
Citation: Zhang, X.; Liu, B.; Zhao, Y.;

Hu, X.; Shen, Z.; Zheng, Z.; Liu, Z.;

Chong, K.-S.; Yu, G.; Wang, C.; et al.

Design and Analysis of Area and

Energy Efficient Reconfigurable

Cryptographic Accelerator for

Securing IoT Devices. Sensors 2022,

22, 9160. https://doi.org/10.3390/

s22239160

Academic Editor: Gianni D’Angelo

Received: 1 November 2022

Accepted: 22 November 2022

Published: 25 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Design and Analysis of Area and Energy Efficient
Reconfigurable Cryptographic Accelerator for Securing
IoT Devices
Xvpeng Zhang 1,†, Bingqiang Liu 1,† , Yaqi Zhao 1, Xiaoyu Hu 1, Zixuan Shen 1, Zhaoxia Zheng 1,2,
Zhenglin Liu 1,2, Kwen-Siong Chong 3,4, Guoyi Yu 1,2,*, Chao Wang 1,2,* and Xuecheng Zou 1,2

1 School of Optical and Electronic Information, Huazhong University of Science and Technology,
Wuhan 430074, China

2 Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology,
Wuhan 430074, China

3 Temasek Laboratories, Nanyang Technological University, Singapore 639798, Singapore
4 Zero-Error Systems Pte Ltd., TCH Techcentre, 71 Toh Guan Road East, #05-07, Singapore 608598, Singapore
* Correspondence: yuguoyi@hust.edu.cn (G.Y.); chao_wang_me@hust.edu.cn (C.W.)
† These authors contributed equally to this work.

Abstract: Achieving low-cost and high-performance network security communication is necessary
for Internet of Things (IoT) devices, including intelligent sensors and mobile robots. Designing
hardware accelerators to accelerate multiple computationally intensive cryptographic primitives in
various network security protocols is challenging. Different from existing unified reconfigurable cryp-
tographic accelerators with relatively low efficiency and high latency, this paper presents design and
analysis of a reconfigurable cryptographic accelerator consisting of a reconfigurable cipher unit and
a reconfigurable hash unit to support widely used cryptographic algorithms for IoT Devices, which
require block ciphers and hash functions simultaneously. Based on a detailed and comprehensive
algorithmic analysis of both the block ciphers and hash functions in terms of basic algorithm struc-
tures and common cryptographic operators, the proposed reconfigurable cryptographic accelerator is
designed by reusing key register files and operators to build unified data paths. Both the reconfig-
urable cipher unit and the reconfigurable hash unit contain a unified data path to implement Data
Encryption Standard (DES)/Advanced Encryption Standard (AES)/ShangMi 4 (SM4) and Secure
Hash Algorithm-1 (SHA-1)/SHA-256/SM3 algorithms, respectively. A reconfigurable S-Box for AES
and SM4 is designed based on the composite field Galois field (GF) GF(((22)2)2), which significantly
reduces hardware overhead and power consumption compared with the conventional implemen-
tation by look-up tables. The experimental results based on 65-nm application-specific integrated
circuit (ASIC) implementation show that the achieved energy efficiency and area efficiency of the
proposed design is 441 Gbps/W and 37.55 Gbps/mm2, respectively, which is suitable for IoT devices
with limited battery and form factor. The result of delay analysis also shows that the number of delay
cycles of our design can be reduced by 83% compared with the state-of-the-art design, which shows
that the proposed design is more suitable for applications including 5G/Wi-Fi/ZigBee/Ethernet
network standards to accelerate block ciphers and hash functions simultaneously.

Keywords: reconfigurable cryptographic accelerator; hardware security; intelligent sensors and
mobile robots; intelligent Internet of Things

1. Introduction

Internet of Things (IoT) devices, including intelligent sensors and mobile robots, often
collect information from the environment, and transmit a large amount of data to the
cloud and other IoT devices. This large amount of data needs to be managed, processed,
transferred and stored securely [1,2]. To enable IoT end-to-end security, cryptographic

Sensors 2022, 22, 9160. https://doi.org/10.3390/s22239160 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239160
https://doi.org/10.3390/s22239160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1612-1416
https://orcid.org/0000-0002-7460-7628
https://doi.org/10.3390/s22239160
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239160?type=check_update&version=3

Sensors 2022, 22, 9160 2 of 24

primitives such as block ciphers and/or hash functions in the IoT devices need to support
multiple network communication standards (such as 5G, Wi-Fi, ZigBee, and Ethernet [3]), to
ensure communication privacy and integrity [4], and to abide by various security protocols
regulated by various security standards and countries. The block ciphers include Data
Encryption Standard (DES), Advanced Encryption Standard (AES) and ShangMi 4(SM4),
whereas the hash functions include Secure Hash Algorithm-1 (SHA-1), SHA-256 and
SM3 [5,6]. Although these various cryptographic primitives can easily be implemented
at the software level [7] (e.g., by using a microcontroller), unfortunately the software
implementation often results in high latency and large energy consumption overheads,
hence limiting deployment on IoT devices which are highly resource constrained.

To mitigate the high latency and large energy consumption overheads, cryptographic
accelerators for various cryptographic primitives are often adopted. The common practice
includes the realization of a dedicated cryptographic accelerator for one specific cryp-
tographic primitive. However, such a practice cannot support multiple cryptographic
primitives as required by the emerging security protocols for IoT devices [8,9]. The di-
rect implementation of each cryptographic primitive, with its dedicated cryptographic
accelerator, causes large hardware overhead and energy consumption, which is similarly
not an efficient solution for resource-constrained IoT devices. Alternatively, the idea of
configuring cryptographic accelerators to support multiple cryptographic primitives has
been reported. Liu et al. [10] have reported a dynamically reconfigurable processing
array for supporting DES/AES/SM4 and SHA-256/SM3. Du et al. [11] have reported
a coarse-grained reconfigurable cryptographic logic array and an intelligent mapping
algorithm for different cryptographic algorithms, such as DES/AES/SM4/SHA-256, etc.
Deng et al. [12] have reported a coarse-grained reconfigurable cryptographic processor,
which can implement all the commonly used cryptographic algorithms, including DES,
AES, SM4, SHA-256, SM3, etc.

These reported configurable cryptographic accelerators, however, remain inefficient
for three reasons. First, they adopt a unified hardware unit approach by integrating both
block ciphers and hash functions into a common unit, and are hence unable to process
both block cipher and hash functions simultaneously. Considering some actual application
scenarios, the protocols, including the Wi-Fi Protected Access (WPA) widely used in Wi-
Fi, and the Datagram Transport Layer Security (DTLS)/Internet Protocol Security (IPsec)
protocol widely used in ethernet standards [7,9,10], require both encryption and hash
functions to be performed simultaneously. The series processing of the unified hardware
unit increases latency. Second, the unified hardware unit is not circuit optimized because
it has to accommodate distinct differences in terms of data paths and logic operations
between the block ciphers and hash functions. Third, they adopt look-up tables (LUTs)
to implement the substitution box (S-Box), which causes large hardware overhead and is
therefore not an efficient solution.

In this paper, a reconfigurable cryptographic accelerator is proposed that has three-
tier configurability (i.e., functional configurability, data-path configurability, and S-Box
configurability) to support widely used security functions for resource-limited and energy-
constrained IoT devices including small mobile intelligent robots, wearable medical devices
and miniature unmanned aerial vehicles. The major contributions of the paper are as allows.

1. At tier1 of the functional configurability, the proposed reconfigurable cryptographic
accelerator can perform either block ciphers (DES/AES/SM4) alone, or hash functions
(SHA-1/SHA-256/SM3) alone or both block cipher and hash function simultane-
ously. This is achieved by having two separate unified reconfigurable engines (i.e.,
one for the block ciphers, and another for the hash functions), that account for latency
optimization for actual application scenarios including authentication and encryp-
tion/decryption processes.

Sensors 2022, 22, 9160 3 of 24

2. At tier2 of the datapath configurability, the datapath for the block ciphers and for
the hash functions are optimized. This is achieved by first having a detailed and
comprehensive algorithmic analysis of both the block ciphers and hash functions in
terms of basic algorithm structures and common cryptographic operators to guide ef-
ficient reconfigurable architecture design, which provides a practical design reference
for the reconfigurable hardware design of cryptographic algorithms. Through this
analysis, in the proposed design implementation, the datapath for the block ciphers
is optimized to have a 33.65% smaller area, and the datapath for the hash functions
a 56.18% smaller area.

3. At tier3 of the S-Box configurability, a reconfigurable S-Box module for AES and SM4
is designed based on the composite Galois field (GF) GF(((22)2)2) instead of GF(28),
which significantly reduces hardware overhead by more than 30% as compared to the
conventional implementations of LUTs.

The remainder of this paper is organized as follows: Section 2 provides an algorithm
analysis of both block ciphers and hash functions. Section 3 describes the architecture
and hardware implementation of the proposed reconfigurable cryptographic accelerator.
Section 4 presents experimental results and discussions. Section 5 presents the conclusion.

2. Algorithm Analysis of Block Ciphers and Hash Functions

This section first provides a brief review of the application scenarios of block ciphers
and hash functions and then presents an introduction to the structures and principles of
the cryptographic algorithms.

2.1. Review of Cryptographic Algorithms in IoT Security Applications

Edge IoT devices face the security threat of data disclosure during communication.
Various IoT network standards that apply different cryptographic algorithms are an impor-
tant means to ensure communication security. For communication security, ensuring the
privacy and integrity of transmitted data is a basic requirement. Block ciphers and hash
functions are two categories of major cryptographic algorithms that have been widely used
in various IoT network standards to ensure data privacy and integrity, respectively. Block
cipher is a symmetric cryptographic algorithm that performs encryption or decryption on
a fixed-size data block using a shared secret key. Plaintext is the source data during the
encryption, and the resulting encrypted text is called ciphertext. The same key is used for
both the encryption of plaintext and the decryption of ciphertext. Hash function is a type
of security mechanism that produces a hash value, message digest or checksum value for
a specific data object. If the data are intentionally or unintentionally modified, the hash
value is changed. Thus, the integrity of data objects can be evaluated by comparing and
verifying previous and current hash values of the transmitted data.

Table 1 shows major algorithms of block ciphers and hash functions that have been
widely used in different security protocols and communication standards. It can be found
that DES/AES/SM4 and SHA-1/SHA-256/SM3 are the two major algorithm groups for
block ciphers and hash functions, respectively, which are widely deployed in major coun-
tries/regions for various network application scenarios. Notably, some of the key crypto-
graphic algorithms need to be used at the same time. For example, DES/AES/SM4 and
SHA-1/SHA-256/SM3 are simultaneously used to perform encryption and authentication,
respectively, as part of the Internet Protocol Security (IPsec), which is a set of protocols
widely used for the secure establishment of virtual private networks (VPNs). Similarly,
AES/DES/SM4 and SHA-1/SHA-256/SM3 are also simultaneously used in the Transport
Layer Security (TLS), which is a security protocol used to secure data transmitted over
a network by preventing data from being eavesdropped on or tampered with. These
security protocols, using different cryptographic algorithms, are able to support various
communication standards, including 5G, Wi-Fi, ZigBee, and Ethernet, which are the key
to achieving seamless network communication among the IoT devices in the different
networks deployed in different countries and regions. Therefore, DES/AES/SM4 and

Sensors 2022, 22, 9160 4 of 24

SHA-1/SHA-256/SM3 algorithms were selected in this study for reconfigurable hardware
accelerator design, which is able to effectively support IoT security for major countries and
regionstitute of Standards and Technology.

Table 1. Major algorithms in block ciphers and hash functions.

Algorithms Security Protocols Applicable
Countries/Regions Organization Typical Application

Example

Block Cipher

DES IPsec/SSL/TLS USA/CHN/EUR NIST Ethernet

AES Most communication
standards/protocols USA/CHN/EUR NIST WLAN/ZigBee/Bluetooth/

5G/LTE/Ethernet

SM4 IPsec/TLS/DTLS/
SSL/WAPI CHN SCA WLAN/Ethernet

Hash function

SHA-1 IPsec/SSL/TLS USA/CHN/EUR NIST RFID/Ethernet

SHA-256 Most communication
standards/protocols USA/CHN/EUR NIST WLAN/Bluetooth/

5G/LTE/Ethernet

SM3 IPsec/SSL/TLS CHN SCA WLAN/Ethernet

NIST: National Institute of Standards and Technology. SCA: State Cryptography Administration.

2.2. Introduction of Major Block Ciphers and Hash Functions
2.2.1. Algorithm Analysis of Major Block Ciphers

Block ciphers usually utilize multiple iterations of round operations on data blocks
to implement confusion and diffusion functions that ensure strong data security. There
are two major constructions of round operations in block ciphers: Feistel networks and
Substitution–Permutation (SP) network [13,14].

Figure 1a presents a Feistel network containing n same-round operations. Each round
operation contains a key-schedule operation generating round key Ki (i ∈ {1, 2, ···, n}),
a round function F and a consequent XOR operation. The inputs of the round function
F are data block Xi right from the former round operation (excluding the initial plaintext
input X0 right of the first-round operation) and the round key Ki. The round function F
contains basic operations including addition, S-Box, shift, and permutation to realize the
confusion and diffusion of plaintext data, which have been adopted in the DES/SM4
algorithms. The purpose of confusion is to make the statistical relationship between
plaintext and ciphertext as complex as possible, while diffusion is used to quickly spread
the statistical characteristics of the plaintext into the ciphertext. The output of the round
function F is XORed with the remaining data block Xi left from the former round operation
(excluding the initial plaintext input X0 left of the first-round operation). After n same-
round operations, the final output is the ciphertext. It is worth noting that the Feistel
network-based encryption and decryption have the same operation structure, and the only
difference is that the round keys are applied in the reverse order in the decryption process
as shown in Figure 1a.

Figure 1b shows the construction of an SP network also containing n same round
operations. Each round operation applies several substitution boxes (S-Boxes), a permuta-
tion box (P-Box) and a consequent XOR operation on the plaintext block to produce the
ciphertext block, which has been used in the AES algorithms. The input of the S-Boxes
in each round operation is from the former round operation (excluding the first-round
operation taking the XOR of plaintext and the initial round key K0 as input). The S-Boxes
and P-box can efficiently realize confusion and diffusion of plaintext data, respectively. The
S-Boxes realize the nonlinear permutation of block data, while a P-box realizes the permu-
tation of all the data bits, which takes the outputs of all former S-Boxes in the same-round
operation and permutes the data bits. The output of the P-box is XORed with the round key
Ki generated by the key-schedule operation to complete one round operation. Similarly,
after n same-round operations, the final output is the ciphertext. It is worth noting that the
decryption of the SP-based algorithm is the inverse operation of the encryption process as
shown in Figure 1b.

Sensors 2022, 22, 9160 5 of 24

Figure 2a shows the data flow of the DES algorithm with a 64-bit input block, a 64-bit
key size and a 64-bit output block. For the encryption process, there is an initial permutation,
16 round operations and a final permutation. After the initial permutation, the 64-bit data
block is divided into two 32-bit halves (X0 left and X0 right) and subsequently processed
by the Feistel round operators in a crisscrossing manner. There are two major parts in
each round operation, i.e., the key-schedule part and the Feistel function part, as shown
in Figure 2a. For the key-schedule part, the 56 bits of the key are initially selected from
the initial 64 bits by permuted choice 1, divided into two 28-bit halves, and then rotated
left by one or two bits (specified for each round) in successive rounds. Next, 48-bit round
key are selected from the 56-bit input by permuted choice 2 with 24 bits from the left, and
24 bits from the right. For the Feistel function part, there are four steps, including the
extended permutation, key mixing, substitution and P-box permutation. In the extended
permutation, the 32-bit right half-block (Xn right) is expanded to 48 bits using the expansion
permutation. In the key mixing, the 48 bits from extended permutation are XORed with the
key in this round. In the substitution, the 48-bit block is divided into eight 6-bit blocks and
eight S-Boxes are used to replace the 6-bit input with 4-bit output according to a non-linear
transformation. In the P-box permutation, the eight 4-bit outputs from the eight S-Boxes are
rearranged according to a P-box permutation to achieve diffusion as mentioned before. The
32-bit output of the Feistel function part is XORed with the 32-bit left half-block (Xn left) to
get the final result of one round operation. For the decryption process, the only difference
from the encryption process is that the round keys are applied in reverse order in the
decryption process.

Figure 2b shows the data flow of the AES-128 algorithm with a 128-bit input block,
a 128-bit key and a 128-bit output block as an example to illustrate the AES algorithms with
128/192/256-bit keys. As compared to the AES-128 algorithm with 10-round operations,
the AES-192 and AES-256 algorithms also process on a block of 128-bit data but with
192-bit and 256-bit keys, respectively, which corresponds to 12 and 14 rounds of operations,
respectively. Different from the DES algorithm, the AES uses the SP structure instead of
the Feistel structure. For the encryption process, there are four major steps, i.e., SubBytes,
ShiftRows, MixColums and AddRoundKey, in one round operation. In the SubBytes step,
each byte Xi (i = 0–15) is permuted using an 8-bit S-Box and there are a total 16 S-Boxes used
in this step. In the ShiftRows step, data bytes in each row are shifted to the left, cyclically
excluding the first row. In the MixColums step, each column is multiplied with a fixed
matrix. In the AddRoundKey step, each byte is XORed with a byte of the round key. For
the round key schedule process, the right column (K0, K1, K2, K3) is first cyclically shifted
to the left with one byte. Then four S-Boxes are used to perform byte substitution. Next, the
results from the four S-Boxes and Rcon are XORed with the left column (K12, K13, K14, K15) to
get a new column (K12

′
, K13

′
, K14

′
, K15

′
). Finally, the remaining three columns of round keys

can be obtained as shown in Figure 2b. It is to be noted that the last round operation does
not include the MixColumns step. For the decryption process, InvShiftRows (the inverse of
ShiftRows), InvSubBytes (the inverse of SubBytes), AddRoundKey (XOR operation using
the inverse order of round key) and InvMixColums (the inverse of MixColums) are used in
each round operation.

Figure 2c shows the data flow of the SM4 algorithm with a 128-bit input block, a 128-bit
key and a 128-bit output block, which is the same as the AES-128. There are 32 round
operations to calculate the final ciphertext. Similar to the DES, the SM4 also uses the Feistel
structure in each round operation and there are also a key-schedule and a Feistel function
part. For the key-schedule part, the 128-bit original key is XORed with fixed parameter FK,
and then the result is divided into four 32-bit data, i.e., K0, K1, K2 and K3. The K0, K1 and K2
are XORed with a 32-bit fixed parameter Rcon, and then the result is divided into four 8-bit
data, which are input to four S-Boxes. The four results from four S-Boxes are combined
into one 32-bit datum, which is shifted left cyclically by 13 and 23 bits. The original and
shifted data are XORed with K3 to get K0 in the next round as shown in Figure 2c. Similar
to the key-schedule part, for the Feistel function part, the 128-bit block is divided into

Sensors 2022, 22, 9160 6 of 24

four 32-bit data, i.e., X0, X1, X2 and X3. The X0, X1 and X2 are first XORed with a 32-bit
round key K0 to get a 32-bit result, which is divided into four 8-bit data and input into
four S-Boxes to perform the substitution. The four results from S-Boxes are combined into
a 32-bit output data, which will be shifted left cyclically by 2, 10, 18 and 24 bits respectively
to obtain four 32-bit data. The four data are XORed with the original data to get one result
to complete the Feistel operation. Finally, X3 is XORed with the 32-bit Feistel result to get
X0 in the next round as shown in Figure 2c. For the decryption process, similar to DES,
the only difference from the encryption process is that the round keys are applied in the
reverse order in the decryption process.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 25

F

F

F

...

Plaintext

Ciphertext

Encryption

F

F

F

...

Ciphertext

Plaintext

Decryption
KEY

P

Plaintext

S S S...

...

S S S...

P

Ciphertext

Encryption

P-1

Ciphertext

S-1 S-1 S-1...

...

Plaintext

Decryption

P-1

S-1 S-1 S-1...

X0 left X0 rightK0

K1

Kn-1Xn-1 left Xn-1 right

Xn-1 left Xn-1 rightKn-1

Kn-2

K0

X0 left

X0 rightX0 left

K0

K1

Kn

Kn

Kn-1

K0

X1 left X1 right Xn-2 left Xn-2 right

One round
operation

One round
operation

One round
operation

One round
operation

KEY

(a) (b)

Figure 1. (a) Round operation structure of Feistel, (b) Round operation structure of SP.

Figure 1b shows the construction of an SP network also containing n same round
operations. Each round operation applies several substitution boxes (S-Boxes), a permu-
tation box (P-Box) and a consequent XOR operation on the plaintext block to produce the
ciphertext block, which has been used in the AES algorithms. The input of the S-Boxes in
each round operation is from the former round operation (excluding the first-round op-
eration taking the XOR of plaintext and the initial round key K0 as input). The S-Boxes and
P-box can efficiently realize confusion and diffusion of plaintext data, respectively. The S-
Boxes realize the nonlinear permutation of block data, while a P-box realizes the permu-
tation of all the data bits, which takes the outputs of all former S-Boxes in the same-round
operation and permutes the data bits. The output of the P-box is XORed with the round
key Ki generated by the key-schedule operation to complete one round operation. Simi-
larly, after n same-round operations, the final output is the ciphertext. It is worth noting
that the decryption of the SP-based algorithm is the inverse operation of the encryption
process as shown in Figure 1b.

Figure 2a shows the data flow of the DES algorithm with a 64-bit input block, a 64-
bit key size and a 64-bit output block. For the encryption process, there is an initial per-
mutation, 16 round operations and a final permutation. After the initial permutation, the
64-bit data block is divided into two 32-bit halves (X0 left and X0 right) and subsequently
processed by the Feistel round operators in a crisscrossing manner. There are two major
parts in each round operation, i.e., the key-schedule part and the Feistel function part, as
shown in Figure 2a. For the key-schedule part, the 56 bits of the key are initially selected
from the initial 64 bits by permuted choice 1, divided into two 28-bit halves, and then
rotated left by one or two bits (specified for each round) in successive rounds. Next, 48-
bit round key are selected from the 56-bit input by permuted choice 2 with 24 bits from
the left, and 24 bits from the right. For the Feistel function part, there are four steps, in-
cluding the extended permutation, key mixing, substitution and P-box permutation. In
the extended permutation, the 32-bit right half-block (Xn right) is expanded to 48 bits using
the expansion permutation. In the key mixing, the 48 bits from extended permutation are
XORed with the key in this round. In the substitution, the 48-bit block is divided into eight
6-bit blocks and eight S-Boxes are used to replace the 6-bit input with 4-bit output accord-
ing to a non-linear transformation. In the P-box permutation, the eight 4-bit outputs from

Figure 1. (a) Round operation structure of Feistel, (b) Round operation structure of SP.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 25

the eight S-Boxes are rearranged according to a P-box permutation to achieve diffusion as
mentioned before. The 32-bit output of the Feistel function part is XORed with the 32-bit
left half-block (Xn left) to get the final result of one round operation. For the decryption
process, the only difference from the encryption process is that the round keys are applied
in reverse order in the decryption process.

Round 1

Key (64 bits)Plaintext (64 bits)

Ciphertext (64 bits)

S-box 1
S-box 8

P-box
Perm

utation

28 bits 28 bits

56 bits

48 bits

48 bits

6 bits
6 bits

32 bits

4 bits
4 bits

...

Extend
permutation

Key
mixingSubstitution

P-box
permutation

Feistel function part

Key-schedule part

56 bits

48 bits

X0 left
(32 bits)

X0 right
(32 bits)

X16 left
(32 bits)

X16 right
(32 bits)

...

Extended
Permutation

Permuted Choice 1

Permuted Choice 2

<<<<<<

48
bits

Xn right
(32 bits)

Xn left
(32 bits)

Xn+1 right
(32 bits)

Xn+1 left
(32 bits)

32 bits

...

Round 16

Inverse Initial Permutation

Initial Permutation

Round n

... ...

(a)

Figure 2. Cont.

Sensors 2022, 22, 9160 7 of 24Sensors 2022, 22, x FOR PEER REVIEW 7 of 25

K15 K11 K7 K3

K14 K6 K2

K13 K9 K5 K1

K12 K8 K4 K0

K10

K15 K11 K7 K3

K14 K6 K2

K13 K9 K5 K1

K12 K8 K4 K0

K10

<<< 1 byte

S-box ×4

<<< 1 byte

Round Key Schedule

Rcon

S-box ×4

Rcon

Plaintext
(128 bits)
X15 ~ X0

Round 10

Key
(128 bits)
K15 ~ K0

Round 1

Ciphertext (128 bits)
Y15 ~ Y0

128
bits

...

128
bits

128
bits

ShiftRows (P-Box)

MixColumns (P-Box)

SubBytes (16 S-Boxes)

X (128 bits)

AddRoundKey (XOR)
Round

Key
(128 bits)

Y (128 bits)

128 bits

128 bits

128 bits

128 bits

Round n

...

MixColumns
X15 X11 X7 X3

X14 X6 X2

X13 X9 X5 X1

X12 X8 X4 X0

X15 X11 X7 X3

X14 X6 X2

X13 X9 X5 X1

X12 X8 X4 X0’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

X10 X10

3
2
1
1

2
1
1
3

1
3
2
1

1
1
3
2

ShiftRows
X3X7X11X15

X2X10X14

X1X5X9X13

X0X4X8X12

X3X7X11X15

X14X6X10

X9X13X1X5

X4X8X12X0

X6X2 <<< 1 byte

<<< 2 bytes

<<< 3 bytes

X15 X11 X7 X3

X14 X6 X2

X13 X9 X5 X1

X12 X8 X4 X0

X15 X11 X7 X3

X14 X6 X2

X13 X9 X5 X1

X12 X8 X4 X0’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

S-box
X10 X108 bits 8 bits

SubBytes

··· ··· ··· ···

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

(b)

Plaintext (128
bits)

Round 1

S-box

S-box

S-box

S-box

S-box

S-box

S-box

S-box

Ciphertext (128 bits)

Key (128 bits) FK (128 bits)

32
bits

32
bits

Key-schedule
part

K3
(32 bits)

8 bits

Rcon
 (32 bits)

K2
(32 bits)

K1
(32 bits)

K0
(32 bits)

8 bits

Round Key
(32 bits)

X2
(32 bits)

X1
(32 bits)

X0
(32 bits)

X3
(32 bits)

K0K1K2K3

X1X2X3 X0

Feistel function part

<<< 13

<<< 23

<<< 10

<<< 2

<<< 18

<<< 24

8 bits

8 bits

8 bits

32
bits

Round 32

Round 2

Round 31

Round n

Key
mixingSubstitution Linear

transformation

...

...

(c)

Figure 2. (a) The algorithm flowchart of DES based on the Feistel network, (b) The algorithm
flowchart of AES based on the SP network, and (c) The algorithm flowchart of SM4 based on the
Feistel network.

Sensors 2022, 22, 9160 8 of 24

Table 2 summarizes the structure types and key operators of round operations in the
three major block ciphers. It can be seen that both the DES and SM4 algorithms use the
same round operation structure, i.e., Feistel structure, which means that the encryption
and decryption data paths of DES/SM4 can be designed to a unified hardware. However,
we can also find that, in fact there are more similar basic operators in the round operation
of AES and SM4 algorithms, which can be exploited in order to reuse operators in the
reconfigurable design to reduce hardware overhead.

Table 2. Structure types and key operators of round operations in the three major block ciphers.

Block Ciphers Round Operation Structure Type Key Operators in Round Operation

DES Feistel XOR/S-Box/Permutation
AES SP XOR/S-Box/Shift/Column Mix
SM4 Feistel XOR/S-Box/Shift

Table 3 shows detailed information on key operators of round operations in the
three major block ciphers. It can be seen that the key basic operators of SM4 are also
included in the AES, while the majority of key basic operators in DES are different from
the AES and SM4. It is worth noting that the same operators in different algorithms
can be theoretically reused in hardware implementation. However, reusing operators
also requires additional control hardware overhead, which reduces or even counteracts
the advantage of reduced hardware overhead by reusing operators, especially for some
simple logic operators or logic operators that are used less frequently. The 8-8 bit S-Box
has the largest hardware overhead and the most times of usage, which is a key operator
that needs to be reused. It is to be noted that for the AES and SM4 algorithms, because
the mapping relationship between input and output of S-Box is inconsistent, there is no
reusable part of the S-Box that is directly implemented based on look-up table. However,
in the implementation of the S-Box based on Galois field, the calculation process of the two
algorithms has the same inverse operation under GF (28) that will be introduced in detail in
Section III, which can be exploited for reconfigurable design. In addition to the operators,
reusing a large number of data iteration register files frequently used in round operations
is also the key to building a unified data path.

Table 3. Detailed information on key operators of round operations in the three major block ciphers.

Key Operators Input/Output
Bit-Widths

Number of Operators Used in One Round Operation of Block Cipher

DES AES SM4

Permutation

64-56 bits 1 - -
56-48 bits 1 - -
32-48 bits 1 - -
32-32 bits 1 - -

XOR
48 bits 1 - -
128 bit - 1 1
32 bit 1 4 14

S-Box
6-4 bit S-Box 8 - -
8-8 bit S-Box - 20 8

Shift
28-bit circular left shift 2 - -
32-bit circular left shift - 4 6

Column Mix
(Inverse Column Mix)

32-bit (Inverse) column
mix - 4 -

From the above analysis, the key idea of the reconfigurable hardware design of block
ciphers is to build a unified cipher data path by reusing the reconfigurable S-Boxes based
on Galois field and data iteration register files.

Sensors 2022, 22, 9160 9 of 24

2.2.2. Algorithm Analysis of Major Hash Functions

Hash functions including SHA-1/SHA-256/SM3 usually adopt the Merkle–Damgård
structure [15], as shown in Figure 3. In the Merkle–Damgård diagram, the input message is
firstly divided into several blocks of fixed size (512 bits in SHA-1/SHA-256/SM3) and then
padded with bits representing the entire message length. The message blocks are processed
with a series of cascaded one-way compression functions denoted by f, which transforms
two inputs to an output with the same length as the initialization vector (IV), i.e., a fixed
value for a specific hash function. For each one-way compression function f, the output
should be operated with the input of the same function f by addition in SHA-1/SHA-256
or XOR in SM3, and the result of the operation is taken as the input of the next subsequent
compression function f. The one-way compression function f of SHA-1/SHA-256/SM3 is
shown in Figure 4. To complete a one-way compression function, the SHA-1, SHA-256 and
SM3 need to perform 80, 64 and 64 rounds of operations, respectively. The final output
message digest is obtained after all the message blocks with length padding have been
compressed by the one-way compression functions.

Figure 4a shows the operation flow in the one-way compression function of SHA-1,
with a 160-bit IV and a 160-bit output message digest [5]. For SHA-1, the 160-bit IV is first
divided into 5× 32-bit values and cached by five buffers (A, B, C, D, E). The 512-bit message
block is expanded into 80× 32-bit Kt corresponding to 80 round operations in each one-way
compression function of the SHA-1. The 80 round operations are divided into four groups
of 20 rounds and each group comprises the same circular left shift operations, the same
addition modulo operations and different bitwise logical operations (Ft). The predefined
values of Kt are also different in four different groups of round operations. Each round
performs the calculation shown in Figure 4a and updates the five buffers (A, B, C, D, E).

Figure 4b shows the operation flow in the one-way compression function of SHA-256,
with a 256-bit IV and a 256-bit output message digest [5]. Different from the SHA-1, the
256-bit IV is first divided into 8 × 32-bit values and cached by eight buffers (A, B, C, D,
E, F, G, H). The 512-bit message block is expanded into 64 × 32-bit Wt corresponding to
the 64 round operations in each one-way compression function of the SHA-256. Each
round operation comprises additions and logical operations, which is more complex than
the SHA-1. It is to be noted that the predefined values of Kt are different in each round
operation, which is also more complicated than the SHA-1. Each round performs the
calculation shown in Figure 4b and updates the eight buffers (A, B, C, D, E, F, G, H).

Sensors 2022, 22, x FOR PEER REVIEW 10 of 25

processed with a series of cascaded one-way compression functions denoted by f, which
transforms two inputs to an output with the same length as the initialization vector (IV),
i.e., a fixed value for a specific hash function. For each one-way compression function f,
the output should be operated with the input of the same function f by addition in SHA-
1/SHA-256 or XOR in SM3, and the result of the operation is taken as the input of the next
subsequent compression function f. The one-way compression function f of SHA-1/SHA-
256/SM3 is shown in Figure 4. To complete a one-way compression function, the SHA-1,
SHA-256 and SM3 need to perform 80, 64 and 64 rounds of operations, respectively. The
final output message digest is obtained after all the message blocks with length padding
have been compressed by the one-way compression functions.

Message
block 1

Message
block 2

Message
block n··· Length

padding

Initialization
Vector (IV)

Hash
result···

Input message

OP ff OP f OP f OP

Message
expansion

Message
expansion

Message
expansion

Message
expansion···

512 bits512 bits 512 bits512 bits 512 bits 512 bits512 bits

32 bits 32 bits 32 bits 32 bits
160/256

bits

OP : Addition (in SHA-1 and SHA-2) / XOR (in SM3)OPIV : 160 bits in SHA-1 and 256 bits in SHA-256/SM3
Figure 3. Merkle–Damgård construction of hash functions.

A

A B C D E

Ft

B C D E
32 bits32 bits 32 bits 32 bits

Wt (32 bits)

Kt (32 bits)

32 bits

Equations of signal flow graph

80
rounds

Input

Output

Message
expansion

process

T

Wt
(32 bits)

Kt
(32 bits)

Constant
storage

Message
block

(a)

Figure 3. Merkle–Damgård construction of hash functions.

Sensors 2022, 22, 9160 10 of 24

Sensors 2022, 22, x FOR PEER REVIEW 10 of 25

processed with a series of cascaded one-way compression functions denoted by f, which
transforms two inputs to an output with the same length as the initialization vector (IV),
i.e., a fixed value for a specific hash function. For each one-way compression function f,
the output should be operated with the input of the same function f by addition in SHA-
1/SHA-256 or XOR in SM3, and the result of the operation is taken as the input of the next
subsequent compression function f. The one-way compression function f of SHA-1/SHA-
256/SM3 is shown in Figure 4. To complete a one-way compression function, the SHA-1,
SHA-256 and SM3 need to perform 80, 64 and 64 rounds of operations, respectively. The
final output message digest is obtained after all the message blocks with length padding
have been compressed by the one-way compression functions.

Message
block 1

Message
block 2

Message
block n··· Length

padding

Initialization
Vector (IV)

Hash
result···

Input message

OP ff OP f OP f OP

Message
expansion

Message
expansion

Message
expansion

Message
expansion···

512 bits512 bits 512 bits512 bits 512 bits 512 bits512 bits

32 bits 32 bits 32 bits 32 bits
160/256

bits

OP : Addition (in SHA-1 and SHA-2) / XOR (in SM3)OPIV : 160 bits in SHA-1 and 256 bits in SHA-256/SM3
Figure 3. Merkle–Damgård construction of hash functions.

A

A B C D E

Ft

B C D E
32 bits32 bits 32 bits 32 bits

Wt (32 bits)

Kt (32 bits)

32 bits

Equations of signal flow graph

80
rounds

Input

Output

Message
expansion

process

T

Wt
(32 bits)

Kt
(32 bits)

Constant
storage

Message
block

(a)

Sensors 2022, 22, x FOR PEER REVIEW 11 of 25

A B C D E F G H

A B C D E F G H
32 bits

Ch

∑ 1

Ma

∑ 0

32 bits32 bits32 bits32 bits 32 bits 32 bits32 bits

T1

Equations of signal flow graph

A

E
64

rounds

Input

Output

Message
expansion
process

Wt
(32 bits)

Kt
(32 bits)

Constant
storage

Message
block

(b)

A B C D E F G H

A B C D E F G H

FF

GG

Σ

32 bits 32 bits32 bits 32 bits 32 bits32 bits32 bits 32 bits

SS1SS2

TT2

TT1
/A

SS1

E

Equations of signal flow graph

64
rounds

Input

Output

Message
expansion
processWt

(32 bits)

Kt
(32 bits) Constant

storage

Wt’
(32 bits)

Message
block

(c)

Figure 4. (a) The one-way compression function f of SHA-1, (b) of SHA-256, (c) and of SM3.

Figure 4a shows the operation flow in the one-way compression function of SHA-1,
with a 160-bit IV and a 160-bit output message digest [5]. For SHA-1, the 160-bit IV is first
divided into 5 × 32-bit values and cached by five buffers (A, B, C, D, E). The 512-bit mes-
sage block is expanded into 80 × 32-bit Wt corresponding to 80 round operations in each
one-way compression function of the SHA-1. The 80 round operations are divided into
four groups of 20 rounds and each group comprises the same circular left shift operations,
the same addition modulo operations and different bitwise logical operations (Ft). The
predefined values of Kt are also different in four different groups of round operations.
Each round performs the calculation shown in Figure 4a and updates the five buffers (A,
B, C, D, E).

Figure 4b shows the operation flow in the one-way compression function of SHA-
256, with a 256-bit IV and a 256-bit output message digest [5]. Different from the SHA-1,
the 256-bit IV is first divided into 8 × 32-bit values and cached by eight buffers (A, B, C, D,
E, F, G, H). The 512-bit message block is expanded into 64 × 32-bit Wt corresponding to the
64 round operations in each one-way compression function of the SHA-256. Each round
operation comprises additions and logical operations, which is more complex than the
SHA-1. It is to be noted that the predefined values of Kt are different in each round oper-
ation, which is also more complicated than the SHA-1. Each round performs the calcula-
tion shown in Figure 4b and updates the eight buffers (A, B, C, D, E, F, G, H).

Figure 4. (a) The one-way compression function f of SHA-1, (b) of SHA-256, (c) and of SM3.

Sensors 2022, 22, 9160 11 of 24

Figure 4c shows the operation flow in the one-way compression function of SM3, with
a 256-bit IV and a 256-bit output message digest [6]. The division of 256-bit IV is the same
as SHA-256. The 512-bit message block is expanded into 64 × 32-bit Wt corresponding
to the 64 round operations in each one-way compression function of the SM4. The logic
operations of message expansion in the SM4 algorithm are different from those in the SHA-
256. There are 64 round operations divided into two groups, one for the first 16 rounds and
one for the last 48 rounds, respectively. Each group comprises the same circular left shifts,
the same addition modulo operations and different bitwise logical operations (FFt, GGt).
Similar to the SHA-256, each round performs the calculation and updates the eight buffers
(A, B, C, D, E, F, G, H).

Table 4 summarizes the key operators of round operations in the three major hash
functions. The key operators in SHA-1 and SM3 are the same, while the key operators in
the SHA-256 round operation are partially different. It is worth noting that all three hash
functions use the same Merkle–Damgård construction, which means that the preprocessing
(message padding) process of the three hash algorithms is the same and that the corre-
sponding hardware module can be reused. For efficient reconfigurable hardware design of
the three hash algorithms, the reuse of modulo addition operator is the key due to its most
frequent usage and the most complex operation. Like block ciphers, the reuse of iteration
register files and message expansion register files is also the key to reducing hardware
overhead and to building a unified data path.

Table 4. Detailed information of key operators in the three major hash functions.

Key Operators Input and Output
Bit-Widths

Number of Operators in One Round Operation of Hash Functions

SHA-1 SHA-256 SM3

XOR 32 bit 5 11 10

Shift
32-bit circular left shift 3 - 11

32 bits circular right shift - 10 -
32 bits right shift - 2 -

Modulo addition 32 bits ADD mod 232 4 9 7

From the above analysis, the key idea of the reconfigurable hardware design of
hash functions is to reuse a preprocessing (message padding) module, build a unified
compressed data path by reusing register files and modulo addition operators and develop
a reconfigurable message expansion module by reusing register files.

2.2.3. Algorithm Comparison between Block Ciphers and Hash Functions

From the aforementioned algorithm analysis and discussion of block ciphers and
hash functions, we can summarize three major differences between the two distinctive
cryptographic primitives:

• The principle of the block ciphers and hash functions is fundamentally different. From
the processing perspective. Block ciphers work in two ways that are reversible, i.e.,
data encryption and decryption, while hash functions are irreversible that convert
original data into message digest. From the application perspective, block ciphers
are used to secure the data from the reach of third parties, while hash functions help
protect the integrity of the information.

• The structure of round operations in the two cryptographic primitives is different.
The round operation structure of the block cipher is based on Feistel or SP, while the
round operation structure of hash functions is Merkle–Damgård based on one-way
compression. The different structures of the two cryptographic primitives make the
hardware data path quite different, which raises a great challenge to the development
of a unified data path for efficient reconfigurable hardware design.

Sensors 2022, 22, 9160 12 of 24

• The basic operators in the two cryptographic primitives are different. The key operator
of block ciphers is an S-Box performing data substitution, while the key operators of
hash functions are logical functions (i.e., Ft, Ch, Ma, FFt, GGt). The different basic
operators actually impede the reconfigurable design of the two kinds of primitives.

From the hardware design perspective, the three aforementioned major differences
make it inefficient to map the two primitives into a unified hardware accelerator. Specifically,
a unified hardware accelerator implementing the two different kinds of primitives results
in many redundant interconnections, including a large number of multiplexers (MUXs),
routers and complex finite state machine logic, or even compilers to realize very complex
control. Consequently, the approach of using unified hardware to implement two different
kinds of primitives has high hardware complexity, large hardware overhead, and high
power consumption.

Furthermore, as mentioned previously, considering many application scenarios of
different standards and protocols, it is necessary to perform decryption and hash authenti-
cation simultaneously when receiving the ciphertext and message digest at the same time.
The approach of using unified hardware requires an operation manner of time division
multiplexing, i.e., reconfiguring the hardware into one of either the hash authentication
and block decryption mode after the other mode completes its processing task. In contrast,
two separate reconfigurable hardware units for these two kinds of primitives can perform
decryption and hash authentication at the same time, which improves computing speed
and efficiency. Therefore, in this study, two separate reconfigurable cryptographic units are
designed to implement block ciphers and hash functions, respectively.

3. Hardware Architecture of Proposed Reconfigurable Cryptographic Accelerator

Based on the aforementioned analysis of DES/AES/SM4 and SHA-1/SHA-256/SM3
algorithms and the characteristics of operators, a hardware architecture of reconfigurable
cryptographic accelerator is proposed, which is suitable for resource-limited and energy-
constrained IoT devices including small mobile intelligent robots, wearable medical devices
and miniature unmanned aerial vehicles. Specifically, the proposed reconfigurable cryp-
tographic accelerator can be integrated as a dedicated cryptographic engine into System-
on-Chip (SoC) chips for robot mapping, positioning and navigation, wearable medical
monitoring devices and miniature unmanned aerial vehicles. The accelerator consists of
a reconfigurable cipher unit and a reconfigurable hash unit, which are integrated with
a unified advanced extensible interface (AXI) as shown in Figure 5.

3.1. Reconfigurable Cipher Unit

Figure 5 presents the proposed reconfigurable cipher unit that can perform the encryp-
tion and decryption operations of three kinds of block ciphers including DES, AES-128/AES-
192/AES-256 and SM4 algorithms. The unit mainly includes the encryption/decryption
round operation part, key-schedule part and round control logic, which mainly config-
ures different block ciphers by counting different rounds using a counter to control the
reconfigurable cipher unit.

For the encryption/decryption round operation part, the data iteration register files
(X0, X1, ···, X15) in light blue color are reused for the DES, AES and SM4 algorithms, and
the reconfigurable S-Boxes in light blue color are reused for AES and SM4 algorithms. The
three operation modes of this part are described as following:

• In the DES encryption/decryption mode using the logical operators highlighted by red
boxes, eight data iteration register files (X0–X7) are used to store the 64-bit plaintext.
The data path is configured to use the extended permutation module, 48-bit XOR
logic, eight S-Boxes, P-Box permutation module and the final 32-bit XOR logic, which
are all dedicated to DES due to the distinct difference of operators between DES and
AES/SM4.

• In the AES encryption mode using the logical operators highlighted by green boxes,
sixteen data iteration register files (X0–X15) are used to store the 128-bit plaintext. The

Sensors 2022, 22, 9160 13 of 24

data path is configured to use the sixteen reconfigurable S-Boxes, circular shift module,
MixColum module and the final 128-bit XOR logic to realize SubBytes, ShiftRows,
MixColumns and AddRoundKey, respectively. In AES decryption mode, there are
two differences from the AES encryption mode. First, the mode of the sixteen recon-
figurable S-Boxes and circular shift module are changed to the AES decryption mode.
Second, the MixColum module is replaced by the InvMixColum module according
to the AES standard. Note that the modules, including circular shift, MixColum and
InvMixColum, are dedicated to the AES mode as there are no such operations in the
other two block ciphers.

• In the SM4 encryption/decryption mode using the logical operators highlighted by
blue boxes, and as with the AES, sixteen data iteration register files (X0–X15) in light
blue color are reused to store the 128-bit plaintext. The data path is configured to
use the 32-bit XOR logic, four reused reconfigurable S-Boxes, linear transformation
module and the final 32-bit XOR logic. Note that the linear transformation module is
dedicated to the SM4 mode.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 25

X15 … X1 X0 K31 … K1 K0

Reconfig
S-Box15

… DES
S-Box0

Reconfig
S-Box1

Reconfig
S-Box0

DES
S-Box1

… DES
S-Box7

Reconfig
S-Box3

Reconfig
S-Box0

…

AE
S e

nc

AE
S d

ec

SM
4

DE
S

Cipher
modes

Circular Shift

MixCol.

Permuted
Choice1

Permuted
Choice2

Extended
Permutation

P-Box
Permutation

Inv.MixCol.
A

ES
SM

4

Preprocessing (Message padding) module

Reconfigurable round function iteration module
Hash modes

(SHA-1/SHA-2/SM3)

A B C D E F G H

Input message

A
X

I I
nt

er
fa

ce

 Reconfigurable cipher unit

 Reconfigurable hash unit

Constant Kt storage module

SHA-2 SM3SHA-1

K15:12

MUX

X15:12

X11:0X3:0

K31/23/15:0K7:0

MUX

MUX

Key-schedule part

MUX
MUX

DES AESSM4 AES+
SM4

K15:0

Encryption/decryption round operation part

Wt

Round control logic

FSM
control
logic

Register files (8 bits
for each Xi(i=0-15)):

Register files(8
bits for each
Kj(j=0-31)):

Register files (32 bits for each)

AESenc

AESdec

SM4

c

Cipher
modes

Cipher modes (DES/AESenc/AESdec/SM4)

Message
expansion module

X7:4

X15:0

Linear
Transformation

Constant
Rcon

storage
module

Circular
Shift 1

Circular
Shift 2

Linear
Transformation

Output hash value
Figure 5. The proposed reconfigurable cryptographic accelerator with reconfigurable cipher unit
and reconfigurable hash unit integrated with a unified AXI interface.

3.1. Reconfigurable Cipher Unit
Figure 5 presents the proposed reconfigurable cipher unit that can perform the en-

cryption and decryption operations of three kinds of block ciphers including DES, AES-
128/AES-192/AES-256 and SM4 algorithms. The unit mainly includes the encryption/de-
cryption round operation part, key-schedule part and round control logic, which mainly
configures different block ciphers by counting different rounds using a counter to
control the reconfigurable cipher unit.

For the encryption/decryption round operation part, the data iteration register files
(X0, X1, ···, X15) in light blue color are reused for the DES, AES and SM4 algorithms, and the
reconfigurable S-Boxes in light blue color are reused for AES and SM4 algorithms. The
three operation modes of this part are described as following:
• In the DES encryption/decryption mode using the logical operators highlighted by

red boxes, eight data iteration register files (X0–X7) are used to store the 64-bit
plaintext. The data path is configured to use the extended permutation module, 48-
bit XOR logic, eight S-Boxes, P-Box permutation module and the final 32-bit XOR
logic, which are all dedicated to DES due to the distinct difference of operators be-
tween DES and AES/SM4.

• In the AES encryption mode using the logical operators highlighted by green boxes,
sixteen data iteration register files (X0–X15) are used to store the 128-bit plaintext. The
data path is configured to use the sixteen reconfigurable S-Boxes, circular shift mod-
ule, MixColum module and the final 128-bit XOR logic to realize SubBytes,
ShiftRows, MixColumns and AddRoundKey, respectively. In AES decryption mode,
there are two differences from the AES encryption mode. First, the mode of the

Figure 5. The proposed reconfigurable cryptographic accelerator with reconfigurable cipher unit and
reconfigurable hash unit integrated with a unified AXI interface.

For the key-schedule part, the round key register files (K0, K1, ···, K31) are reused for
the DES, AES and SM4 algorithms, and reconfigurable S-Boxes are also reused for AES

Sensors 2022, 22, 9160 14 of 24

and SM4 algorithms. The mode analysis is almost the same as the encryption/decryption
round operation part shown in Figure 5. It is worth noting that there are 16/24/32 round
key register files used for AES-128/192/256 algorithm and four reconfigurable S-Boxes
reused for AES-128/192/256 and SM4.

For the design of S-Box, a unified on-the-fly reconfigurable S-Box based on Galois
fields (i.e., GF(28)) is designed for the encryption and decryption of AES and SM4 to
address the problem of large hardware overhead and non-reusability of S-Box based on
LUT implementation. The reconfigurable S-Box module for AES and SM4 is shown in
Figure 6. There are 8-bit input data and 8-bit output data for the three operation modes
including the AES encryption mode, AES decryption mode and SM4 mode. Among the
GF(28) operations, only the inverse operation of composite field GF(((22)2)2) module in
light blue color can be reused for the three modes.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 25

sixteen reconfigurable S-Boxes and circular shift module are changed to the AES de-
cryption mode. Second, the MixColum module is replaced by the InvMixColum
module according to the AES standard. Note that the modules, including circular
shift, MixColum and InvMixColum, are dedicated to the AES mode as there are no
such operations in the other two block ciphers.

• In the SM4 encryption/decryption mode using the logical operators highlighted by
blue boxes, and as with the AES, sixteen data iteration register files (X0–X15) in light
blue color are reused to store the 128-bit plaintext. The data path is configured to use
the 32-bit XOR logic, four reused reconfigurable S-Boxes, linear transformation mod-
ule and the final 32-bit XOR logic. Note that the linear transformation module is ded-
icated to the SM4 mode.
For the key-schedule part, the round key register files (K0, K1, ···, K31) are reused for

the DES, AES and SM4 algorithms, and reconfigurable S-Boxes are also reused for AES
and SM4 algorithms. The mode analysis is almost the same as the encryption/decryption
round operation part shown in Figure 5. It is worth noting that there are 16/24/32 round
key register files used for AES-128/192/256 algorithm and four reconfigurable S-Boxes re-
used for AES-128/192/256 and SM4.

For the design of S-Box, a unified on-the-fly reconfigurable S-Box based on Galois
fields (i.e., GF(28)) is designed for the encryption and decryption of AES and SM4 to ad-
dress the problem of large hardware overhead and non-reusability of S-Box based on LUT
implementation. The reconfigurable S-Box module for AES and SM4 is shown in Figure
6. There are 8-bit input data and 8-bit output data for the three operation modes including
the AES encryption mode, AES decryption mode and SM4 mode. Among the GF(28) op-
erations, only the inverse operation of composite field GF(((22)2)2) module in light blue
color can be reused for the three modes.

SM4 pre-
affine

operation

SM4 post-
affine

operation

AES inverse
affine

operation

AES affine
operation

8-bit
input
data

8-bit
output
data

M
U

X

M
U

X

D
EM

U
X

D
EM

U
X

AES+SM4

SM4

S-box
Modes

AES

δ×

T×

δ×

δ-1×

T-1×

δ-1×
Inverse operation

of composite
field GF(((22)2)2)

Inverse operation in GF(28)

AES Encrypt

AES Decrypt

Figure 6. The reconfigurable S-Box module for AES and SM4.

The main idea of designing the reconfigurable S-Box is to reuse the major operation,
i.e., the multiplicative inverse operation of AES and SM4 from the analysis of the opera-
tions of the S-Boxes in GF(28). We have found that it is necessary to transform the multi-
plicative inverse operation from GF(28) to the GF(((22)2)2) composite field because the hard-
ware complexity of the operation in GF(28) is too high. The transformation can be done by
the calculation of the isomorphic mapping matrix. Finally, the multiplicative inverse op-
eration in the GF(28) field can be realized by bit-wise logic operations in GF(22) and, there-
fore, the corresponding efficient hardware architecture of the reconfigurable S-Box can be
obtained. The hardware implementation details are described as below.

The S-Box operation of AES encryption includes multiplicative inverse operation in
the GF(28) field and affine operation, while the S-Box operation of AES decryption in-
cludes inverse affine operation and multiplicative inverse operation in the GF(28) field.
The S-Box operation of SM4 encryption/decryption includes pre-affine operation, multi-
plicative inverse operation in the GF(28) field and post-affine operation. The correspond-
ing operation in the GF(28) field is shown in Equations (1) and (2) [16]. 𝑍 = 𝑀(𝑋)ିଵ + 𝑉 (1)

Figure 6. The reconfigurable S-Box module for AES and SM4.

The main idea of designing the reconfigurable S-Box is to reuse the major operation,
i.e., the multiplicative inverse operation of AES and SM4 from the analysis of the operations
of the S-Boxes in GF(28). We have found that it is necessary to transform the multiplicative
inverse operation from GF(28) to the GF(((22)2)2) composite field because the hardware
complexity of the operation in GF(28) is too high. The transformation can be done by the
calculation of the isomorphic mapping matrix. Finally, the multiplicative inverse operation
in the GF(28) field can be realized by bit-wise logic operations in GF(22) and, therefore, the
corresponding efficient hardware architecture of the reconfigurable S-Box can be obtained.
The hardware implementation details are described as below.

The S-Box operation of AES encryption includes multiplicative inverse operation in
the GF(28) field and affine operation, while the S-Box operation of AES decryption includes
inverse affine operation and multiplicative inverse operation in the GF(28) field. The S-
Box operation of SM4 encryption/decryption includes pre-affine operation, multiplicative
inverse operation in the GF(28) field and post-affine operation. The corresponding operation
in the GF(28) field is shown in Equations (1) and (2) [16].

Z = M(X)−1 + V (1)

Y = A(AX + C)−1 + C (2)

where X is the input of the S-Box, Z and Y respectively represent the output of the AES and
SM4 S-Box, M and V represent the affine matrix of the AES S-Box and the constants in the
affine operation, respectively, and A and C represent the affine matrix of the SM4 S-Box
and the constants in the affine operation, respectively. The irreducible polynomial (f(x)AES
and f(x)SM4), corresponding to the multiplicative inverse operation (X)−1 and (AX + C)−1

in the finite field GF(28) of AES and SM4 are shown in Equations (3) and (4), respectively.

f (x)AES = x8 + x4 + x3 + x1 + 1 (3)

f (x)SM4 = x8 + x7 + x6 + x5 + x4 + x2 + 1 (4)

Sensors 2022, 22, 9160 15 of 24

From Equations (1) and (2), it can be observed that the multiplicative inverse opera-
tion (X)−1 and (AX + C)−1 in the finite field GF(28) are the main components and similar
operations of the two S-Boxes, which can be designed with the reconfigurable method to
reduce the hardware overhead. However, the implementation of multiplicative inverse
operation in the GF(28) field requires the extended Euclid algorithm, which is computa-
tionally intensive and not suitable for hardware implementation [17,18]. According to the
properties of the finite field, the operation in GF(28) can be converted to the composite field
GF(((22)2)2) through isomorphic transformation, so as to reduce the amount of computation.
The isomorphic mapping from the finite field GF(28) to the composite field GF(((22)2)2)
is represented by an 8 × 8 matrix (matrix δ for AES and matrix T for SM4) [17]. The
8 × 8 isomorphic mapping matrix δ and T for AES and SM4 used in this work is shown
as follows:

δ =



1 0 0 1 1 0 0 0
1 1 1 1 0 0 1 1
1 1 1 1 0 0 1 0
0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1
1 0 1 0 1 0 0 1
1 1 1 1 1 1 1 1


, T =



0 0 1 0 0 0 0 1
1 1 0 1 0 0 1 1
1 0 0 0 0 0 0 1
0 1 0 0 1 0 1 0
1 0 0 0 1 0 1 0
1 0 1 1 1 0 0 1
1 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1


(5)

Assume the inverse of g = (a1Y16 + a0Y) is h = (d1Y16 + d0Y), a1, a0, d1, d0 ∈ GF(24), [Y16,
Y] is a set of regular bases in the GF(24) field, and is two roots of irreducible polynomial,
i.e., r(y) = y2 + y + η = 0 (η is a constant and is specified for each algorithm). Then the h can
be calculated as follows:

h =
(

d1Y16 + d0Y
)
= (θ−1a0)Y16 + (θ−1a1)Y, θ =

(
a1a0 +

(
a1

2 + a0
2
)

η
)

(6)

in which way the multiplicative inverse operation in GF(28) can be transformed into
operations in GF(24) including multiplication, inverse operation and other operations.
Similarly, the inverse of a = (b1Z4 + b0Z), i.e., i = (e1Z4 + e0Z), b1, b0, e1, e0 ∈ GF(22), [Z4,
Z] is a set of regular bases in the GF(22) field, and is two roots of irreducible polynomial,
i.e., t(z) = z2 + z + ρ = 0 (ρ is a constant and is specified for each algorithm). Then i can
be calculated as:

i =
(

e1Z4 + e0Z
)
= (τ−1b0)Z4 + (τ−1b1)Z, τ =

(
b1b0 +

(
b1

2 + b0
2
)

ρ
)

(7)

The operation structure diagram corresponding to Equations (6) and (7) is shown in
Figures 7 and 8, respectively.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 25

a1 d1

Inverse
operation
in GF(24)

a0 d0

η a2

Figure 7. Multiplicative inverse operation of GF(28) based on regular basis.

b1 e1

Inverse
operation
in GF(22)

b0 e0

ρ b2

Figure 8. Multiplicative inverse operation of GF(24) based on regular basis.

In GF(22), the multiplicative inverse operation is the same as the square operation.
When regular basis is used, the multiplicative inverse operation can be further calculated
as: (𝑐ଵ𝑊ଶ + c଴W)ିଵ = (𝑐ଵ𝑊ଶ + c଴W)ଶ = (𝑐଴𝑊ଶ + cଵW) (8)

in which way the multiplicative inverse operation in the GF(22) field can be easily imple-
mented in bit-wise logic operations as mentioned previously.

Table 5 shows the hardware overhead of S-Boxes based on LUT and GF in a 65-nm
ASIC implementation. It can be found that the S-Box based on GF(((22)2)2) field implemen-
tation can save hardware overhead by more than 30% against the LUT implementation.

Table 5. Hardware overhead of S-Boxes based on LUT and GF(((22)2)2) in 65-nm ASIC implementa-
tion.

Algorithm Type Implementation Gate Count Saving

AES
LUT 586 N/A
GF 335 42.83%

SM4
LUT 368 N/A
GF 244 33.70%

Table 6 shows the comparison of hardware overhead between the reconfigurable ci-
pher unit and the separate hardware implementation of the DES/AES/SM4 in 65 nm,
where the gate count is reduced by 33.65%. There are two main reasons for the reduction
of hardware overhead. First, the reuse of iteration register files in the unified encryp-
tion/decryption and key-schedule data paths allows the number of iteration register files
to be reduced by more than 50%. Second, by designing the reconfigurable S-Box based on
the composite field GF(((22)2)2), the gate count of the S-Box can be reduced by about 50%
as compared to the conventional LUT implementation method. At the same time, the re-
use of S-Boxes by AES and SM4 further achieves a reduction of eight S-Boxes as compared
to the separate implementation scheme.

Figure 7. Multiplicative inverse operation of GF(28) based on regular basis.

Sensors 2022, 22, 9160 16 of 24

Sensors 2022, 22, x FOR PEER REVIEW 17 of 25

a1 d1

Inverse
operation
in GF(24)

a0 d0

η a2

Figure 7. Multiplicative inverse operation of GF(28) based on regular basis.

b1 e1

Inverse
operation
in GF(22)

b0 e0

ρ b2

Figure 8. Multiplicative inverse operation of GF(24) based on regular basis.

In GF(22), the multiplicative inverse operation is the same as the square operation.
When regular basis is used, the multiplicative inverse operation can be further calculated
as: (𝑐ଵ𝑊ଶ + c଴W)ିଵ = (𝑐ଵ𝑊ଶ + c଴W)ଶ = (𝑐଴𝑊ଶ + cଵW) (8)

in which way the multiplicative inverse operation in the GF(22) field can be easily imple-
mented in bit-wise logic operations as mentioned previously.

Table 5 shows the hardware overhead of S-Boxes based on LUT and GF in a 65-nm
ASIC implementation. It can be found that the S-Box based on GF(((22)2)2) field implemen-
tation can save hardware overhead by more than 30% against the LUT implementation.

Table 5. Hardware overhead of S-Boxes based on LUT and GF(((22)2)2) in 65-nm ASIC implementa-
tion.

Algorithm Type Implementation Gate Count Saving

AES
LUT 586 N/A
GF 335 42.83%

SM4
LUT 368 N/A
GF 244 33.70%

Table 6 shows the comparison of hardware overhead between the reconfigurable ci-
pher unit and the separate hardware implementation of the DES/AES/SM4 in 65 nm,
where the gate count is reduced by 33.65%. There are two main reasons for the reduction
of hardware overhead. First, the reuse of iteration register files in the unified encryp-
tion/decryption and key-schedule data paths allows the number of iteration register files
to be reduced by more than 50%. Second, by designing the reconfigurable S-Box based on
the composite field GF(((22)2)2), the gate count of the S-Box can be reduced by about 50%
as compared to the conventional LUT implementation method. At the same time, the re-
use of S-Boxes by AES and SM4 further achieves a reduction of eight S-Boxes as compared
to the separate implementation scheme.

Figure 8. Multiplicative inverse operation of GF(24) based on regular basis.

In GF(22), the multiplicative inverse operation is the same as the square operation.
When regular basis is used, the multiplicative inverse operation can be further calculated as:(

c1W2 + c0W
)−1

=
(

c1W2 + c0W
)2

=
(

c0W2 + c1W
)

(8)

in which way the multiplicative inverse operation in the GF(22) field can be easily imple-
mented in bit-wise logic operations as mentioned previously.

Table 5 shows the hardware overhead of S-Boxes based on LUT and GF in a 65-nm
ASIC implementation. It can be found that the S-Box based on GF(((22)2)2) field implemen-
tation can save hardware overhead by more than 30% against the LUT implementation.

Table 5. Hardware overhead of S-Boxes based on LUT and GF(((22)2)2) in 65-nm ASIC implementation.

Algorithm Type Implementation Gate Count Saving

AES
LUT 586 N/A
GF 335 42.83%

SM4
LUT 368 N/A
GF 244 33.70%

Table 6 shows the comparison of hardware overhead between the reconfigurable cipher
unit and the separate hardware implementation of the DES/AES/SM4 in 65 nm, where the
gate count is reduced by 33.65%. There are two main reasons for the reduction of hardware
overhead. First, the reuse of iteration register files in the unified encryption/decryption
and key-schedule data paths allows the number of iteration register files to be reduced by
more than 50%. Second, by designing the reconfigurable S-Box based on the composite
field GF(((22)2)2), the gate count of the S-Box can be reduced by about 50% as compared to
the conventional LUT implementation method. At the same time, the reuse of S-Boxes by
AES and SM4 further achieves a reduction of eight S-Boxes as compared to the separate
implementation scheme.

Table 6. Hardware overhead of separate hardware implementation and reconfigurable implementa-
tion of the three block ciphers in 65 nm.

Structure Type Algorithm Type Gate Count Saving

Separate
DES-64 1956 N/A

AES-128/192/256 19,518 N/A
SM4-128 5635 N/A

Total DES+AES+SM4 27,109 N/A
Reconfigurable DES/AES/SM4 17,986 33.65%

Sensors 2022, 22, 9160 17 of 24

3.2. Reconfigurable Hash Unit

As shown in Figure 5, the reconfigurable hash unit can perform three kinds of hash
functions including SHA-1, SHA-256 and SM3, which mainly comprises six sub-blocks:

• The preprocessing module mainly performs the original message padding to assure
that the input data block is a multiple of 512 bits.

• The message expansion module expands each 512-bit input data block into a prede-
fined round number of words, i.e., round number×Wt, which is 80× 32 bits in SHA-1
and 64 × 32 bits in SHA-256/SM3.

• The reconfigurable round function iteration module with a unified compressed data
path performs 80/64/64 round operations to achieve the one-way compression func-
tion f of SHA-1/SHA-256/SM3 for one 512-bit input data block. As a result, the final
hash value is obtained after all the 512-bit data blocks have been computed.

• The constant Kt storage module stores the constant Kt used for each round operation.
• The iteration register files (A, B, ···, H) store the initial IV in the first round operation

and intermediate value obtained from each round operation.
• The finite state machine (FSM) control logic controls the reconfigurable hash unit

mainly by generating control signals from counters to control MUXes for realizing
reconfigurable computation of the three algorithms.

As mentioned before, the key idea of the reconfigurable hardware design of hash func-
tions is to reuse the preprocessing module, develop the reconfigurable message expansion
module by reusing register files, and build a reconfigurable round function iteration module
with a unified compressed data path by reusing register files and modulo addition operators.

First, the preprocessing module can directly be reused by SHA-1, SHA-256 and SM3
because the preprocessing procedure is the same as for transforming the input n-bit message
into a multiple of 512-bit data blocks by padding for the three hash functions. The padding
procedure performs padding on the original n-bit input message by adding one bit of
“1”, k bits of “0”, and 64 bits of the original message size, by following the equation of
(n + 1 + k = 448 mod 512) to find the minimum k value.

Second, the hardware architecture of the reconfigurable message expansion module
is designed to reuse the shift register files (i.e., W0, W1, ···, W15) that are used to store the
initial input message of the 512-bit data block from the preprocessing module, and shift the
expanded messages during round operations, as shown in Figure 9. For the SM3 mode,
the data in the W13, W10, W7, W3 and W0 are taken out at each clock cycle to perform
circular shift and XOR operation. The σ operator is described by a function containing
circular shift and XOR operations in Figure 4c. The output Wt is described by the following
Equations (9) and (10):

Wt = σ(Wt−16 ⊕Wt−9 ⊕ (Wt−3 <<< 15))⊕ (Wt−13 <<< 7)⊕Wt−6 (9)

Wt
′ = Wt ⊕Wt+4 (10)

For the SHA-1 mode, the data in the W13, W8, W2 and W0 are taken out at each
clock cycle to perform circular shift and XOR operation as described by the following
Equation (11):

Wt = (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) <<< 1 (11)

Because the input number of XOR in SHA-1 is different from that of SM3, the XOR
operator is not reused for the two operation modes. For the SHA-256 mode, the data in the
W14, W9, W1 and W0 are taken out at each clock cycle to perform the circular shift and XOR
operation contained in the functions of σ0 and σ1. Different from the first two modes of
SM3 and SHA-1, the SHA-256 mode has the addition modulo 232 operation as shown in
Figure 4b and Equation (12):

Wt = σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16 (12)

Sensors 2022, 22, 9160 18 of 24
Sensors 2022, 22, x FOR PEER REVIEW 19 of 25

W15 W14 W13 W12 W11 W10 W2W9 W8 W7 W6 W5 W4 W3 W1 W0

<<< XOR

XOR σ

XOR

<<<

XOR<<<

σ1 σ0
C
S
A

A
D
D

C
S
A

SM3

SHA-1

SHA-
256

Wt’

Wt

M
U

X

M
U

X

Message block Reused shift register files (32 bits for each Wi (i=0-15))

Figure 9. Hardware architecture of message expansion module in the reconfigurable hash unit.

For the SHA-1 mode, the data in the W13, W8, W2 and W0 are taken out at each clock
cycle to perform circular shift and XOR operation as described by the following Equation
(11): 𝑊௧ = (𝑊௧ିଷ ⊕ 𝑊௧ି଼ ⊕ 𝑊௧ିଵସ ⊕ 𝑊௧ିଵ଺) <<< 1 (11)

Because the input number of XOR in SHA-1 is different from that of SM3, the XOR
operator is not reused for the two operation modes. For the SHA-256 mode, the data in
the W14, W9, W1 and W0 are taken out at each clock cycle to perform the circular shift and
XOR operation contained in the functions of σ0 and σ1. Different from the first two modes
of SM3 and SHA-1, the SHA-256 mode has the addition modulo 232 operation as shown in
Figure 4b and Equation (12): 𝑊௧ = σଵ(𝑊௧ିଶ) + 𝑊௧ି଻ + σ଴(𝑊௧ିଵହ) + 𝑊௧ିଵ଺ (12)

Therefore, it is difficult to reuse the operators for message expansion in the three
modes for a reconfigurable design. For the three modes, the only shared hardware re-
sources are shift registers, i.e., W15 to W0. The expanded value Wt is processed by the logic
operations for 80 (in SHA-1) or 64 rounds (in SHA-256 and SM3). For each round, the logic
expansion result of Wt is feedback to the input of the register file W15.

Third, the reconfigurable round function iteration module is designed to build a uni-
fied compression data path by reusing register files and modulo addition (sum and mod-
ulo 232) operators in light blue color as shown in Figure 10a. Based on the observation that
operations in the one-way compression of SM3 contains most operations in both SHA-1
and SHA-256, the main idea is to first design the SM3 data path consisting of part 1, part
2 and part 3 as shown in Figure 10a, and then add a small amount of arithmetic logic and
MUXes appropriately to achieve a reconfigurable design supporting the other two hash
functions. The module performs multiple rounds of compression operation from the ini-
tialization vector (IV) with the expanded value Wt and the constant Kt to calculate the final
hash result. The three operation modes of the reconfigurable design are described as fol-
lowing:
• For the SM3 mode, the hardware data path is implemented by direct mapping from

the signal flow data path shown in Figure 4d. Specifically, part 1 calculates the inter-
mediate value SS1 and SS2 by using constant Kt and values in input register files A
and E. At the same time, part 2 calculates the intermediate value TT2 by using the
expanded value Wt, the SS1 from part 1, and values in input register files E, F, G and
H. Part 3 calculates the value TT1 by using SS2 from part 1, the expanded value Wt’
and values in input register files A, B, C and D.

• For the SHA-256 mode, three carry save adders (CSAs) in the light blue color are
reused to calculate the intermediate value T1 in part 2. Another CSA and one ADD
in light blue color are reused to calculate the value in output register file E in part 2.

Figure 9. Hardware architecture of message expansion module in the reconfigurable hash unit.

Therefore, it is difficult to reuse the operators for message expansion in the three modes
for a reconfigurable design. For the three modes, the only shared hardware resources are
shift registers, i.e., W15 to W0. The expanded value Wt is processed by the logic operations
for 80 (in SHA-1) or 64 rounds (in SHA-256 and SM3). For each round, the logic expansion
result of Wt is feedback to the input of the register file W15.

Third, the reconfigurable round function iteration module is designed to build a uni-
fied compression data path by reusing register files and modulo addition (sum and modulo
232) operators in light blue color as shown in Figure 10a. Based on the observation that
operations in the one-way compression of SM3 contains most operations in both SHA-1 and
SHA-256, the main idea is to first design the SM3 data path consisting of part 1, part 2 and
part 3 as shown in Figure 10a, and then add a small amount of arithmetic logic and MUXes
appropriately to achieve a reconfigurable design supporting the other two hash functions.
The module performs multiple rounds of compression operation from the initialization
vector (IV) with the expanded value Wt and the constant Kt to calculate the final hash result.
The three operation modes of the reconfigurable design are described as following:

• For the SM3 mode, the hardware data path is implemented by direct mapping from
the signal flow data path shown in Figure 4d. Specifically, part 1 calculates the
intermediate value SS1 and SS2 by using constant Kt and values in input register files
A and E. At the same time, part 2 calculates the intermediate value TT2 by using the
expanded value Wt, the SS1 from part 1, and values in input register files E, F, G and
H. Part 3 calculates the value TT1 by using SS2 from part 1, the expanded value Wt’
and values in input register files A, B, C and D.

• For the SHA-256 mode, three carry save adders (CSAs) in the light blue color are
reused to calculate the intermediate value T1 in part 2. Another CSA and one ADD
in light blue color are reused to calculate the value in output register file E in part
2. Two extra CSAs and one ADD in light blue color are also reused to calculate the
value in output register file A in part 3. In summary, there are six CSAs and two ADDs
reused in the SHA-256 mode. The other logic operators are designed to be dedicated
to SHA-256 as they are difficult to be reused for reconfigurable design.

• For the SHA-1 mode, similar to the SHA-256 mode, three CSAs in light blue color are
reused to calculate the intermediate value T in part 2. Two extra CSAs and one ADD
in light blue color are reused to calculate the value in output register file A in part 3.
In summary, there are five CSAs and one ADD reused in the SHA-1 mode. The other
logic operators are also designed to be dedicated to SHA-1 as they are difficult to be
reused for reconfigurable design.

Sensors 2022, 22, 9160 19 of 24

Sensors 2022, 22, x FOR PEER REVIEW 20 of 25

Two extra CSAs and one ADD in light blue color are also reused to calculate the value
in output register file A in part 3. In summary, there are six CSAs and two ADDs
reused in the SHA-256 mode. The other logic operators are designed to be dedicated
to SHA-256 as they are difficult to be reused for reconfigurable design.

• For the SHA-1 mode, similar to the SHA-256 mode, three CSAs in light blue color are
reused to calculate the intermediate value T in part 2. Two extra CSAs and one ADD
in light blue color are reused to calculate the value in output register file A in part 3.
In summary, there are five CSAs and one ADD reused in the SHA-1 mode. The other
logic operators are also designed to be dedicated to SHA-1 as they are difficult to be
reused for reconfigurable design.

A
B
C
D
E
F
G
H

A
B
C
D
E
F
G
H

ft

C
S
A

Ch GGt

C
S
A

<<<Σ1

C
S
A

C
S
A

A
D
D

<<<

<<<
<<<

A
D
D

C
S
A

Σ0FFt Ma

C
S
A

X
O
R

A
D
D<<<

C
S
A <<<

0

Kt

0

0

Wt
’

Part 1

Part 3

Part 2

MUX MUX

M
U

X

MUX MUX

M
U

X

M
U

X
M

U
X

M
U

X

MUXMUXMUX

SS1

SS2

TT1

TT2

Σ

A
B
C
D
E
F
G
H

A
B
C
D
E
F
G
H

ft

C
S
A

Ch GGt

C
S
A

<<<Σ1

C
S
A

C
S
A

A
D
D

<<<

<<<
<<<

A
D
D

C
S
A

Σ0FFt Ma

C
S
A

X
O
R

A
D
D<<<

C
S
A <<<

0

0

Wt

Kt

0

0

Wt
’

Part 1

Part 3

Part 2

MUX MUX

M
U

X

MUX MUX

M
U

X

M
U

X
M

U
X

M
U

X

MUXMUXMUX

Σ

Input

0

Wt

Kt

Output

Input

Output

(a) (b)

A
B
C
D
E
F
G
H

A
B
C
D
E
F
G
H

ft

C
S
A

Ch GGt

C
S
A

<<<Σ1

C
S
A

A
D
D

<<<

<<<
<<<

A
D
D

C
S
A

Σ0FFt Ma

C
S
A

X
O
R

A
D
D<<<

C
S
A <<<

0

Kt

0

0

Wt’

Part 3

Part 2

MUX MUX

M
U

X

MUX MUX

M
U

X

M
U

X
M

U
X

M
U

X

MUXMUXMUX

Σ

C
S
A

Y1

Y2

T1=Y1+Y2

A
B
C
D
E
F
G
H

A
B
C
D
E
F
G
H

ft

C
S
A

Ch GGt

C
S
A

<<<Σ1

C
S
A

C
S
A

A
D
D

<<<

<<<
<<<

A
D
D

C
S
A

Σ0FFt Ma

C
S
A

X
O
R

A
D
D<<<

C
S
A <<<

0

Kt

0

0

Wt’

Part 3

Part 2

MUX MUX

M
U

X

MUX MUX

M
U

X

M
U

X
M

U
X

M
U

X

MUXMUXMUX

Σ

Y1

Y2

T=Y1+Y2
Kt

0

Wt

KtKt

0

Wt

Input

Output

Input

Output

(c) (d)

Figure 10. (a) Hardware architecture of the proposed reconfigurable round function iteration mod-
ule in the reconfigurable hash unit, and its three operation modes for (b) SM3, (c) SHA-256 and (d)
SHA-1, respectively.

Table 7 shows the comparison of hardware overhead between the reconfigurable
hash unit and the separate hardware implementation of the SHA-1/SHA-256/SM3 in 65

Figure 10. (a) Hardware architecture of the proposed reconfigurable round function iteration mod-
ule in the reconfigurable hash unit, and its three operation modes for (b) SM3, (c) SHA-256 and
(d) SHA-1, respectively.

Table 7 shows the comparison of hardware overhead between the reconfigurable hash
unit and the separate hardware implementation of the SHA-1/SHA-256/SM3 in 65 nm,
where the gate count reduces by 56.18%. There are three main reasons for the reduction
of hardware overhead. First, only one preprocessing module is used in the reconfigurable
hash unit, while three preprocessing modules are required in the separate implementation
scheme. Second, in the message expansion module, sixteen 32-bit register files are reused.
Third, in the unified one-way compression data path, registers and addition modulo
operators are reused to further reduce the hardware overhead.

Sensors 2022, 22, 9160 20 of 24

Table 7. Hardware overhead of separate hardware implementation and reconfigurable implementa-
tion of the three hash functions in 65 nm.

Structure Type Algorithm Type Gate Count Saving

Separate
SHA-1 16,055 N/A

SHA-256 18,627 N/A
SM3 17,921 N/A

Total SHA-1+SHA-
256+SM3 52,603 N/A

Reconfigurable SHA-1/SHA-
256/SM3 23,050 56.18%

4. Implementation Results and Discussions

This section presents the results of the proposed reconfigurable cryptographic accel-
erator based on both Xilinx Virtex UltraScale + Field programmable gate array (FPGA)
and 65-nm application-specific integrated circuit (ASIC) implementations. The hardware
overhead, speed performance and energy efficiency are presented and discussed compre-
hensively. The comparison with the existing reconfigurable designs is also performed
and discussed.

4.1. FPGA Implementation and Evaluation

The separate hardware implementation and reconfigurable implementation of three
block ciphers and hash functions are realized based on a Xilinx Virtex UltraScale+ FPGA
device. Table 8 shows the hardware overhead of separate hardware implementation and
reconfigurable implementation.

Table 8. Hardware overhead of the separate hardware implementation and the reconfigurable
implementation of the three block ciphers and hash functions based on FPGA.

Structure Type Algorithm Type LUTs Registers F7 MUXes F8 MUXes

Separate
DES-64 342 74 96 0

AES-128/192/256 3756 685 649 256
SM4-128 732 266 103 20

Total DES+AES+SM4 4830 1025 848 276
Reconfigurable DES/AES/SM4 5555 849 83 0

Separate
SHA-1 1980 2910 0 0

SHA-256 2549 2922 0 0
SM3 2043 2939 0 0

Total SHA-1+SHA-256+SM3 6572 8771 0 0
Reconfigurable SHA-1/SHA-256/SM3 3140 2951 0 0

For the implementation of three block ciphers, although the LUTs of the reconfigurable
implementation increase by 15.0% compared with the separate hardware implementation,
the registers, F7 MUXes and F8 MUXes, of the reconfigurable implementation reduce
by 17.2%, 90.2% and 100%, respectively, as compared to the separate implementation.
There are two main reasons for the reduction of hardware overhead. First, the number
of iteration register files are reduced by more than 50% through the reuse of register files.
Second, the hardware overhead of the S-Box based on the composite field GF(((22)2)2) can
be reduced by about 30% as compared to the LUT implementation. At the same time,
the reuse of S-Boxes by AES and SM4 further achieves a reduction of eight S-Boxes. For
the implementation of three hash functions, the LUTs and registers of the reconfigurable
implementation reduce by 52.2% and 66.4%, respectively. The implementation results based
on FPGA are consistent with the results of ASIC implementation shown in Tables 6 and 7,
both of which show that reconfigurable hardware design has achieved more than 30%

Sensors 2022, 22, 9160 21 of 24

and 50% reduction in hardware resource overhead for block ciphers and hash functions,
respectively. There are three main reasons for the reduction of hardware overhead. First,
only one preprocessing module is used in the reconfigurable hash unit. Second, in the
message expansion module, sixteen 32-bit register files are reused. Third, in the unified
one-way compression data path, registers and addition modulo operators are reused to
further reduce the hardware overhead.

4.2. ASIC Implementation and Discussion

The proposed reconfigurable cryptographic accelerator core has been implemented
into a 65-nm complementary metal oxide semiconductor (CMOS) process technology
by a digital ASIC design flow based on Cadence Innovus Place and Route design tool.
Figure 11 shows the ASIC layout with a core size of 286.2 µm × 581 µm, where the left part
is the reconfigurable cipher unit and the right part is the reconfigurable hash unit.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 25

files. Second, the hardware overhead of the S-Box based on the composite field GF(((22)2)2)
can be reduced by about 30% as compared to the LUT implementation. At the same time,
the reuse of S-Boxes by AES and SM4 further achieves a reduction of eight S-Boxes. For
the implementation of three hash functions, the LUTs and registers of the reconfigurable
implementation reduce by 52.2% and 66.4%, respectively. The implementation results
based on FPGA are consistent with the results of ASIC implementation shown in Tables 6
and 7, both of which show that reconfigurable hardware design has achieved more than
30% and 50% reduction in hardware resource overhead for block ciphers and hash func-
tions, respectively. There are three main reasons for the reduction of hardware overhead.
First, only one preprocessing module is used in the reconfigurable hash unit. Second, in
the message expansion module, sixteen 32-bit register files are reused. Third, in the uni-
fied one-way compression data path, registers and addition modulo operators are reused
to further reduce the hardware overhead.

4.2. ASIC Implementation and Discussion
The proposed reconfigurable cryptographic accelerator core has been implemented

into a 65-nm complementary metal oxide semiconductor (CMOS) process technology by
a digital ASIC design flow based on Cadence Innovus Place and Route design tool. Figure
11 shows the ASIC layout with a core size of 286.2 μm × 581 μm, where the left part is the
reconfigurable cipher unit and the right part is the reconfigurable hash unit.

Reconfigurable
cipher unit

Reconfigurable
hash unit

581.0 um

28
6.

2u
m

Figure 11. ASIC layout of the proposed reconfigurable cryptographic accelerator core in 65-nm
CMOS process.

Table 9 shows the overall comparison between the proposed reconfigurable crypto-
graphic accelerator and the state-of-the-art designs based on ASIC implementation. The
benchmark table uses AES-128 algorithm for a fair comparison, which has been widely
adopted in many studies [10–12].

Table 9. Overall comparison of the proposed reconfigurable cryptographic accelerator and existing
designs based on ASIC implementation.

 TCAD’2018 [10] TCAS-II’2020 [11] TVLSI’2020 [12] Ours Proposed Design

Major key
algorithms

DES/AES/SM4
ZUC/SNOW/RC4

SHA-256/SM3

DES/AES/SM4
ZUC/SNOW/RC4

SHA-256/SM3

DES/AES/SM4
ZUC/RC4
SHA-256

DES/AES/SM4
SHA-1/SHA-256/SM3

Architecture
Reconfigurable

architecture based on
one unified data path

Reconfigurable
architecture based on
one unified data path

Reconfigurable
architecture based on
one unified data path

Reconfigurable
architecture based on two

unified data paths for
cipher block and hash
function algorithms

Technology 65 nm 65 nm 55 nm 65 nm
Area (mm2) 7.75 9.91 12.25 0.11
Gate count 1910 K N/A N/A 41 K

Figure 11. ASIC layout of the proposed reconfigurable cryptographic accelerator core in 65-nm
CMOS process.

Table 9 shows the overall comparison between the proposed reconfigurable crypto-
graphic accelerator and the state-of-the-art designs based on ASIC implementation. The
benchmark table uses AES-128 algorithm for a fair comparison, which has been widely
adopted in many studies [10–12].

As shown in Table 9, the proposed reconfigurable cryptographic accelerator achieves
the minimum area, the lowest power consumption, and the highest energy efficiency and
area efficiency—mainly due to the different implementation methods of various crypto-
graphic algorithms (DES/AES/SM4 and SHA-1/SHA-256/SM3). The implementation
method in [10–12] is designing a unified reconfigurable engine based on the coarse-grained
reconfigurable array (CGRA), which can realize a more flexible reconfigurable architecture
supporting various cryptographic algorithms including block ciphers, stream ciphers and
hash functions, etc. Specifically, in the three designs, memories are used to store configura-
tion information, FIFOs are used to buffer intermediate data, and reconfigurable processing
element arrays including a large number of reconfigurable cells, multiplexers and routers
are used to realize a flexible reconfigurable architecture. The works in [10–12] have realized
a more flexible reconfiguration to support much more cryptographic algorithms, while
sacrificing area and energy efficiency, mainly due to the complex routing, interconnections
and control logic as compared to our proposed work. On the oth citations power consump-
tion by about 49% and 18%, respectively. The significant reduction mainly benefits from
the proposed design methods. These methods entail the building of a unified cipher data
path through the reuse of reconfigurable S-Boxes based on Galois field and data iteration

Sensors 2022, 22, 9160 22 of 24

register files in the reconfigurable hardware design of block ciphers. They also entail the
reuse of a preprocessing (message padding) module, the building of a unified compressed
data path, and the development of a reconfigurable message expansion module in the
reconfigurable hardware design of hash functions.

Table 9. Overall comparison of the proposed reconfigurable cryptographic accelerator and existing
designs based on ASIC implementation.

TCAD’2018 [10] TCAS-II’2020 [11] TVLSI’2020 [12] Ours Proposed Design

Major key algorithms
DES/AES/SM4

ZUC/SNOW/RC4
SHA-256/SM3

DES/AES/SM4
ZUC/SNOW/RC4

SHA-256/SM3

DES/AES/SM4
ZUC/RC4
SHA-256

DES/AES/SM4
SHA-1/SHA-256/SM3

Architecture
Reconfigurable

architecture based on one
unified data path

Reconfigurable
architecture based on one

unified data path

Reconfigurable
architecture based on one

unified data path

Reconfigurable architecture
based on two unified data
paths for cipher block and
hash function algorithms

Technology 65 nm 65 nm 55 nm 65 nm

Area (mm2) 7.75 9.91 12.25 0.11

Gate count 1910 K N/A N/A 41 K

Memory 97.9 N/A N/A 0

Frequency (MHz) 400 500 110 323

Power
(mW)

620
(155 *)

625
(125 *)

35
(31.81 *)

23
(7.12) *

Throughput (Gbps) 51.2
(12.8 *)

64
(12.8 *)

0.44
(0.4 *)

4.13
(1.28) *

Energy efficiency
(Gbps/W) 82.6 102.4 15.71 441

Area efficiency
(Gbps/mm2)

6.61
(1.65 *)

6.46
(1.29 *)

0.04
(0.03 *)

37.55
(11.64) *

S-Box topology LUT LUT LUT GF(((22)2)2)

*: scaled to 100 MHz.

For a case study of energy efficiency improvement for the proposed reconfigurable
cryptographic accelerator, a typical lithium coin battery with 37 mAh is selected [19]. For a 3-
lead 360-Hz 12-bit electrocardiogram (ECG) recording system, there are about 131 MBytes
of raw data for one day, which needs to be processed by AES-128 and SHA-256. The 65-nm
ECG SoC in [20] is selected to integrate the cryptographic accelerator. For a smart sensor
node, usually 20% of battery power [21] can be allocated by the ECG SoC, which consumes
0.254 J per day when the cryptographic accelerator is not integrated. The 65-nm design
in [11] is selected for comparison, which has the highest energy efficiency among the three
designs in [10–12]. For the AES-128 cipher block processing of the 131 MBytes of raw
data, the energy consumption per day is 0.00325 J and 0.01 J, by the design in [11] and our
proposed design, respectively. For the SHA-256 hash function, the energy consumption per
day is 0.0045 J and 0.735 J by the design in [11] and our design, respectively. From our calcu-
lation, when integrating the accelerator in [11] and our proposed cryptographic accelerator,
the endurance time of the ECG SoC is estimated to 53.33 days and 203.55 days, respectively.
The results show that the ECG SoC integrated with our proposed cryptographic accelerator
can significantly increase the endurance time by more than ten times.

For the application scenarios where both decryption and hash authentication are re-
quired to operate simultaneously, the latency of the proposed reconfigurable cryptographic
accelerator is much lower than the state-of-the-art designs in [10–12]. The comparison
of processing latency with [11] is performed because only the work in [11] presents the
cycles of mode configuration and algorithm acceleration. This comparative study uses the
following scenario as an example: the cryptographic SoC receives a 512-bit ciphertext and
a 256-bit hash value simultaneously, and, therefore, it needs to use AES-128 and SHA-256

Sensors 2022, 22, 9160 23 of 24

for decryption and hash authentication, respectively. For the design in [11], the reconfig-
urable cryptographic accelerator takes 367 cycles to be configured in the AES decryption
mode, 80 (20 × 4) cycles to perform decryption, 370 cycles to be configured in the SHA-256
mode, and 160 (80 × 2) cycles to perform hash authentication. In total, it takes 977 cycles
for the design in [11] to complete the decryption and hash authentication tasks in the afore-
mentioned scenario in practical IoT applications. For our reconfigurable cryptographic
accelerator design, it takes only two cycles to configure the reconfigurable cipher unit and
reconfigurable hash unit to the AES-128 decryption mode and the SHA-256 mode through
the AXI bus, respectively. Subsequently, the reconfigurable cipher unit takes 80 (20 × 4)
cycles to perform decryption and the reconfigurable hash unit takes 160 (80 × 2) cycles to
perform hash authentication simultaneously. As compared to the existing reconfigurable
design for both block cipher and hash function algorithms in a single unified data path, our
proposed design is able to complete the acceleration of computing block cipher and hash
function algorithms at the same time by much shorter processing latency (i.e., a total of
162 cycles in the above case study), which can significantly reduce the number of processing
cycles (i.e., 83% reduction as compared to the state-of-the art design in [11]).

In a summary, the above comparison and evaluation against the state-of-the-art designs
has shown that the proposed reconfigurable cryptographic accelerator design have achieved
higher area efficiency, better energy efficiency and faster processing speed, which is more
suitable for power-constrained and cost-sensitive IoT applications.

5. Conclusions

The paper presents the design and analysis of a reconfigurable cryptographic accel-
erator that consists of a reconfigurable cipher unit and a reconfigurable hash unit with
a unified cipher data path and a unified compression data path, respectively. The solution
of mapping block ciphers and hash functions to two separate reconfigurable units proposed
in this work significantly reduces the number of cycles, by 83% compared with a unified
reconfigurable engine solution in the literature, when both block ciphers and hash functions
are required to operate at the same time in many IoT application scenarios. The two unified
data paths are proposed by reusing the key registers and operators to reduce the hardware
overhead. The reconfigurable S-Box module based on GF(((22)2)2) is designed and reused to
further reduce the hardware overhead by more than 30% compared with the conventional
LUT solution. Thanks to the hardware architecture with two separate reconfigurable units
and the reconfigurable design methods mentioned above, the energy efficiency and area
efficiency of the proposed design in 65-nm CMOS technology has achieved 441 Gbps/W
and 37.55 Gbps/mm2, respectively. The high energy efficiency and area efficiency show
that the proposed reconfigurable cryptographic accelerator is very attractive for many IoT
devices with limited battery and form factor including intelligent small mobile intelligent
robots, wearable medical devices and miniature unmanned aerial vehicles.

Because cryptographic chips are at risk of side channel attacks [22], we will further
increase the capability of resisting side channel attacks in the future to implement a more
secure cryptographic chip.

Author Contributions: Conceptualization, G.Y. and C.W.; methodology, C.W., Z.Z. and Z.L.; lit-
erature search and review, X.Z. (Xvpeng Zhang), B.L., Y.Z., X.H. and Z.S.; writing—original draft
preparation B.L. and X.Z. (Xvpeng Zhang); writing—review and editing C.W., B.L., X.Z. (Xvpeng
Zhang), G.Y., K.-S.C., Z.S. and X.Z. (Xuecheng Zou); supervision, C.W. and X.Z. (Xuecheng Zou). All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by National Key R&D Program of China (2019YFB1310001)
and in part by the Fundamental Research Funds of the Central Universities under Grant 2019KFYXJJS049.

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 9160 24 of 24

References
1. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies,

Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [CrossRef]
2. Yang, Y.; Wu, L.; Yin, G.; Li, L.; Zhao, H. A Survey on Security and Privacy Issues in Internet-of-Things. IEEE Internet Things J.

2017, 4, 1250–1258. [CrossRef]
3. Buenrostro, E.; Cyrus, D.; Le, T.; Emamian, V. Security of IoT Devices. J. Cyber Secur. Technol. 2018, 2, 1–13. [CrossRef]
4. Bhuiyan, M.N.; Rahman, M.M.; Billah, M.M.; Saha, D. Internet of Things (IoT): A Review of Its Enabling Technologies in

Healthcare Applications, Standards Protocols, Security, and Market Opportunities. IEEE Internet Things J. 2021, 8, 10474–10498.
[CrossRef]

5. Chaves, R.; Kuzmanov, G.; Sousa, L.; Vassiliadis, S. Cost-Efficient SHA Hardware Accelerators. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2008, 16, 999–1008. [CrossRef]

6. Ao, T.; He, Z.; Rao, J.; Dai, K.; Zou, X. A Compact Hardware Implementation of SM3 Hash Function. In Proceedings of the 2014
IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications, Beijing, China, 24–26
September 2014; pp. 846–850.

7. Nishikawa, N.; Iwai, K.; Kurokawa, T. High-performance Symmetric Block Ciphers on Multicore CPU and GPUs. Int. J. Netw.
Comput. 2012, 2, 251–268. [CrossRef]

8. Mathew, S.; Satpathy, S.; Suresh, V.; Anders, M.; Kaul, H.; Agarwal, A.; Hsu, S.; Chen, G.; Krishnamurthy, R. 340 mV–1.1 V,
289 Gbps/W, 2090-gate NanoAES Hardware Accelerator with Area-optimized Encrypt/decrypt GF(24)2 Polynomials in 22 nm
Tri-gate CMOS. In Proceedings of the 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, USA, 10–13
June 2014; pp. 1048–1058.

9. Mathew, S.; Sheikh, F.; Agarwal, A.; Kounavis, M.; Hsu, S.; Kaul, H.; Anders, M.; Krishnamurthy, R. 53 Gbps Native GF(24)2

Composite-Field AES-Encrypt/Decrypt Accelerator for Content-Protection in 45 nm High-Performance Microprocessors. IEEE J.
Solid-State Circuits 2011, 46, 767–776. [CrossRef]

10. Liu, L.; Wang, B.; Deng, C.; Zhu, M.; Yin, S.; Wei, S. Anole: A Highly Efficient Dynamically Reconfigurable Crypto-Processor for
Symmetric-Key Algorithms. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 3081–3094. [CrossRef]

11. Deng, C.; Wang, B.; Liu, L.; Zhu, M.; Wu, Y.; Li, H.; Yin, S.; Wei, S. A 60 Gb/s-Level Coarse-Grained Reconfigurable Cryptographic
Processor with Less Than 1-W Power. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 375–379. [CrossRef]

12. Du, Y.; Li, W.; Dai, Z.; Nan, L. PVHArray: An Energy-Efficient Reconfigurable Cryptographic Logic Array with Intelligent
Mapping. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 1302–1315. [CrossRef]

13. Nyberg, K. Generalized Feistel Networks. In Proceedings of the International Conference on the Theory and Application of
Cryptology and Information Security, Kyongju, Republic of Korea, 3–7 November 1996; pp. 91–104.

14. Kam, J.B.; Davida, G.I. Structured Design of Substitution-Permutation Encryption Networks. IEEE Trans. Comput. 1979, 28,
747–753. [CrossRef]

15. Coron, J.S.; Dodis, Y. Merkle-Damgård revisited: How to construct a hash function. In Proceedings of the Annual International
Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2005; pp. 430–448.

16. Liu, Y. The Design of Reconfigurable AES/SM4 IP Core against Side-Channel Attack. Master’s Thesis, Nanjing University of
Aeronautics and Astronautics, Nanjing, China, 2017.

17. Hao, L.; Wu, L.; Zhang, X. Design and Implementation of SM4 Block Cipher Based on Composite Field. Microelectron. Comput.
2015, 32, 16–20.

18. Canright, D. A Very Compact S-Box for AES. In Proceedings of the International Workshop on Cryptographic Hardware and
Embedded Systems, Edinburgh, UK, 29 August–1 September 2005; pp. 441–455.

19. Energizer CR1220 Lithium Coin Battery Product Datasheet. Available online: https://data.energizer.com/pdfs/cr1220.pdf
(accessed on 18 November 2022).

20. Myers, J.; Savanth, A.; Gaddh, R.; Howard, D.; Prabhat, P.; Flynn, D. A Subthreshold ARM Cortex-M0+ Subsystem in 65 nm
CMOS for WSN Applications with 14 Power Domains, 10T SRAM, and Integrated Voltage Regulator. IEEE J. Solid-State Circuits
2016, 51, 31–44.

21. Zhou, J.; Wang, C. An Ultra-Low Power Turning Angle Based Biomedical Signal Compression Engine with Adaptive Threshold
Tuning. Sensors 2017, 17, 1809. [CrossRef]

22. Shan, W.; Fu, X.; Xu, Z. A Secure Reconfigurable Crypto IC with Countermeasures against SPA, DPA, and EMA. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2015, 34, 1201–1205. [CrossRef]

http://doi.org/10.1109/JIOT.2017.2683200
http://doi.org/10.1109/JIOT.2017.2694844
http://doi.org/10.1080/23742917.2018.1474592
http://doi.org/10.1109/JIOT.2021.3062630
http://doi.org/10.1109/TVLSI.2008.2000450
http://doi.org/10.15803/ijnc.2.2_251
http://doi.org/10.1109/JSSC.2011.2108131
http://doi.org/10.1109/TCAD.2018.2801229
http://doi.org/10.1109/TCSII.2019.2909046
http://doi.org/10.1109/TVLSI.2020.2972392
http://doi.org/10.1109/TC.1979.1675242
https://data.energizer.com/pdfs/cr1220.pdf
http://doi.org/10.3390/s17081809
http://doi.org/10.1109/TCAD.2015.2419621

	Introduction
	Algorithm Analysis of Block Ciphers and Hash Functions
	Review of Cryptographic Algorithms in IoT Security Applications
	Introduction of Major Block Ciphers and Hash Functions
	Algorithm Analysis of Major Block Ciphers
	Algorithm Analysis of Major Hash Functions
	Algorithm Comparison between Block Ciphers and Hash Functions

	Hardware Architecture of Proposed Reconfigurable Cryptographic Accelerator
	Reconfigurable Cipher Unit
	Reconfigurable Hash Unit

	Implementation Results and Discussions
	FPGA Implementation and Evaluation
	ASIC Implementation and Discussion

	Conclusions
	References

