
Citation: Coelho, J.; Nogueira, L. IoT

Clusters for Enhancing Multimedia

Applications. Sensors 2022, 22, 9077.

https://doi.org/10.3390/s22239077

Academic Editors: Aris Leivadeas,

Dimitrios Dechouniotis and Vasileios

Karyotis

Received: 4 November 2022

Accepted: 20 November 2022

Published: 23 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

IoT Clusters for Enhancing Multimedia Applications
Jorge Coelho 1,2,* and Luís Nogueira 1

1 School of Engineering (ISEP), Polytechnic of Porto (IPP), 4249-015 Porto, Portugal
2 Artificial Intelligence and Computer Science Laboratory, University of Porto (LIACC),

4099-002 Porto, Portugal
* Correspondence: jmn@isep.ipp.pt; Tel.: +351-966-080-280

Abstract: In this paper, we present a framework for exploring the spare capacity of IoT devices
for clustered execution of multimedia applications. Applications of this type are usually framed
with specific quality parameters that enable a desirable level of service. This means that the IoT
cluster must guarantee strict quality ranges of service to work as expected. The framework is totally
customizable, and QoS dimensions can be easily added or removed given their relevance in the
application scenario. The achieved results clearly demonstrate the utility of using the spare capacity
of IoT devices, otherwise unused, to cooperatively execute servies within the desired quality of
service levels.
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1. Introduction

Internet of Things (IoT) devices are becoming ubiquitous due to their quantity and
proliferation [1–3]. This means that there is a considerable amount of computational power
distributed by these devices. It has been our goal to explore the use of these devices,
particularly through the creation of tools that enable code distribution and execution to
explore the use of the spare computational capacity of IoT devices [4,5].

The single-board computer (SBC), a rather powerful type of machine that can be used
as a generic IoT device, enjoys enormous popularity due to their high performance for their
price range and the vast number of settings wherin they can be used. These devices are
becoming a standard for IoT prototyping and implementation [6–8], bringing more and
more computing power to this domain and also more underutilized devices.

Our goal is to create tools to enable the use of the spare power of such devices to
accomplish tasks in collaborative scenarios were parallelization is key. One scenario where
we believe that a coalition of IoT devices can make a difference is multimedia-based
applications. Due to their nature, multimedia applications, such as the ones that process
video or audio, benefit from the parallelization of hardware, as many tasks are extremely
parallelizable [9–11]. At the same time, they are also associated with QoS constraints that
bring a new challenges to the implementation of distributed service execution. These
constrains must be fulfilled, and the coalition of IoT devices must guarantee that it is
possible to deliver such service.

In our scenario, IoT devices have different applications that are already being executed.
The idea is to use their otherwise unused spare capacity. This means that we need to be
able to measure the amount of spare capacity each device has in order to use it without
interfering with its normal function.

It is well known that resource allocation in large distributed systems is an NP-hard
problem. Due to the complexity and dynamism of applications, it is difficult to foresee
the amount of load that will be imposed. Therefore, static allocation tends to create
underutilized platforms due to used worst-case resource reservations. To achieve our goals,
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a dynamic approach which relies on lightweight heuristics that can be dynamically applied
during runtime is the obvious solution. One can find a comprehensive survey of the kinds
of resource allocation heuristics that can cover different levels of dynamicity while coping
with the scale and complexity of high-density many-core platforms in [12]. Here, we
apply such concepts in order to know the amounts of resources (such as processor cycles,
communication bandwidth, disk bandwidth, and storage) each device can contribute to
a coalition of IoT devices and create a platform for distributed multimedia computations.
Similar approaches to other domains can be found, for example, in [13,14].

Streaming consists of the continuous transmission of video and audio instead of down-
loading all the data first. Streaming protocols have been studied for a long time, and there is a
reasonable amount of work about applying streaming protocols to IoT devices [15–17]. Our
purpose here is not to define how the streaming of data occurs at its core, but to describe the
creation and coordination of IoT clusters to deliver services that can use streaming protocols,
guaranteeing some expected quality of service.

Clusters of IoT devices were the topic of several previous works. In [18], the authors
propose a distributed architecture to perform collaborative work for IoT environments and
sharing the application workload among the available devices. Offloading of tasks has
been the subject of several previous works. In [19], the authors proposed an algorithm
to provide efficient task offloading in IoT and fog computing nodes. In [20], the authors
develop a distributed task algorithm in the context of fog nodes, where the spare resources
are also a relevant feature for the problem solution and are provided by what the authors
call helper nodes. A two layer architecture that includes one layer with clusters of IoT
devices performing several tasks is presented in [21]. Sharing of unused computational
resources of IoT devices in a clustered approach in the context of smart cities was the
subject of [22]. The efficiency of IoT devices in the context of healthcare is studied in [23,24],
where the authors apply task level parallelism (TLP) as a technique to optimize resources.
This technique is also used at the device level in our approach as a further optimization
technique. Using offloading solutions to improve efficient computation in IoT devices for
other domains of application can be found, for example, in [25–28]. Although there are
several previous work on this subject, to the best of our knowledge, the work we present
here is the first one using IoT devices in collaboration to process multimedia applications.

The remainder of this paper is organized as follows. In the next section, we present
definitions and details needed to describe our framework; then we present the core al-
gorithms, along with examples of their application. We then validate our approach by
showing its application to real and simulated scenarios and by analyzing the results. Finally,
we conclude and present future work.

2. System Model

Our approach consists of a cluster of IoT devices that deliver some service, guarantee-
ing predefined QoS constraints. In this section, we describe, by means of definitions and
examples, the several components of the system and how they interact.

We start by presenting, in Figure 1, a high level view of the system as a whole, where
the user defines the quality needed for a service, which is then translated in application
properties and finally is executed by the cluster of devices that use a reserved portion of
resources to deliver the service with the adequate QoS to fulfill the user’s request.

Code distribution is the central feature of this system. IoT devices with spare capacity
offer their availability to participate in a coalition in order to allow the system to achieve a
global outcome in terms of service delivery with a given quality. Due to the ad hoc nature
of this coalition, several details must be thoroughly studied, namely, how to communicate,
distribute data and guarantee the global QoS, and how to deal with dynamic changes.

Resource reservation plays an important role due to establishing the exact spare
capacity that the device is willing to concede to a coalition, assuming such guarantee is
central to enable the coalition to properly work. However, only this will not guarantee that
the provided QoS is stable, since new devices can be added and removed (due to failures)
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at any time. Therefore, during runtime, the system must assure that a given QoS level is
still possible, or a change to a new degraded (when acceptable) version of the service will
be chosen. Whenever that option is not possible, the coalition will not be able to continue
to provide service.

Figure 1. High-level view of the system.

We now present several definitions.

Definition 1 (IoT Cluster). An IoT cluster is a set C = {d1, . . . , dn} of IoT devices di that are
currently providing a collaborative solution for a service.

Definition 2 (IoT Sub-cluster). Given an IoT cluster C = {d1, . . . , dn}, a sub-cluster SC is a set
{di1, . . . , din} of IoT devices where each dik ∈ C.

Definition 3 (Processing Unit). A processing unit p is defined as {t, u}, where t is a task of code
that should execute with input data u.

Definition 4 (Service). A service S = {P, Q} is a set P = {u1, . . . , un} of processing units along
with QoS constraints defined in Q.

A service can be provided with different QoS levels due to the nature of the service
and the user’s quality preferences.

Definition 5 (QoS Constraints). Let Q be the set of the user’s QoS constraints associated with
service S. Each Qkj is a finite set of quality choices for the jth attribute of dimension k. This can
be either a discrete or a continuous set such that Q = {Dim, Attr, Val, DAr, AVr, Deps}, where
Dim is the set of QoS dimensions, Attr is the set of attributes identifiers and Val is the set of
attributes’ values identifiers. Each value is represented by a tuple Vali = {Type, Domain}, where
Type = {integer, f loat, string}, and Domain = {continuous, discrete}.

The set of relationships DAr assigns to each dimension in Dim a set of attributes in Attr and
is defined as DAr : Dimi → Atr, ∀Dimi ∈ Dim.
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The set of relationships AVr assigns to each attribute in Attr a specific value in Val and is
represented as AVr : Atri → Valk, ∀Atri ∈ Atr, ∃1

Valk ∈ Val.
Deps defines the set of existing dependencies among the values of the existing attributes. A

dependence between Atri and Atrj is represented as Depij = f (Valki, Valkj), ∀Attri, Attrj ∈ Attr.

For a given service, one can choose from a set of values for QoS dimensions; for
example, audio-related parameters such as the sampling rate (8, 16, 24, 44, 48 and 88 kHz),
sampling bits (8, 16 and 32), end-to-end latency (100, 75, 50 and 25 ms) and video related
parameters such as picture resolution (SQCIF, QCIF, CIF, 4CIF, 16CIF), color depth (1, 3, 8,
16, . . .) and frame rate (1, . . ., 60).

Users provide a specification for the minimum desired QoS for a service S with the
minimum acceptable dimensions. Delivering the service can be done with values that meet
at least those defined by the user.

Example 1. Using a video streaming application as an example, the following is a list of quality
dimensions that might be associated with any particular application. The list is given to illustrate
the proposed model and is not intended to be exhaustive.

Dim = {Video Quality, Audio Quality}
Attr = {compression index, color depth, frame size, frame rate, sampling rate, sample bits}
Val = {{1, integer, discrete},{3, integer, discrete}, . . . , {[1, 30], integer, continuous}, . . . }
DA Video Quality = {image quality, color depth, frame size, frame rate}
DA Audio Quality = {sampling rate, sample bits}
AV compression index = {[0, 100]},
AV frame size = {SQCIF, QCIF, CIF, 4CIF, 16CIF}
AV color depth (bits) = {1, 3, 8, 16, 24, . . . }
AV frame rate (per second) = {[1, 30]}
AV sampling rate (kHz) = {8, 11, 32, 44, 88}
AV sample bits (bits) = {4, 8, 16, 24}

Having such a QoS characterization of a particular application domain, users and service
providers are now able to define service requirements and proposals in order to reach an agreement
on service delivery. Since the QoS has a multi-dimensional nature, tradeoffs can be made due to the
scarcity of resources.

Further details on QoS characterization for distributed systems can be found, for
example, in [13].

From a pragmatic perspective, one can hide the details of QoS characterization in
high-level descriptions, as presented in the following example.

Example 2. From a user’s perspective, and for practicality, QoS dimensions can be simplified. For
example, video can be simply described as SD, HD and FHD, as presented in Table 1; and audio as
low, medium and high, as presented in Table 2.

Please note that this is just an example and other configurations can be easily implemented.

Table 1. High-level video definitions.

Description Common Name Resolution

SD (Standard Definition) 480 p 640 × 480
HD (High Definition) 720 p 1280 × 720

FHD (Full HD) 1080 p 1920 × 1080

Moreover, note that QoS constraints are defined as the minimum acceptable set of
properties to deliver a given service. This means that the coalition can produce a higher
quality outcome, but not a lower one. Thus, devices leaving the coalition (due to some
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type of failure) must be handled, and the IoT cluster’s minimum QoS delivery must
be recalculated.

Table 2. High-level audio definitions.

Resolution Bit Rate (kbps) Sample Rate (kHz)

Low 128 32
Medium 192 44.1

High 320 48

2.1. Algorithms

The framework is divided in two main modules, the cluster setup and dynamic
adaptation to new services. IoT clusters collaborate in order to fulfill the requested service
by processing data framed with the QoS defined by the user. Due to the heterogeneity of
services to be executed, users’ quality preferences, underlying operating systems, networks
and devices, QoS specification must be acknowledged by all the devices, or they must be
able to map their individual specifications onto a common one.

It is important to note that although we do not explore streaming algorithms, we
need to understand the capabilities of the different devices in our cluster. Thus, we
estimated their processing power in order to conclude if they are able to cope with the
imposed demand.

2.1.1. Cluster Setup

The first step to have a collaborative network of IoT devices working together to
deliver a multimedia service is to know how many devices are available and what they are
capable of, and therefore, estimating the global power at hand. Cluster formation consists
of registering available IoT devices with the main device (the one who is requesting the
service) and announcing the spare capacity to deliver. Since the goal is to process audio and
video, each device announces its capacity in a worst-case scenario with the spare resources
it has. This is then mapped with the user’s preferences, and if it is possible, the service is
delivered. Each IoT device registers with the device that is requesting to run the service in
a client–server model. In Algorithm 1, we describe how this process works.

Algorithm 1 Cluster setup.
Let N be the node requesting the service S.
Let A := {} be a global variable that stores the set of available nodes in the cluster.
Take a service S = {P, Q} with processing unit P and related QoS Q such that each Qkj

is a finite set of n quality choices for the jth attribute, expressed in decreasing order of
preference, for all k QoS dimensions.
Let S := {} be the set of nodes in the cluster capable of providing a given service.
Let N broadcast to the local network the request for nodes to register, adding them to A.

1: for each di ∈ A do
2: Let Qj be the QoS delivered by node di
3: if Qj is higher (in all its dimensions) than Q then
4: C = C{(di, Qj)}
5: end if
6: end for
7: return C

2.1.2. Dynamic Adaptation to New Services

In Algorithm 2, we present the coordination for accepting new services.
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Algorithm 2 Dynamic adaptation to new services.
Let N be the node requesting the service Snew.
Given a new service Snew = {Pnew, Qnew} with processing unit Pnew and related QoS Qnew
such that each Qkj is a finite set of n quality choices for the jth attribute, expressed in
decreasing order of preference, for all k QoS dimensions. Let A be a global variable that
stores the set of available nodes in the cluster.
Let SC = {} be the sub cluster that will provide the new service.
Let N broadcast to the local network the request for nodes to register adding them to A.

while t < timeout do
for each di ∈ A do

Let Qj be the QoS delivered by node di
if Qj is higher (in all its dimensions) than Q then

if di can accommodate such service along existing ones then
SC = SC ∪ {di}

end if
end if

end for
end while
return SC

Note that services can be added up to a number where they can be delivered. In the
case of failure of one node, the service is reset and a new sub-cluster is defined.

Example 3. In Figure 2, we can see two sub-clusters that were created to provide two different
services with different QoS. Device N requested a first service S1 that was provided by devices
{d1, d2, d5}, and after this, a second service S2 that was provided by devices {d3, d4, d5}. Both
services are based on the available devices that are part of the main cluster ({d1, d2, d3, d4, d5}). This
cluster is dynamic, since it changes by adding and removing devices which can occur at any time.

d5

d1

d2

N

d4

d3

Figure 2. Two sub-clusters providing different services S1 and S2 with different QoS.

All the algorithms presented here are high-level descriptions of the implementation;
many minor details are not described. In the next section, we look deeper at how the actual
framework works by describing relevant parts of the implementation.

3. Results and Analysis

For the implementation of the framework, we used Elixir programming language [29]
because of the ease it provides to distribute and execute data and code by devices in a
network. For the hardware, we used Raspberry Pis, a type of SBC (single-board computer)
that can be used as a generic IoT device and enjoys enormous popularity due to is high
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performance for its price range and the vast number of scenarios where it can be used [6–8].
The use of this type-o SBC also allows the use of Linux as the operating system to implement
a resource reservation policy and use Elixir along with the Erlang virtual machine [30] in
each one of them, creating a distributed scenario that is simpler to manage.

3.1. Cluster Formation

All the IoT devices ran a client–server program that allowed them to interact with
others and enabled the creation of the cluster that would provide the service. Any IoT
device when turned on announces it is available. This is done by using built-in discovery
features of Elixir, and every device maintains a list of all the other known devices in the
network, as shown in Figure 3.

d1

d2 d3

d4

d5

Node Registered nodes

d1 {d2, d3, d4, d5}

d2 {d1, d3, d4, d5}

d3 {d1, d2, d4, d5}

d4 {d1, d2, d3, d5}

d5 {d1, d2, d3, d4}

Figure 3. Node discovery.

We say that these other devices are registered with the device that has them on its list.
The framework also provides a feature in which a link between devices is maintained, as
seen in Figure 4. Any failure (device disconnecting) is then detected, allowing the list to be
updated by removing the disconnected device, as seen in Figure 5.

d1

d2 d3

d4

d5

Node Registered nodes

d1 {d2, d3, d4, d5}

d2 {d1, d3, d4, d5}

d3 {d1, d2, d4, d5}

d4 {d1, d2, d3, d5}

d5 {d1, d2, d3, d4}

Figure 4. Node linking.

When one of these devices needs to run a service, it queries each of the devices that
are registered with it, obtaining the QoS capability that each can provide. The devices that
provide a QoS above the minimum are selected to collaborate. As an example, we present
in Listing 1 a small example written in Elixir of the main function of the cluster formation.

3.2. Local QoS Calculation

A local QoS calculation allows one to know if a node can collaborate in a service given
specific QoS constraints. This needs to be fast in order to cope with the dynamism of the
framework. Our proposed solution for this specific problem is to benchmark the devices
and know their capabilities in advance. Since we were using SBCs, we could profile those
devices in order to know how much CPU and memory is needed to deliver some service
under specific circumstances. We benchmarked all the SBCs that are used in the framework
and obtained their resource needs for processing video and audio under some typical
scenarios that we defined. Again, the framework can be modeled with different SBCs and
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different configurations of video and audio streams, and this should be seen as the example
which we use in our solution, but that can be easily adapted to other situations.

d1

d2 d3

d4

d5

Node Registered nodes

d1 {d2, d3 , d4, d5}

d2 {d1, d3 , d4, d5}

d4 {d1, d2, d3 , d5}

d5 {d1, d2, d3 , d4}

Figure 5. Failure of node d3.

Listing 1: Cluster formation main function.

def c r e a t e _ c l u s t e r ( RegistredNodes , QoSParametersList ) do
SubCluster = query_nodes ( RegistredNodes , QoSParametersList )

end

def query_nodes ( [ ] , [ ] ) do
[ ]

end

def query_nodes ( [ node|remainingnodes ] , q o s p a r a m e t e r s l i s t ) do
send ( node , { : evaluate , q o s p a r a m e t e r s l i s t }
r e c e i v e do

{ node , : ok_capable } −>
[ node|query_nodes ( remainingnodes , q o s p a r a m e t e r s l i s t ) ]

{ node , : not_capable } −>
query_nodes ( remainingnodes , q o s p a r a m e t e r s l i s t )

end
end

We used the ffmpeg tool (https://ffmpeg.org/) (accessed on 4 November 2022) and
the resource usage monitoring utility RPI-Monitor (https://github.com/XavierBerger/RPi-
Monitor) (accessed on 4 November 2022) to test and obtain statistical data on typical scenarios
for the SBCs considered, namely, the Raspberry Pi 3 A+, 3 B+ and Zero W.

We measured CPU and memory load for decoding video and audio in the follow-
ing scenarios:

• Low—SD video and medium audio quality: Video resolution of 640 × 480 pixels with
24 frames per second and audio with 128 kbps of bit rate and 32,000 Hz sample rate.

• Medium—HD video and high audio quality: Video resolution of 1280 × 720 pix-
els with 24 frames per second and audio with 192 kbps of bit rate and 44,100 Hz
sample rate.

• High—FHD video and very high audio quality: Video resolution of 1920 × 1080
pixels with 30 frames per second and audio with 320 kbps of bit rate and 48,000 Hz
sample rate.

The CPU load is presented in Figure 6, where one can see that among the models
Raspberry Pi 3B+ and 3A+, there was almost no difference in the CPU load. This was
expected, as they rely on the same hardware at the CPU level. The Raspberry Pi Zero W has
a less powerful processor, and this is clearly noticeable. While the CPU was stable across
all our tests, we noted that this was not the case for RAM, where several configurations
of the decoder would lead to rather different RAM requirements. In this case, we noticed

https://ffmpeg.org/
https://github.com/XavierBerger/RPi-Monitor
https://github.com/XavierBerger/RPi-Monitor
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that it needed an average of 27 MB for decoding the lowest quality stream, 45 MB for the
medium quality stream and 56 MB on average for the highest quality one; and this applies
to all the devices we tested.

Low Medium High
0

10

20

30

40

Video/audio quality

C
PU

Lo
ad

(%
)

RPi 3B+
RPi 3A+

RPi Zero W

Figure 6. Processing power needed.

Please note that in these tests we did not use H.264 hardware acceleration, as not all
the devices provide this feature. Therefore, we directed our approach to the typical IoT
device that relies mainly on the CPU’s capability to process all the work. Nevertheless, we
can say that with H.264 enabled, the Raspberry Pi 3 had a constant CPU load of 5% for
all the different combinations of video/audio tested and a constant memory footprint of
22 MB, making it a strong candidate for enabling fast and efficient processing of audio and
video streams, which we hope to explore in future work.

Finally, we reinforce that this is a configuration step of the framework, and any other
values and dimensions can be considering when the setup phase occurs. Additionally,
we tested stream encoding and transcoding, but we verified that this is a much more
intensive task and that the hardware at hand could not cope with the demand for rather
low-quality streams.

3.3. Dynamic Coordination

When a new service arrives, a QoS request, is performed for the registered devices,
and the computation is done as explained in Section 3.2. If it is possible to provide the
service, then a new sub-cluster is created for this service following the procedure described
in Algorithm 2. All the coordination relies on the the Elixir message system.

When one device fails, the framework detects that event immediately, as illustrated in
Figure 5. After studying several approaches, we concluded that the most adequate one is
to reset the cluster whenever there is a node failure. This means that the whole process of
querying registered nodes and forming the service providing coalition is done again. Since
this process relies on local network communication with very low latency and that the data
used to setup the configuration are available statically, this process is relatively fast. This
means that, in the case, where there is still a possibility to proceed with the service, the user
will be deprived of it just briefly.

4. Validation

In this section, we analyze how our approach performs in terms of cluster setup
and resource management. We used a physical cluster for preliminary tests in which
different services were requested and the needed resources were reserved. Then, we
created a simulation that enabled the testing of a larger number of devices and hardware
configurations and analyzed how resources are used under our approach.
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4.1. Simple Hardware Cluster

For our first scenario, we used the hardware described in Table 3, with five IoT
devices and their respective available CPU and memory, after a resource reservation policy
was applied.

Table 3. Cluster setup.

Device Description Total RAM Available CPU (%) Available Memory (MB)

d1 RPi 3 B+ 1.0 GB 47 350
d2 RPi 3 B+ 1.0 GB 65 835
d3 RPi Zero W 0.5 GB 34 126
d4 RPi 3 A+ 0.5 GB 53 277
d5 RPi Zero W 0.5 GB 15 35

We configured several simultaneous services. One example is presented in Table 4.

Table 4. Services requested.

Service Name Device Requesting Service Description

S1 d1 FHD video and very high audio quality
S2 d2 SD video and medium audio quality
S3 d1 FHD video and very high audio quality

Device d1 has all the others (d2, d3, d4, d5) in its list of registered nodes and d2 has
(d1,d3, d4, d5). In Table 5, one can see what happens after adding services S1, S2 and S3 to the
cluster. After service request S1, all devices except d5 are able to collaborate, allocating the
resources defined in Section 3.2 to participate. When service S2 is added to the cluster, all
devices except d3 can participate in the associated sub cluster. Note that, since the resources
needed are less than the ones needed by S1, now device d5 is also able to participate. Finally,
adding S3 sees the collaboration of d2 and d4. When testing, we noted that using the CPU
to its limit is not a good idea due to slight variations of CPU load during executing, which
in case of an overloaded CPU can delay the execution of the assigned services; thus, we
believe that leaving a small proportion of the CPU always available is a good idea (typically
at least 5%).

Table 5. Assignment of services to devices.

Available Adding S1 Adding S2 Adding S3

Device CPU RAM CPU RAM CPU RAM CPU RAM
d1 47 350 27 294 19 267 – –
d2 65 835 45 779 37 752 17 696
d3 34 126 7 70 – – – –
d4 53 277 33 221 25 194 5 138
d5 15 35 – – 3 8 – –

4.2. Simulation of Bigger Clusters

After conducting our first experiments with real hardware, and since statistical data
estimated the average number of connected devices per household in 2023 as 13 in North
America and 9 in Europe [31], we decided to use a simulator in order to escalate the size of
the cluster and test with different configurations. We implemented these simulations in
Elixir using Erlang Virtual Machine processes. Devices are simulated by processes where
each one maintains a list with total and remaining CPU and memory. Communication is
simulated by using the internal process communication features, and latency is ignored.
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The types of services that can be bind to devices follow the ones presented in previous
sections, and there is a profile telling what they consume in terms of CPU and memory. For
this simulation, we used the characterization described in Table 6.

Table 6. Characterization of devices.

Type Total RAM Low Medium High
CPU MEM CPU MEM CPU MEM

1 1 GB 8 27 15 45 20 56
2 0.5 GB 8 27 16 45 20 56
3 0.5 GB 12 27 21 45 27 56

With this simulation, we can create as many processes and as many services as we
want, given that we do not exceed the underlying virtual machine limits. However, the
idea was to try to match what could possibly be found in a real scenario. For example,
with 15 devices and several services running, one could generate the cluster including the
devices described in Table 7, where for each device we also detail the reported available
RAM in number of megabytes and the available CPU in percentage.

Table 7. Devices in the simulation.

Device Type Available RAM (MB) Available CPU (%)

d1 1 652 56
d2 1 375 85
d3 2 458 47
d4 3 216 61
d5 2 127 36
d6 3 89 15
d7 3 127 26
d8 1 450 64
d9 1 784 82
d10 2 318 63
d11 2 287 41
d12 2 299 76
d13 3 30 13
d14 1 128 24
d15 3 280 53

We can also generate the list of services described in Table 8.
The optimization of the resources depends highly on the order of arrival of the services,

but for the previous scenario, one can note a considerable increase resource usage. In
Figure 7, one can see the amount of average CPU power used in the cluster as the services
are introduced. In Figure 8, one can see how many devices are able to collaborate in the
execution of the services. The number of devices decreases with the introduction of the
services, since some run out of resources (mainly CPU power) and are unable to participate
in the collaborative effort.

Table 8. Service description.

Description Type

S1 Low
S2 High
S3 Low
S4 Medium
S5 Medium



Sensors 2022, 22, 9077 12 of 14

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Services

A
ve

ra
ge

C
PU

lo
ad

in
th

e
cl

us
te

r

Figure 7. Average CPU load in the cluster upon introduction of services.
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Figure 8. Number of devices participating in sub-clusters.

Please note that, for the sake of space, we do not include the details of memory
consumption, but they follow a similar pattern. We can conclude that in all scenarios there
is some degree of optimization, achieved through the use of spare capacity that is otherwise
unused. For very large clusters, or small problems, it may be interesting to have a limit on
the number of devices participating, by ordering a given number by capacity and using
only the adequate number of devices.

5. Conclusions

In this paper, we presented our approach to gathering computational power from
different IoT devices to process data for multimedia applications. We created a framework
that allows the dynamic creation of coalitions of devices that use their spare resources in a
joint effort to provide a service with a given quality level. This implies that the devices are
prepared to join their efforts with others, without compromising their original functionality.
Through the application of resource reservation techniques and the flexibility of Elixir, we
were able to create a framework to enable the predefined outcome. The framework is totally
customizable, and QoS dimensions can be easily added or removed, given their relevance
in the application scenario. The overhead added by this framework is, in our opinion, low,
and the counterpoint is a promising increase in computational power. In the future, we
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hope to adapt streaming algorithms to use the IoT cluster we developed in a transparent
and efficient way and study the use of hardware acceleration features, not exclusively the
power provided by the CPU.
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