q=1 FAF(q) (2)

where P and Q are the total number of walls and the total number of floors between the
transmitter and receiver, respectively. The empirical parameters WAF(p) and FAF(q) are
termed the pth wall attenuation factor and the qth floor attenuation factor, respectively. In
general, the values of these parameters are determined by the measurement data of the
target building. However, several studies investigate the values of the attenuation factors
of several materials in different frequency bands [53,64].

2.2.3. Distance Dependence of Path–Loss Exponent (NEM)

Although the MWM performs well in certain circumstances, it does not include
such propagation effects as the distance dependence of the path–loss exponent, the angle
dependences of the WAF(p) and FAF(q) or the refraction and diffraction. As a result, the
MWM’s prediction accuracy may be poor in certain parts of the building, especially at large
distances from the transceiver. The distance dependence of the path–loss exponent can be
defined as in Equation (3) [63].

PL(d)[dB] = 10 log PL
(

d
d0

)n1
U
(

dbp − d
)
+ 10

[
log
(

dbp
d0

)n1
+ log

(
d

dbp

)n2
]

U
(

d− dbp

)
+∑P

p=1 WAF(p) + ∑Q
q=1 FAF(q)

(3)

where dbp is the distance of the breakpoint from the transceiver, n1 and n2 are the path–loss
exponents on either side of the breakpoint, and U(.) is the unit step function defined as

U(d) =
{

0, d < 0
1, d ≥ 0

(4)

2.2.4. Angle Dependence of Attenuation Factors

When electromagnetic radiation is incident on a wall or floor, obliquely less signal
power will be transmitted through the wall than would occur at normal incidence. To
try and capture this effect in the model, we incorporate the angle of incidence effect into
the WAF(p) or the FAF(q). At grazing incidence, we assume that transmission is zero,
while at normal incidence, we take transmission as the value of WAF(p) or FAF(q). At
angles between grazing and normal incidence, we calculate these values using a cosine
function WAF(p)/

(
cos θp

)
where the WAF(p)[dB] is taken as the attenuation factor at

normal incidence and θp is the angle of incidence at the pth wall. From studies results,
it can be observed that it performs well, especially when compared to what would be
obtained if no variation of WAF(p) with incident angle is allowed.

PL∠(d)[dB] = 10 log
(

d
d0

)n1
U
(

dbp − d
)
+ 10

[
log
(

dbp
d0

)n1
+ log

(
d

dbp

)n2
]

U
(

d− dbp

)
+∑P

p=1
WAF(p)

cos θp
+ ∑Q

q=1
FAF(q)
cos θq

(5)

where WAF(p) and FAF(q) are the values of the attenuation factors at normal incidence,
and the θp and θq are the angles, respectively, between the pth wall, qth floor, and straight-
line path joining the transmitter to the receiver. The subscript ∠ is used PL(d) to indicate
that it is the path loss when the angle of incidence to the wall and the distance dependence
of the propagation are taken into account [63].
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3. Proposed Transceiver Height Dependence Model (HEM)

Indoor environments have continued to be more complex and challenging, attributed
to interior design finishes, space demarcating, and occupancy. Thus offline RSSI estima-
tion from the transceivers using models is affected by several factors not limited to the
multi-path effects (reflection, refraction, and absorption). Considering online localization
techniques based on RSSI distance prediction using the RSSI log-distance distribution
model is challenging because severe RSSI fluctuation occurs, especially in a complex indoor
environment. In our study, we propose a new RSSI prediction technique that leverages the
transceiver height into the formulation of the prediction model, which in turn minimizes
the prediction error as well as localization error. Determination of the electromagnetic field
region around a vertically installed dipole antenna, regions such as the reactive near-field
region, radiating near-field region, also known as the Fresnel region, and the far field region
(Fraunhofer) is a more challenging task within indoor space than related studies for outdoor
scenarios. For example, considering a vertical monopole in a complex indoor space, such
as an AP transceiver working at a height h(meters) of 2.4 GHz, we propose to define the
breakpoint distance dependent leveraging the transceiver height and wavelength of the
signal as defined in Equation (6).

dbp ≈ 0.62

√
h3

λ
(6)

λ =
c0

f
(7)

where dbp is the proposed breakpoint distance ranging region, h is the maximum dimension
of the antenna, λ is the wavelength of the transmitted signal by the antenna, which is
further derived as a fraction of the speed of light c0 to the frequency of the transmitted
signal f as defined in Equation (7). Considering Equation (6) into Equation (7) leads to the
newly proposed novel path loss is denoted as:

PLh(d)[dB] = 10 log
(

d
d0

)n1
U
(

0.62
√

h3/ c0
f − d

)
+10

log

(
0.62

√
h3/ c0

f
d0

)n1

+ log

(
d

0.62
√

h3/ c0
f

)n2


∗U
(

d− 0.62
√

h3/ c0
f

)
+ ∑P

p=1
WAF(p)

cos θp

(8)

U(d) =
{

0, d < 0
1, d ≥ 0

(9)

3.1. RSSI Data Collection

All the experimental tests are performed at a faculty-building floor of the School of
communication and information engineering, Chongqing University of Posts and Telecom-
munications (CQUPT). A cubic meters floor of the west wing, as shown in Figure 2, was
considered for the experimental data fingerprinting benchmark to verify the extent to
which our newly proposed HEM model, as defined in Equation (8), has applicable re-
sults in the current drive for smart IoT location-based communication. The test bed of
56.93 m × 20.08 m is comprised of rooms, corridors, offices, and washrooms with diverse
floor and ceiling finishes, a typical indoor environment, during the daytime to idealize the
impact of occupancy in the environment. Starting from the left side of the test bed as the
origin marked in red color (0, 0), we carried out the tiresome calibration of the site to obtain
88 RP locations spaced at 0.6 m apart in the two corridor areas, as areas 1 and area 2 before
the lifts, respectively, and in the research lab as area 3, thus, dividing the space into three
areas. As shown in Figure 2, the black circle and the red triangle represents the reference
points (RP’s), and the test points (TP’s), respectively. In general, they are comprised of



Sensors 2022, 22, 9054 8 of 22

48 RPs and 11 TPs in area 1, 20 RPs and 6 TPs in area 2, and 20 RPs and 8 TP in area 3,
with a total of 6 D-Link DAP-2310 Aps with known Mac addresses as shown in Table 1,
arranged in the target environment at a height (h) of 1.89 m. A realistic environment was
considered, with occupants on the floor, some walking randomly and others while working
on their tables.
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Table 1. DAP-Link Aps, Scenarios, Coordinates, and Mac Address Matrix.

AP No Scenario Coordinates (m) Mac Address

AP1 Corridor (0.6, 9.96) c0:a0:bb:27:88:20
AP2 Lab (12.3, 16.02) c0:a0:bb:29:d7:40
AP3 Lab (24.6, 19.9) c0:a0:bb:26:56:50
AP4 Corridor (21.6, 8.7) c0:a0:bb:27:90:88
AP5 Corridor (31.14, 11.22) c0:a0:bb:27:88:28
AP6 Corridor (48, 11.82) c0:a0:bb:26:d6:30

3.2. Wi-Fi Signal Acquisition

The actual sampling acquisition of RSSIs in the experimental environment using our
developed Wi-Fi signal data acquisition software comprises the process of collecting RSSI
samples of each DAP-2310 AP using the Samsung S7568 mobile phone terminal setup at
the level of the pedestrian arm length height as shown in Figures 3 and 4, respectively.
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Our developed Wi-Fi signal data acquisition software interface is simple and user-
friendly, composed of the RP name and the time interval at which we sample the RSSI
(in dBm) in a convenient way and preprocess the raw data, as shown in Figure 4a. On
initiating the process, as illustrated in Figure 4b for a predefined time stamp, it records the
sampling time interval, the RSSI recording, followed by the MAC address of the transceiver
AP as shown in Table 2. The Samsung S7568 mobile phone has a Wi-Fi signal acquisition
frequency of 1 Hz, thus, enabling us to first collect RSSI samples from 6 APs at each
respective RP for a duration interval of 60 s (that is, the RSSI sample of an AP at each
RP contains 60 RSSI values). Similarly, in the same faith, at each TP, the same Samsung
S7568 smartphone is used to collect RSSI data samples from 6 APs for 20 s (that is, the RSSI
sample from a certain AP at each test point contains 20 RSSI values). The data is then saved
in the Security Digital card (SD) as a txt. format to be processed using MATLAB R2013a as
a programming tool to construct the location fingerprint Database to achieve the proposed
methodology of this article.

Table 2. Structure of the data log.

Interval RSSI (dBm) AP MAC Address Time Stamp

−1 −42 c0:a0:bb:27:88:20 1
−1 −36 c0:a0:bb:29:d7:40 2
−1 −77 c0:a0:bb:26:56:50 3
. . . . . . . . . . . .
−1 −88 c0:a0:bb:27:88:28 60

Letting N be the number of RPs and L the total number of APs deployed in the signal
coverage target floor. We denote the RSSI value from AP l at RP i as f l

i (dBm). We sample
multiple random fingerprint signals at each predefined RP, then average the signal values

to find the mean RSSI f
l
i(dBm) at each RP i from AP l denoted as

f
l
i =

1
sl

i
∑sl

i
s=1 f l

i (s), i = 1, . . . , N. l = 1, . . . , L (10)

where f l
i (s) is the sth RSSI sample (in dBm) at RP i from AP l, and Sl

i is the total number of
RSSI samples collected within the predefined time stamp. Then the fingerprint at RP i is
defined as

Fi =
[

f
1
i , f

2
i , . . . , f

L
i

]
(11)
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Forming an interactive radio map database matrix as

Ψ =


f

1
1 · · · f

L
1

...
. . .

...

f
1
N · · · f

L
N

 (12)

where f
1
1 = 0 when the lth AP is not detected, however, in some cases, we convert it to

−90 dBm as the signal noise floor within an indoor environment.
Online localization exploits the pre-constructed database to determine the current

location ˆ̀ given the σth test RSSI sequence denoted as

ϑ
j
i (σ), σ = 1, . . . , b̂j

i , b̂j
i > 1 (13)

where b̂j
i is the total number of received test RSSI sequences from jth AP at the ith unknown

test RP l. Taking into consideration each test fingerprint as ϑ =
[
ϑ

1
i , ϑ

2
i , . . . , ϑ

Y
i

]
we define

the test localization radio map as Λ = ϑDY by

Λ =


ϑ

1
1 · · · ϑ

Y
1

...
. . .

...
ϑ

1
D · · · ϑ

Y
D

 (14)

where

ϑ
j
i =

1

b̂j
i

 b̂j
i

∑
σ=1

ϑ
j
i (σ)

, i = 1, . . . , D. j = 1, 2, . . . , Y (15)

ϑ
j
i is the averaged recorded test RSSI sequence from the jth AP at the ith unknown test RP,

D is the total number of query test reference points, Y is the total number of detectable AP’s.

The squared Euclidian distance d2
i between the fingerprints f

1
i and the observed fingerprint

ϑj is given by

d2
i =

Y

∑
j=1

(
f

1
i − ϑj

)2

, i = 1, . . . , D (16)

Considering the random signal level mean during the data processing, we differentiate
the RSSI values within an indoor environment using the mW instead of dBm, i.e.,

f
l
i

∣∣∣
mW

= 10( f
l
i |dBm)/10 (17)

which transforms RSSIs from smartphones to values for better signal differentiation. Corre-
spondingly we also transform tl ′s RSSI values in ϑ from dBm into mW.

3.3. The RSSI Model Prediction Setup

Primarily prediction parameters from other studies could be obtained from consid-
eration of theoretical definitions or electromagnetic simulations or performing limited
propagation experiments in the building, thus, requiring site-specific information to be
obtained. Increasing the need for expertise and cost of fingerprinting in the vast emerging
complex indoor environments for the IoT APP. In our one-floor evaluation approach, we
eliminated the FAF parameters and defined the WAF parameters based on wall type prop-
erties in previous studies, as tabled in Table 3, to construct an RP to WAF sequence at the
ith RP given by

WAFi(p), i = 1, . . . , N, p = 1, . . . , P (18)
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where P is the total number of walls between the transceiver and the receiver on the target
floor and N is the total number of RPs, respectively.

Table 3. Parameters.

Values

do (m) 1

WAF(p) (4,4,10,4,4,4,4,4,15,15,15,15,4,4, 4,4,4,2.3,4,4,2.3,2.3,4,4,2.3,4,2.3,
4,4,2.3,2.3,4,2.3,4,4,4,4,2,2,4,2,2, 4,4,4,2,2,4,2,2,4)

n1 0.8
n2 2.5

h (m) 1.89

Taking into consideration each wall attenuation factor from pth wall at the ith RP,
WAFi = [Ψi(1), Ψi(2), . . . , Ψi(P)], we define the wall attenuation map as WAFNP by

WAFNP =

Ψ1(1) · · · Ψ1(P)
...

. . .
...

ΨN(1) · · · ΨN(P)

 (19)

The pre-offline association of the wall intercept with the 2-Dimensional vector segment
between the RP and the AP Cartesian coordinate location is formulated so as to simplify
the all attenuation map to only intercepts. Let line segment one S1 be defined as the
segment between the ith RP and the lth AP, that is S1 = [X1(l) Y1(l) ; X2(i) Y2(i)], and
line segment two S2 be a segment between the 2-Dimensional end of the pth wall, that is
S2 =

[
X3(p) Y3(p) ; X̂4(p) Ŷ4(p)

]
, respectively, to form a matrix[

X
Y

]
=

[
X1(l) X2(i) X3(p) X4(p)
Y1(l) Y2(i) Y3(p) Y4(p)

]
(20)

We defined the intersection of the lines by solving determinates of the matrix as in
Equations (21) and (22).

dt1 =

∣∣∣∣∣∣
1 1 1

X1(l) X2(i) X3(p)
Y1(l) Y2(i) Y3(p)

∣∣∣∣∣∣ ∗
∣∣∣∣∣∣

1 1 1
X1(l) X2(i) X4(p)
Y1(l) Y2(i) Y4(p)

∣∣∣∣∣∣ (21)

dt2 =

∣∣∣∣∣∣
1 1 1

X1(l) X3(i) X4(p)
Y1(l) Y3(i) Y4(p)

∣∣∣∣∣∣ ∗
∣∣∣∣∣∣

1 1 1
X2(l) X3(i) X4(p)
Y2(l) Y3(i) Y4(p)

∣∣∣∣∣∣ (22)

where the intersect relation Inter(i, p) by the ith RP and the pth wall is given by

Inter(i, p) =
{

1, ( dt1 ≤ 0&& dt2 ≤ 0)
0, ( dt1 > 0&& dt2 > 0)

(23)

Having obtained a matrix that corresponds to the intersect relation, the total contri-
bution of the wall attenuation factor WAF(p) and RP is calculated. However, as per the
NEM model in (5) and the proposed HEM model in (8), they defined WAF(p) as a factor of
the angle of incidence at the point of the intersection. Having obtained the initial points
and terminal points of the points both S1 and S2, we calculate the magnitudes V1 and V2,
using the Pythagorean theorem.

V1ij = (X2(i)− X1(l), Y2(i)−Y1(l))
V2pp = (X4(p)− X3(p), Y4(p)−Y3(p))

(24)
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Thus, applying Equation (24), we deploy the dot product to calculate the angle between
the vectors as

Cosϕ =
∑(V1ij .∗V2pp)
‖V1ij‖2 ∗ ‖V2pp‖2

ϕ = arccos
(

∑(V1ij .∗V2pp)
‖V1ij‖2 ∗ ‖V2pp‖2

) (25)

3.4. The RSSI Model Prediction Accuracy

RSSI prediction techniques at a particular RP within the dynamic environment vary a
lot due to several factors of the AP location, height, physical characteristics of the environ-
ment, and the receiver’s device properties. At the same time, the time spent by specialized
personnel to fingerprint the environment, in this case at 0.6 m sparsity, raises the cost and
complexity of the fingerprint measurement technique; thus, an approach of prediction that
reduces the construction cost and complexity of signal fingerprint databases will always be
preferred. We base the prediction accuracy analysis on the minimization of errors between
the prediction model values against the measurement fingerprint real values. In order
to design a model that will reduce the cost, time, and expertise requirement for radio
fingerprinting, which always increases with the dimensionality of the target space. That is,
for corridor area 1 (57 m × 3.12 m) with 48 RPs, corridor area 2 (3.12 m × 16.96 m) with
20 RPs, lab area 3 (13.36 m × 8.9 m) with 20 RPs dimensionality sizes of the target space
to fingerprint at the sparsity of 0.6 m, it will take the technical expert to spend 48 min,
20 min, 20 min for the 60 RSSI samples from respective AP’s, totaling to approximately
2 h, not including the time to shift the equipment from one RP to another. With an im-
proved RSSI prediction model, the same process would take less than 15 s to run the
algorithm on a computer, at the same time reducing the cost of the hardware to carry out
the sampling fingerprinting.

Considering the evaluation of the proposed HEM prediction model in comparison
to other prediction models against the measurement data samples, observation is made
for the proposed (HEM) model in Equation (8) performing better than the NEM model as
in Equation (3), MWM model as in Equation (2), and the OSM model as in Equation (1).
Taking an example of AP1 as shown in Figure 5a, the proposed model attains a confidence
probability of 10.98% with 0 dBm error prediction, relative to the 2.65% for the NEM model,
4.2% for the MWM model, 0% for the OSM model, respectively. In Figure 5b, we observe
the similarity in the RSSI prediction of the NEM and the proposed, whereas in Figure 5c–f,
the superiority of the HEM model is observed, followed by the MWM model with higher
confidence probabilities as tabled in Tables 4–9. The OSM model, like the initial model,
does not take into consideration the multi-wall effect; the angle dependence effect, thus,
falls short in prediction.

Table 4. AP1.

Errors (dBm) 0 12 24 36 48 60

Proposed 10.98% 69.74% 89.75% 93.27% 96.48% 99.97%
NEM 2.65% 30.5% 76.8% 91.7% 94.7% 99.7%

MWM 4.2% 34.4% 75.7% 92.5% 96.7% 99.8%
OSM 0.00% 0.00% 2.03% 14.83% 37.9% 66.9%

Table 5. AP2.

Errors (dBm) 0 12 24 36 42

Proposed 6.97% 39.54% 72.26% 92.62% 98%
NEM 3.93% 42.65% 73.24% 86.93% 91.99%

MWM 4.48% 28.25% 63.84% 89.39% 96.91%
OSM 0.0% 0.65% 14.81% 54.36% 65.76%



Sensors 2022, 22, 9054 13 of 22
Sensors 2022, 22, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 5. CDF Prediction Errors, AP1, AP2, AP3, AP4. 

Table 4. AP1. 

Errors (dBm) 0 12 24 36 48 60 
Proposed 10.98% 69.74% 89.75% 93.27% 96.48% 99.97% 

NEM 2.65% 30.5% 76.8% 91.7% 94.7% 99.7% 
MWM 4.2% 34.4% 75.7% 92.5% 96.7% 99.8% 
OSM 0.00% 0.00% 2.03% 14.83% 37.9% 66.9% 

Table 5. AP2. 

Errors (dBm) 0 12 24 36 42 
Proposed 6.97% 39.54% 72.26% 92.62% 98% 

NEM 3.93% 42.65% 73.24% 86.93% 91.99% 
MWM 4.48% 28.25% 63.84% 89.39% 96.91% 
OSM 0.0% 0.65% 14.81% 54.36% 65.76% 

  

Figure 5. CDF Prediction Errors, AP1, AP2, AP3, AP4.

Table 6. AP3.

Errors (dBm) 0 12 24 36 45

Proposed 9.88% 45.57% 73.28% 92.05% 98.79%
NEM 8.4% 30.34% 53.35% 82.58% 96.01%

MWM 7.14% 31.33% 56.99% 77.42% 90.44%
OSM 0.5% 5.07% 20.72% 38.12% 57.97%

Table 7. AP4.

Errors (dBm) 0 6 12 18 24 33

Proposed 9.11% 40.28% 66.47% 81.54% 92.45% 99.4%
NEM 2.71% 10.45% 24.29% 44.18% 62.65% 78.06%

MWM 3.28% 18.86% 45.40% 69.48% 81.88% 89.2%
OSM 0.0% 0.0% 0.0% 0.8% 8.64% 41.92%
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Table 8. AP5.

Errors (dBm) 0 6 12 18 24 33

Proposed 10.8% 41.21% 64.96% 79.72% 92.59% 99.68%
NEM 8.3% 22.01% 38.91% 52.55% 63.35% 81.98%

MWM 11.0% 31.91% 53.54% 67.31% 76.54% 90.93%
OSM 0.0% 0.5% 3.37% 12.44% 28.35% 51.35%

Table 9. AP6.

Errors (dBm) 0 12 24 36 48 51

Proposed 6.78% 28.15% 54.91% 77.87% 94.5% 96.83%
NEM 3.26% 14.05% 37.25% 63.25% 89.33% 93.81%

MWM 4.46% 19.82% 44.41% 68.07% 87.61% 91.54%
OSM 0.0% 0.0% 2.44% 19.63% 54.52% 60.07%

The proposed HEM’s RSSI prediction improves the accuracy of the RSSI estimation on
the general floor target space than comparable models with an average prediction error
(dBm) below 10 dBm for AP1, AP4, AP5, and below 20 dBm for AP2, AP3 than comparison
models, as shown in Figure 6 and detailed in Table 10.
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Table 10. Average prediction errors evaluation.

Access Point AP1 AP2 AP3 AP4 AP5 AP6

Proposed 10.36094 16.65165 15.5347 9.716051 9.685779 22.52913
NEM 18.47965 17.58727 21.23628 21.64572 18.24757 29.19121

MWM 17.58734 19.7279 22.03516 15.28833 13.67405 27.2322
OSM 51.85314 38.0159 39.1757 38.7193 34.32284 47.48057

4. Localization Evaluation

System design for the online localization techniques can take the approaches based on
the nearest neighbor classifiers and neural networks classifiers (Deterministic), whereas
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the other approaches are based on the Bayesian inference and statistical learning theory,
respectively (Probabilistic). In this article paper, during the system design of our pro-
posed system, we focused on the deterministic nearest neighbor classifier technique to
analyze the performance of the models toward Wi-Fi indoor localization system; the near-
est neighbor methods require a set of constant RSSI location fingerprints’ mean vectors
or standard deviation as offline training set for the classification to carry out the UE’s
estimate indoor locality.

4.1. The k-Value Effect

Simple in nature, the KNN algorithm, as a suitable approach for complex non-isotopic
and varying environments, estimates the location from the first k nearest reference point
neighbors resulting from the minimum Euclidean distance di between Equation (13) test
query RSSI values of the UE and the radio map RSSI, defined as

ˆ̀(ϑj
)
=

1
k

k

∑
i

argmin`i (di) (26)

Determination of neighbor value k in KNN over the year has been investigated by
which different researchers recommend retrials of different values until you obtain the right
value for the specific research application. Complex indoor environments such as office
buildings, shopping malls, university lecture halls, university libraries, or airport pedestrian
spaces further complicated the determination of neighboring radio map reference points
needed to be considered for a particular localization job.

We first evaluate the impact of the k-values towards minimization of the localization
errors for the models in comparison with measurement samples at test reference points
distributed on an indoor floor target space scaling from 0–50 m, a dimension relative to
the size of the university lab floor. Our observed findings, as shown in Figure 7a, when
k = 1, considering only one neighbor reference point in the KNN determination of the UE’s
locality, within 10 m, the NEM model tends to attain a high confidence probability, whereas
between 10 m to 20 m the proposed HEM model and the MWM models seem to perform
similarly better than the NEM model and OSM model. In Figure 7b, when we increase k = 2,
observations between 20 m to 30 m show the confidence gap of the MWM; the NEM models
improved to 93% by 7% at 21 m and to 76% by 5%, respectively, while the proposed model
seems to stabilize in a confidence range of 83% to 89%. In Figure 7c,d,f, increasing the
k-neighbor to 3, 4, 5, and 6, respectively, gradually improves the confidence of the proposed
model than comparison models; however, we further note that consideration of k = 5 and
above does not bring forth to a significant change to indoor localization by the models.

In this article, after the above experimental analysis of the impact of k, rather than the
experimental approach, we propose a simplified but composite solution to the empirical
determination of the k neighbors for indoor positioning systems leveraging the dimen-
sionality of the target space as in Table 11 the number of target spaces, and the number of
reference points required within the space, taking note of the sparsity.

Table 11. Environment parameters.

Area 1 Area 2 Area 3

Length (i) 56.93 m 16.96 m 13.36 m
Width (i) 3.12 m 3.12 m 8.4 m

SN (i) 48 21 21

Having obtained the environmental parameters during the offline survey, we propose
to calculate k using Equation (27).

k =
1
P

P

∑
i

(
Length (i) ∗ width(i)

SN(i)

)
, i = 1, . . . , 3 (27)
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where P is the total number of target spaces and SN is the offline total number of fingerprint
RP’s. As per Equation (27), we determine k = 4.
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4.2. Localization towards Diverse Prediction Models

Secondly, evaluation of the localization systems accuracy has been set up using test
sample RSSI predicted with the HEM model, the NEM model, the MWM model, and the
measurement fingerprint, respectively. This approach is to account for the impact of indoor
environmental propagation effects that impact the quality of RSSI received at a particular RP
due to reflection, refraction, absorption of the radio signal, and diverse material properties
that require extensive tuning during the offline stage. The KNN-based localization analysis
Robustness of the HEM fingerprint using diverse predicted test samples by the NEM,
MWM models indicate better average localization of 13% below 11 m than comparison
fingerprints. As shown in Figure 8, we observe improved confidence in the proposed HEM
model better than in the comparisons. In Figure 8a, on consideration of the HEM predicted
test samples, we observe the HEM model initializing with 8% confidence at 0 Error (m) than
0% and 7% for the NEM and the MWM, respectively; further, outperformance is observed
throughout the 9 m. Similar, outperformance is observed in Figure 8b with consideration
of the NEM predicted test samples since they consider both the wall and angle of incidence
effect in the model. However, on consideration with the MWM estimated test samples, we
observe the localization by the MWM model outperforming the HEM and NEM though
with lower confidence attained as shown in Figure 8c, for example, within 3 m as detailed
in Tables 12–14, the MWM estimated test samples attains 21%, 21%, 23% confidence in
relation to HEM’s 32%, 31%, 13%, NEM’s 26%, 21%, 18%, respectively. Consideration of the
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measurement test reference samples against the predicted fingerprint models, we observe
the NEM initializing better than the rest until 10 m, with a 27% confidence; this could be
attributed to the NEM’s break-point at 10 m from the transceiver, whereas the proposed
HEM leverages known transceiver height and the signal wavelength in the determination
of the breakpoint. Further, take note that indoor localization performance analysis tends
to rely on the minimization of the distance error from the actual position of the UE at
various heights. We have observed the proposed HEM model-built radio map attains better
confidence probability with a significant gap than the comparisons between 10 m at 27%
confidence to 24 m at 89 confidence; HEM model confidence between 24 m to 39 m seems
stable while the NEM and the MWM model outperforms with better confidence. Analysis
using the predicted samples and the measurement test samples, as shown in Figure 8 and
Tables 12–15, reveals a great diversity of the indoor environmental challenges towards
factors that affect the signal propagation, and the accuracy performance improvement of the
proposed HEM model using similar prediction parameters is observed. Dynamic tuning
of the environmental factors, also discussed by recent research directions, will provide
improvement in future prediction and indoor Wi-Fi localization systems.
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Table 12. KNN with HEM Simulated Test Samples.

Error (m) 0 (m) 3 (m) 6 (m) 9 (m) 12 (m) 15 (m) 18 (m) 21 (m)

Proposed 8% 31% 55% 78% 95% 100% 100% 100%
NEM 0% 21% 42% 81% 98% 100% 100% 100%

MWM 7% 21% 39% 61% 79% 90% 97% 100%
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Table 13. KNN with NEM Simulated Test Samples.

Error (m) 0 (m) 3 (m) 6 (m) 9 (m) 12 (m) 15 (m) 18 (m) 21 (m)

Proposed 8% 32% 53% 71% 86% 94% 96% 98%
NEM 12% 26% 43% 62% 77% 88% 94% 98%

MWM 6% 21% 40% 65% 87% 96% 99% 100%

Table 14. KNN with MWM Simulated Test Samples.

Error (m) 0 (m) 3 (m) 6 (m) 9 (m) 12 (m) 15 (m) 18 (m) 21 (m)

Proposed 2% 13% 32% 57% 80% 90% 93% 97%
NEM 5% 18% 39% 61% 80% 90% 95% 98%

MWM 7% 23% 43% 66% 85% 95% 99% 100%

Table 15. KNN with Measurement Test Samples.

Error (m) 0 (m) 3 (m) 6 (m) 9 (m) 12 (m) 15 (m) 18 (m) 21 (m)

Proposed 0% 0% 3% 18% 44% 71% 85% 89%
NEM 1% 4% 11% 22% 37% 51% 64% 75%

MWM 0% 1% 4% 15% 33% 55% 73% 84%

4.3. The Fingerprint Localization Accuracy

Thirdly evaluation of the online localization systems accuracy has been set up using
predicted fingerprints of the HEM model, the NEM model, the MWM model, and test
fingerprints, respectively. Amongst the hearable APs, it is seen the proposed HEM finger-
print localization attains a confidence probability of 31% at 3 m, 55% at 6 m, and 78% at
9 m, outperforming the NEM with 26%, 43%, 62%, 62%, the MWM with 23%, 43%, 66%,
respectively, as shown in Figure 9 and Table 16. The proposed HEM fingerprint, as per
the analysis results, has demonstrated better performance, in turn reducing the cost of
construction of the RSSI fingerprint than prior multiwall dependent models.
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Table 16. KNN with diverse fingerprints.

Error (m) 0 (m) 3 (m) 6 (m) 9 (m) 12 (m) 15 (m) 18 (m) 21 (m)

Proposed 8% 31% 55% 78% 95% 100% 100% 100%
NEM 12% 26% 43% 62% 77% 88% 94% 98%

MWM 7% 23% 43% 66% 85% 95% 99% 100%

5. Conclusions

A novel RSSI prediction model that leverages the transceiver height and signals
wavelength to fast construct an offline indoor Wi-Fi fingerprint of the target space is
proposed. Fingerprinting has played a key part in signal space mapping tailored to
the target space, which is once again leveraged during the online localization phase to
minimize the distance error. We further proposed a method for the determination of k
neighbors leveraging the target space dimensionality into the KNN algorithm towards
Indoors fingerprinting. Experimental results carried out in the real indoor university lab
floor environment show our proposed prediction model improves the prediction of the
indoor signal strength of a mobile device by leveraging walls, signal angle of incidence, the
height of the signal transceivers (APs), and the signal wavelength, as well as achieving a
significant reduction of calibration time while providing a more comparable localization
accuracy to that of the comparison prediction approaches as shown in Figure 9 by the KNN
algorithm. We state that the proposed prediction algorithm has room for improvement in
future research by enhancing the parameter estimation during the off-line stage and further
developing dynamic intrusion sensing at a low cost.
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