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Abstract: We report an ytterbium (Yb) doped fiber Mach Zehnder interferometer (MZI) based on the
up-taper fiber structure in a fiber ring laser (FRL) cavity. Different from the traditional FRL sensing
system, in which additional filters are required, the designed structure simultaneously acts as a
filter, sensor and gain medium. Furthermore, thanks to the high thermal–optical coefficient of Yb
doped fiber, the temperature sensitivity of 0.261 nm/◦C can be achieved in the range of 10–50 ◦C. In
addition, benefiting from the unique characteristics of the laser system itself, the designed structure
has a narrower linewidth (−0.2 nm) and a higher signal-to-noise ratio (SNR) (−40 dB) than the sensor
system based on a broadband light source (BBS). Meanwhile, the refractive index (RI) response and
stability of the system are measured. The RI sensitivity is up to 151 nm/RIU, and the wavelength
fluctuation range within two hours is less than 0.2 nm. Therefore, the designed structure is expected
to play a significant role in human life safety monitoring, aircraft engine temperature monitoring, etc.

Keywords: MZI; fiber ring laser; temperature sensor

1. Introduction

In recent years, optical fiber sensing technology has received extensive attention [1–4]
because of its small size, light weight, low price and high sensitivity [5–7]. Its application
range includes electromagnetic field detection [8–11], tumor marker measurement [12–14],
and temperature or RI calibration [15–20], etc. Among them, optical fiber temperature and
RI sensors have been widely reported because of immunity to electromagnetic interference
and multiplexing capabilities [21–24]. However, the traditional optical fiber sensor uses a
BBS as the light source [25–27], resulting in poor spectral quality and generate many burrs,
which affects the accuracy and stability of the measurement.

An FRL cavity is gradually regarded as a substitute for the BBS because of its high SNR
and narrow linewidth [28–30]. The interference structure is usually designed in the cavity
as the filter unit. When the disturbance occurs in an external environment, the central
wavelength of the system will shift. Liu et al. designed an RI sensor based on coreless
fiber [31] and systematically studied the effects of wavelength and pulse width on the
sensor property. The results demonstrate that the function of the sensing structure intensely
depends on the interrogation wavelength, and the narrower pulse width helps to avoid the
interference of relaxation oscillation. The detection sensitivity of −3271 µs/RIU is obtained.
However, the designed structure requires photoelectric detectors and oscilloscopes to
perform photoelectric conversion, which reduces the system efficiency. Mateusz et al.
realized the simultaneous measurement of humidity and temperature by using a cascaded
fiber Bragg grating (FBG) [32]. However, due to the inherent properties of the FBG, the
detection sensitivity obtained is particularly low. In 2016, Zhao et al. made pioneering use
of an up-taper MZI to measure temperature and RI in an FRL system, greatly improving
the detection limit and SNR [33].
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Here, we propose an MZI based on the up-taper structure of Yb doped fiber. In the
FRL system, the cladding mode is excited by the first sphere and then recoupled in the
second sphere after transmission to obtain interference. It benefits from the strong thermal–
optical coefficient of rare earth optical fiber, and a temperature sensitivity of 0.261 nm/◦C
in the range of 10–50 ◦C was achieved. Furthermore, the RI response characteristics of
the designed MZI was studied. It was found that the RI monitoring with sensitivity up
to 144 pm/RIU could be realized. At the same time, the variation range of wavelength
and intensity within 2 h is less than 0.2 nm and 0.5 dB, respectively, which verifies the
practicability of the sensor. Benefiting from the inherent properties of the FRL, the linewidth
of the designed structure is less than 0.2 nm, and the SNR is up to 40 dB. The sensor structure
designed is expected to play a potential role in life health monitoring and stable operation
of spacecraft.

2. Sensor Setup and Principle

The designed interferometer sensor structure is shown in Figure 1. MZI is composed
of two cascaded Yb doped fiber up-taper structures. The output light is transmitted to the
first spherical structure through the first section of Yb doped fiber. Firstly, the optical energy
is transmitted in the fiber core in the modality of core mode. When the light transmission
gets past the first sphere, the cladding mode is excited because of the mismatch of core
diameter; when the core mode and cladding mode reach the second sphere, some higher-
order cladding modes will recouple and then propagate along the fiber core. Since different
modes have different phases, the interference between modes will occur.
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The light intensity expression of the output interference spectrum can be expressed as:

I = Icore + In
clad + 2

√
Icore + In

cladcos∆ϕ (1)

in which Icore is the light intensity of core mode and In
clad is the light intensity of higher-order

cladding mode. Because of diverse propagation constants among different modes, after the
same transmission distance, there will exist phase difference between different modes. The
higher-order cladding modes excited in the up-taper-structure-based MZI partake in the
interference. The cladding modes of different orders are related to different effective RI,
and the phase difference ∆ϕ between the core mode and the n-step cladding mode can be
expressed as:

∆ϕ =
2π∆ne f f L

λ
=

2π

λ

(
ncore

e f f − ncl,n
e f f

)
L (2)

where λ is the output light wavelength, ncore
e f f is the effective RI of core mode, ncl,n

e f f is
the effective RI of different high order cladding mode, and L is the effective length of
interference arm. The free spectral range of the interference spectrum can be expressed as:

∆λ =
λ2

∆nc
e f f L

(3)
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When the external temperature and refractive index change, the interference spectrum
will shift. The expressions can be expressed as:

∆λ ≈ 2λ

[
1

∆ne f f
δ + k

]
∆T (4)

∆λ ≈ −λ

∆ne f f

∂ncl,n
e f f

∂nRI
(5)

in which δ and k are the thermal–optical coefficient and thermal-expansion coefficient of
the optical fiber, respectively. Since Yb doped fiber has higher thermal–optical coefficient
than erbium doped fiber and single-mode fiber, higher temperature sensitivity can be
achieved. nRI is the external RI value and ∆ne f f is the difference between cladding modes
and core mode.

The microstructure of the up-taper shape is shown in Figure 2. The structure can be
easily fabricated by an optical fiber fusion splicer (Fujikura 80C, Japan). Firstly, we used the
fiber cutter to smooth the end face of Yb doped fiber. Then, one end of the optical fiber was
placed in the fusion splicer, discharging twice using parameters of +100 bit discharge power
and 15,000 ms discharge time to form a smooth 325 µm spherical structure. The above
operation was repeated to make another sphere. Finally, the two spheres were welded by a
1.5 cm Yb doped fiber to form the required structure after adjusting the welding mode to
single mode welding mode.
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Figure 2. Micrograph of up-taper structure on Yb doped fiber.

In order to verify whether the designed up-taper structure can produce the interference
phenomenon, a BBS (Anyang SC-5) is used to connect the structure directly, and an optical
spectrum analyzer (OSA, Yokogawa AQ6370D) is used to detect the wavelength movement,
as shown in Figure 3.
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Figure 3. Experimental setup of Yb doped fiber up-tapered structure.

Furthermore, we used the FRL cavity for sensing experiments. Unlike traditional FRL
systems, as shown in Figure 4, additional filters need to be designed for sensing monitoring.
Yb doped fiber MZI can be used as filter, sensor and gain medium simultaneously. Without
additional filtering structure, the system structure is simplified and the structure stability
is increased.
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Figure 4. Traditional FRL sensing structure logic framework.

The designed sensing structure is shown in Figure 5. The 980 nm pump source (PL-
974-500-FC/APC-P-M) enters the ring cavity through the wavelength division multiplexer
(WDM), gains the Yb doped fiber, and the tail end of the Yb doped fiber is designed into up-
taper MZI structures through the fiber fusion splicer to produce interference effects. When
the temperature changes, the corresponding interference spectrum will shift. An isolator
is used to prevent optical reverse transmission from damaging devices. The modulated
light passes through the 90:10 coupler and outputs 10% of the laser intensity to the OSA
for monitoring. The remaining light intensity continues to circulate in the cavity. Based on
this structure, we successfully monitored the temperature and RI characteristics of an Yb
doped fiber MZI structure.
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Figure 5. The intracavity sensing system of the FRL without extra sensing head.

3. Results

Figure 6 shows the rule of spectrum change with temperature under BBS as shown in
the pre-experiment. In the range of 10–50 ◦C, the wavelength moves to short wavelength
as the temperature rises.
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Figure 6. Wavelength versus temperature curve under BBS.

Figure 7 shows the linear fitting curve of wavelength with temperature when the
measurement interval is 8 ◦C. The test sensitivity is as high as 0.314 nm/◦C according to
the figure. Meanwhile, the linear regression coefficient is 0.989. The linearity and feasibility
of the sensor are proved. In addition, error bars are also provided, and it can be found that
the error value of multiple measurements is less than 0.2 nm.



Sensors 2022, 22, 9196 6 of 12

Sensors 2022, 22, x FOR PEER REVIEW 6 of 12 
 

 

feasibility of the sensor are proved. In addition, error bars are also provided, and it can be 

found that the error value of multiple measurements is less than 0.2 nm. 

 

Figure 7. Linear regression curve of temperature with wavelength at BBS. 

Figure 8 shows the relationship between the output laser wavelength and the output 

result by using a BBS. It can be noted that the laser output is at the peak of the interference 

spectrum. This proves the accuracy of MZI working as a laser cavity filter. At the same 

time, the burr on the spectral edge may be caused by the unstable operation of the isolator. 

 

Figure 8. Corresponding curve of the output laser spectrum and interference spectrum. 

Figure 7. Linear regression curve of temperature with wavelength at BBS.

Figure 8 shows the relationship between the output laser wavelength and the output
result by using a BBS. It can be noted that the laser output is at the peak of the interference
spectrum. This proves the accuracy of MZI working as a laser cavity filter. At the same
time, the burr on the spectral edge may be caused by the unstable operation of the isolator.
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Figures 9 and 10 show the relationship between the laser spectral shift and temper-
ature in the FRL system. It can be found that the laser has a significant blue shift as the
temperature increases. Good linearity can be obtained by testing every 4 ◦C in the range
of 10–50 ◦C. The temperature sensitivity is 0.261 nm/◦C, which is slightly lower than that
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of the BBS, possibly due to the deviation between the selected interference wave trough
and the laser output. However, the laser still maintains good linearity with R squared
up to 0.999 and error bar less than 0.15 nm, which proves the stability and consistency of
the system.
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In addition, the RI response characteristics of the designed MZI structure are analyzed.
The results are shown in Figures 11 and 12. Within the RI range of 1.3335–1.3555, the
wavelength moves to shorter wavelength, and the corresponding response sensitivity is
−144.758 nm/RIU, with a linear fit up to 0.992.
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The response characteristics of the laser light source are shown in Figures 13 and 14,
and its sensitivity is −151.739 nm/RIU with the linearity of 0.997. For the RI, we repeated
the experiment for five times, and the error bar obtained is less than 0.13 nm. Therefore,
it can be considered that the sensor has good repeatability. It must be discussed that
the burr on the laser edge may be caused by the selected isolator being a polarization
maintaining isolator.
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Finally, we tested the laser stability at 10 ◦C for two hours. As shown in Figure 15,
it can be concluded that the wavelength fluctuation is less than 0.2 nm. Light intensity
fluctuation is less than 0.5 dB. This verifies the stability of the system. Although the sensor
system needs further packaging design to become practical, the designed system based on
FRL has an SNR higher than 40 dB and a linewidth less than 0.2 nm. This is incomparable
to other BBS-based sensors.
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4. Conclusions

In conclusion, we have designed an MZI based on the up-taper structure on Yb
doped fiber in an FRL cavity. Different from traditional FRL sensors, in which additional
filters are required as sensing units, the designed structure integrates the filter, sensor and
gain medium into the laser cavity simultaneously. Thanks to the high thermal–optical
coefficient of rare earth ions, the temperature sensitivity of the designed sensor is as high
as 0.261 nm/◦C. Furthermore, we tested the RI sensitivity and stability, and achieved
151 nm/RIU RI sensitivity. At the same time, the system maintains good stability within
2 h. Benefiting from the characteristics of the FRL itself, the designed structure has an
SNR higher than 40 dB and a linewidth narrower than 0.2 nm. This provides an extremely
powerful possibility for human life health detection and monitoring the normal operation
of aircraft engines.
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