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Abstract: The increase in security threats and a huge demand for smart transportation applications
for vehicle identification and tracking with multiple non-overlapping cameras have gained a lot
of attention. Moreover, extracting meaningful and semantic vehicle information has become an
adventurous task, with frameworks deployed on different domains to scan features independently.
Furthermore, approach identification and tracking processes have largely relied on one or two vehicle
characteristics. They have managed to achieve a high detection quality rate and accuracy using
Inception ResNet and pre-trained models but have had limitations on handling moving vehicle classes
and were not suitable for real-time tracking. Additionally, the complexity and diverse characteristics
of vehicles made the algorithms impossible to efficiently distinguish and match vehicle tracklets
across non-overlapping cameras. Therefore, to disambiguate these features, we propose to implement
a Ternion stream deep convolutional neural network (TSDCNN) over non-overlapping cameras
and combine all key vehicle features such as shape, license plate number, and optical character
recognition (OCR). Then jointly investigate the strategic analysis of visual vehicle information to find
and identify vehicles in multiple non-overlapping views of algorithms. As a result, the proposed
algorithm improved the recognition quality rate and recorded a remarkable overall performance,
outperforming the current online state-of-the-art paradigm by 0.28% and 1.70%, respectively, on
vehicle rear view (VRV) and Veri776 datasets.

Keywords: vehicle tracking; re-identification; three stream; deep convolutional neural network;
non-overlapping multiple cameras

1. Introduction

Traffic monitoring is an indispensable tool used for collecting statistics to enable
better design and control of transport infrastructure [1–3]. As a result, many applications
have emerged to improve traffic management, focusing only on vehicle counting in urban
streets [4]. However, plain vehicle counting was proven not to be sufficient for locating
and distinguishing between vehicle types or models [5]. Then vehicle localization and
identification [6] have become an area of interest in the computer vision community for
solving vehicle-related criminal activities such as theft in urban areas [6]. Additionally,
numerous research projects were conducted to solve various environmental challenges
in vehicle detection, re-identification, and tracking across multiple camera views [5,7].
However, most of these proposed algorithms are observed offline and are not ideal for real-
time tracking [8]. Moreover, they make it difficult for human observers [9] to remember and
efficiently distinguish between a wide variety of vehicle makes and models [10]. It became
an arduous task for a human being to monitor dozens of screens for incoming and outgoing
vehicle models [11]. Therefore, in an attempt to resolve this issue, refs. [12–16] proposed
algorithms to distinguish vehicles based on shapes, size, traveling speed, and distance
from camera views. However, the algorithms disregarded the vehicle’s visual information
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and resulted in poor overall performance. Then refs. [17–19] extended the vehicle visual
information using Faster-RCNN on camera videos and extracted more vehicle attributes
for recognition and classification categories. However, these algorithms struggled to detect
and retrieve vehicle license plates and characteristics in various classes with similar shapes
and designs. Additionally, their tracking performance deteriorated on low-resolution plates
and with illumination variations.

Using the existing infrastructure, Tian et al. [20] extracted and collected vehicle sig-
nature profiles from inductive loop detectors [21], weight-in-motion devices [22], and
micro-loop sensors [23] to analyze vehicle behavior and pattern trends. However, the
signature-based technique was complex and relied on a complex data model, resulting
in significant processing resources. Additionally, Koetsier et al. [24] suggested the imple-
mentation of DCNNs for fine-grained vehicle categorization and model verification. Then,
Khorramshahi et al. [25] investigated the benefits of integrating low-level and high-level
semantic characteristics for a vehicle search based on the fusion process for appearance
features such as texture (car plates), color, and DCNN-learned semantic attributes. How-
ever, in some frames, poor quality detection limited the extraction of appearance features
for vehicle instances. As a result, it limited the ability of these algorithms to distinguish
between vehicles of the same model and recognize the license plates.

In an attempt to address vehicle distinguishing problems, Subhalakhsmi and Siva [26]
developed an automatic license plate recognition system that tracks vehicles based on
license plate recognition and color. Their algorithm consisted of a hybrid decision tree and
an SVM classifier with a fifth-degree homogeneous polynomial kernel. It performed the
license plate localization by identifying the position of the license plates in the original
images. However, Zhang et al. [27] argued that vehicle identification could not be solely
based on license plate information, particularly in the presence of occlusions and plate
duplicates. Moreover, they emphasized that even the color and license plate recognition
were unfair enough to distinguish between vehicle similarities in appearance. In support
of these findings, Hashem et al. [11] concluded in their survey that most algorithms used
to recognize license plates and detect vehicles were hampered by distortions, illumination
variations, and occlusions. As a result, DCNN was voted the best technique to enhance
color-based vehicle recognition and tracking applications.

Using these discoveries, Dehghan et al. [28] developed an application to re-identify
vehicles from video images based on make, model, and color classification. Their al-
gorithm, however, failed to distinguish the similarities between vehicles. This left a
noticeable research gap for more investigations to be conducted on the vehicle model
classification. Therefore, these developments formulated a clear research gap in this area.
Hence, Biglari et al. [29] crosschecked the vehicle make and model with the license plate
by combining the global and local information. Then refs. [30,31] introduced a dual car
recognition framework that relies on the analysis of the vehicle’s external features. The first
framework is used to evaluate the shape of the vehicle’s rear by exploring the dimensions
and edges, and the second focuses on the features computed from the vehicle’s rear lights.
Finally, both of these frameworks were combined to detect a moving vehicle’s make and
model based on integrated CNN. Inspired by this architecture, Ke et al. [32] continued with
an investigation on how to fine-grain vehicle recognition using DCNN. Their algorithm
localizes the vehicle and corresponding parts using the RCNNs. It further aggregated the
features from a set of pre-trained CNNs to train the SVM classifier. However, the above-
mentioned approaches continued to experience challenges in distinguishing similarities
between vehicles across multiple cameras in real-world practical problems.

Komolovaite et al. [33] then attempted to address the challenges in vehicle similarity
appearance using the transfer-learning framework. They transferred the learned knowledge
from pre-trained AlexNet to learn and classify the vehicles’ front and rear views. Further-
more, to evaluate their algorithm, they developed a similar network to AlexNet with frozen
weights for feature extraction on network+SVM. The proposed transfer-learning framework
outperformed the newly built network and recorded noticeable accuracy. However, the
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framework had trouble handling similarities in shapes, sizes, and colors of the vehicles,
and this resulted in poor detection.

In conceptualizing the multiple steam for multi-task handling in the computer vi-
sion community, refs. [34,35] illustrated how the three streams CNN with multi-task can
be the ensemble to learn and classify 3D objects. This inspired [36,37], who proposed
multi-level feature extraction DCNN for vehicle Re-ID across non-overlapping cameras.
Their algorithm illustrated robustness in combining the small image patches but had diffi-
culty recognizing the far, blurry, and out-of-range vehicle images. Moreover, it could not
differentiate the vehicles of the same make, model, and color [38] with different plates.

Inspired by these discoveries, we proposed the Ternion streams DCNN to detect,
track, and Re-ID vehicles. Our algorithm uses three streams of DCNN to provide an ac-
curate estimation direction for the number of moving vehicles based on non-overlapping
camera views. We investigated and used each stream independently to extract vehicle
characteristics such as shapes and plates with an integrated OCR stream for low charac-
ter resolutions, then, fuse these attributes from the streams to form a complete vehicle
surveillance recognition and tracking system. We further used distance descriptors and
vectors to measure the vehicles’ similarities. This paper is organized as follows: in Section 1
we give an introduction and background; Section 2 describes the Ternion streams DCNN
framework; Section 3 lists experiment materials and parameter settings; Section 4 presents
Results; in Section 5, we discuss and analyze the results; and then finally we draw up the
paper conclusions in Section 6.

2. Proposed Ternion Stream DCNNs for Real-Time Vehicle Tracking (VT)

The main task is to track and re-identify the target across these multiple cameras [19–21].
We, therefore, designed our algorithm to detect, track and re-identify the vehicles across
several non-overlapping cameras based on the Ternion stream DCNN (TSDCNN) framework.
We implemented the proposed algorithm using the dataset that contains different shapes of
vehicles [23] and different illumination conditions. The algorithm relies on three streams
of the DCNN, which are independently used for extracting vehicle characteristics like
shapes and plates. The detection of plates was buttressed [24,26] with the integration
of the OCR stream, which has proven to cater to illegible characteristics on damaged
plates and low resolutions. According to our best knowledge, there is no similar proposed
algorithm for real-time object tracking across multiple non-overlapping cameras. The
TSDCNN architecture and working procedure are presented in Figure 1. The model is
trained using datasets with multiple vehicle types’ videos. However, the input to the first
stream is the sequences of RGB frames’ 96 × 96 pixel cropped images for an application
detector to perform detection, Re-ID processes, and searches using two phases. In the first
phase, the model extracts rear vehicle shapes and searches if a similar vehicle from the
video frame images has already appeared over the camera network. This is performed
solely based on vehicle shape appearance; whereas, in the second step, we extract the
vehicle with plates on a small region and feed them onto the plate stream DCNN. However,
the detection and reading of plates on low resolutions became more challenging in the
intra-class similarities, viewpoint changes, and inconsistent environmental conditions.
We, therefore, introduced and integrated the OCR stream to minimize these problems.
Then, we agglutinate the streams to obtain more comprehensive vehicle information for
distinguishing, recognizing, and associating the vehicle’s tracklets across non-overlapping
cameras. Additionally, we assumed that V = {V1...Vn}CiRp should represent the collection
of n vehicles to be recognized and classified. Furthermore, we merged the features’ distance
descriptor vectors and independently shared the weights within each stream. We then
applied the Euclidean method to calculate the similarity based on the distance between the
license plates of the query image and the multiple cameras’ video frame gallery images.
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Figure 1. Overview of the proposed TSDCNN architecture and procedural flow.

Additionally, we combined the three streams’ extracted features and computed the
similarities between vehicle images. Finally, we added these to the convolutional fully
connected layers and activated the softmax function for vehicle matching and classifications.

By implementing this strategy, our algorithm staunchly recognizes and classifies the
vehicle {ViεV} based on shapes, plates, and OCR. Furthermore, it located the vehicle in
every class {CiεC}. As a result, we rewrite the formulas as the following:

V = ∑n
i ViCiRp (1)

where p denotes vehicle features, V = {V1...Vn} represents a subset of the vehicle sample,
and C = {C1...Cn} denotes the sunset of the vehicle class sample.

2.1. Data Collection and Preparation Process

We used public datasets (VeRi 776 and vehicle rear view (VRV)), which are a col-
lection of video sequences captured with non-overlapping cameras. The videos Vvid ={

Vvid1 . . . VvidN

}
are the input source and have been converted to frames fr = { fr1 . . . frN},

which are further subdivided into images Img = {Img1 . . . ImgN} (see Figure 2). However,
the images extracted from the sequential video frames are treated interchangeably as simple
input sources that are fed to the Ternion stream DCNN. Then the special vehicle features
such as shape, license plate, and low-resolution characters are recognized simultaneously
and extracted from the input. Additionally, morphological operations and segmentation
techniques are used to remove background noise. To improve vehicle detection and read-
ability for small areas, the OCR stream has been added as a third stream to the two streams,
i.e., shapes and plate streams. The Ternion streams DCNN is then used to independently
extract the unique vehicle characteristics. However, to create an efficient framework, we
shared the parameters among the stream networks and considered implementing the ROI
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to generate appropriate bounding frames. As a result, the vehicle tracking centroids and
Euclidean distance methods were used in the calculation of the distance and movement of
the vehicle from frame to frame. Moreover, we calculated the similarities between frames
and estimated the loss by feeding the last layers of the framework to the contrastive loss
function as the following:

Closs = (1−Y) 1
2 (Dw)

2 + (Y) 1
2{max(0, m− Dw)}2;

0 ≤ Y ≤ 1, m > 0, 0 ≤ max ≤ m− Dw
(2)

where Dw denotes the Euclidean distance between the outputs of the Ternion stream
DCNN framework.
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Figure 2. Pair-wise data augmentation for matching from input videos
{

Vvid1
. . . VvidN

}
, { fr1 . . . frN}

frames, and images {Img1 . . . ImgN} sequences of the distinct vehicles.

Thus, we further expressed Dw as:

Dw = 2
√
{Gw·X1 − Gw·X2} (3)

where, Gw denotes the output of the framework, m represents the margin value, and Y
values indicate if inputs are from the same class.

2.2. Appearance Features’ Learning and Handling

Currently, existing vehicle Re-ID methods typically only extract the global appearance
characteristics. However, since vehicles of the same make and model have a similar
global appearance, extracting only global features for vehicle re-identification makes it
difficult to distinguish between them. Consequently, both global and local attributes
are crucial for improving the feature representation, discrimination, and robustness of
vehicle algorithms. We, therefore, propose using both global and local inputs to build more
discriminatory representations of the vehicles. Additionally, we introduce the three-stream
DCNN frameworks, where the built-in OCR serves as a third stream to process the low-
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resolution and illegible plate characteristics. The proposed algorithm inputs the images
from sequential frames and divides them into regions, which are fed to the framework for
predicting bounding boxes and ROI likelihood values. However, each stream is applied
simultaneously to extract vehicle features and to generate discriminators independently
with separate weights. Additionally, we flattened the features from the ROI pooling layer
into a vector and fed the final fully connected layers into the frameworks. Finally, the
feature vectors of the streams were concatenated to form significant unique information for
vehicle detection, tracking, Re-ID, and matching.

2.3. License Plate-Based Vehicle Re-ID

Depending on the distance from the cameras, multiple plate detection and recognition
are frequently available in chaotic conditions. Therefore, due to illumination, viewing
angle, and occlusion, this makes it challenging. Additionally, it has been proven to facilitate
feature isolation during the segmentation process; to tackle these issues, several algorithms
have emerged and rely on template-matching implementation. The template matching
technique, however, was ineffective and did not offer a durable answer. However, to
validate and match license plates, we suggest using the plate stream neural network, and
from the pairings of license plates, the stream is intended to generate robust discriminative
feature vectors. Moreover, to make the plate symbols and characters easier to read, it is also
combined with the parallel neural network OCR stream. The two neural network streams
are continuously and consistently trained to match the output pixel images. This improved
our method as it became possible to design features resistant to geometric distortions in the
query image and to learn the best shift-invariant local feature detectors. To ensure that the
distance between license plate pairs of the same vehicle is small and the distance between
license plate pairs of different vehicles is large, we also calculated the Euclidean distance
between the feature vectors.

This problem is presented and solved mathematically, as follows: supposing $1 and $2
are input pairs of vehicle ν license plates, ς is a binary label of the pair Θ. The Euclidean
distance is then calculated as follows:

Ew($1 , $2) = ‖ ζw($1)− ζw$2 ‖

if ($1, $2) ε ν; then
{

θ = 1
otherwise 0

(4)

where w denotes the weights of the convolutional neural network, and ζw($1) and ζw$2)
represent features extracted from $1 and $2 images of the vehicle license plates, respectively.
Moreover, we defined the contrastive loss as the following:

L(w, ($1, $2, ς)i) = (1− ς)· Lc(Ew($1, $2)
i) + ςLi (Ew($1, $2)

i) (5)

where (ς, $1, $2) i is the ith tuple of training vehicle license plates. Lc is the partial loss
function for the same license plate and Lc is the loss function for different license plates.

3. Experiments Settings
Implementation Details

We experimented the algorithm on a Core Intel i7 Machine with 64GB DRAM and
NVidia Titan XP GPU, running the Ubuntu 16.04 LTS operating system. Furthermore, we
developed the entire framework in Python and, most of the time, the libraries used were
NumPy, matpotlib, sci-kit-learn, and SciPy.

Training Settings: The first experiment was performed using the Rear Vehicle Public
Dataset (VRV) consisting of ten videos (i.e., 56,028 vehicles, including motorcycles and
buses) with a resolution of 1902 × 1080 pixels, recorded by different cameras with a 20 min
duration. Then, we set the parameters with the learning rate (γ = 0.0001) and 500 iterations.
We trained the framework 80% (8 videos) and the rest (20% = 2 videos) was for the test
phase. Then, in the second experiment, we used the VeRi 776 dataset, which consists of
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776 vehicles with a total of 50,000 images captured by 20 different cameras. Additionally,
2 to 18 cameras with different lighting, resolution, and occlusion record each vehicle in the
data sets. In both datasets, the videos are split and converted into frames that are used to
extract images cropped to 96 × 96 pixels and input to the network (see Figure 3) for the
DCNN architecture structure.
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Testing Settings: We simulated the real-world problem in real-time by adding the
parameters and multiplying the false negatives in the test sample set (20%). Then, we
apply an appearance-based stream to both datasets independently and examine the license
plate validation for a specific vehicle search. We’ve boosted the plate stream with OCR to
improve the readability of plate characters under lighting variations. Then, several convo-
lutional neural network layers were shared and feature maps were generated, which were
passed to the shape stream, the plate stream, and the OCR to generate more discriminating
features. The extracted feature map was further divided into local areas of the vehicle,
and each area part was embedded in the pooling layer and the fully connected layers to
generate descriptive feature vectors. Finally, the fully connected level of the combined
stream features was passed to the attribute chaining level and softmax for matches. Ad-
ditionally, we evaluated and compared the algorithm performance based on the metrics
accuracy, accuracy (P), recall (R), and F scores. These metrics are expressed mathematically,
as follows:

Precision =
TruePositives

(TruePositives + FalsePositives)
(6)

Recall =
TruePositives

(TruePositives + FalseNegatives)
(7)

F scores = 2[
P ∗ R

(P + R)
] (8)

where P and R denote precision and recall, respectively.

Accuray =

[
TruePositive + TrueNegative

TruePositive + TrueNegative + FalsePositive + FalseNegative

]
(9)

4. Results

In this section, we present the training and validation results of our proposed algorithm
(TSDCNN). We start with the performance of vehicle detection and matchings. Thus,
Figure 4a–e illustrates the overall detection rate performance and effectiveness of our
algorithm’s detector and vehicle appearance associations for both datasets.
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Figure 4. To visualize the detector and the proposed TSDCNN’s overall performance quality on
vehicle matching rates across non-overlapping cameras with multiple angle views: (a) shows vehicles
detection and matching under normal environmental conditions; (b) shows vehicles detection and
matching under extreme illumination variations conditions. Then (c,d) are the algorithms’ poor detec-
tion quality and matching limitations under normal and extreme illumination variations conditions,
respectively. Then (e) illustrates vehicle detection and matching under the extreme rotation variations.
The red boxes around vehicles indicate the first detections, while the green boxes denotes the matches
for the detected vehicle across the non-overlapping cameras.

In other instances, our algorithm reacted to new vehicle entries that entered and exited
scenes through the camera’s left acute angle views. The detector further checked whether
the entry of the new vehicle fell within the acceptance range of the trajectories. The error
between the actual observation, the appearance similarity, and the predicted observation
was normalized using the Euclidean method calculation. Furthermore, this confirmed the
vehicle correlations and resulted in satisfactory precision, recall, and F score measurements
during the training and validation processes. Therefore, these results are presented in
Tables 1 and 2 and visualized in Figures 5–8. Furthermore, they are analyzed and discussed
in the Results Analysis section.

Table 1. Performance evaluation of TSDCNN on VRV dataset.

Precision Recall F Score Accuracy

97.20% 95.09% 96.10% 98.70%
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Table 2. (VeRi776) Performance evaluation of TSDCNN on VeRi776 dataset.

Precision Recall F Score Accuracy

89.40% 89.97% 90.00% 89.40%
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5. Results Analysis

In this section, we analyze our TSDCNN algorithm’s results obtained from the ex-
perimental data. We trained and evaluated our detector and classifier based on a couple
of combined vehicle characteristics descriptors using the VRV and VeRi776 datasets for
real-time multi-vehicle tracking. The vehicle detection quality and matching are shown in
Figure 4, whereas in Figures 5–8, we illustrate the overall performance and effectiveness of
our algorithm’s detector for both the training and validation phase.

The algorithm has proven effective with high performance in precision and recall, as
shown in Tables 1 and 2. This demonstrates that it could be trusted to accurately detect,
learn, match and correctly classify the vehicle area of interest based on various features.
However, through this process, the algorithm had challenges with the non-representative
data at the beginning of the training and testing phases but gradually converged well with
more training epochs. This is shown in Figures 5 and 7, where the learning plots begin
with difficulties in jumping up and down in statistics values due to vehicle appearance
attributes and variations in entry/exit angle views in both datasets. Hence, this led to the
poor recognition quality rates illustrated in Figure 4c,d and contributed to the high number
of false positive classifications and mismatches, as clearly advocated in Figure 4a,b. This
is highlighted in Figures 6 and 8, where the algorithm’s training losses and gains at 500
and epochs project performance well on both the VRV and VeRi776 datasets. However,
the algorithm showed better performance on VeRi 776 scenes, which had more difficult
challenges, such as vehicle shape rotation with 225◦ multiple views compared to VRV
datasets. As shown in Figure 4c, for the most part, the algorithm learned, identified
matches, and effectively tracked all of the different vehicle shapes under various difficult
conditions. This proves the robustness of our algorithms against different strong lighting
and oblique viewing angles. However, despite the improved performance, Figures 5 and 7
show that there were still comparable issues with the unrepresentative data, primarily
during the training and testing phases for both datasets. Furthermore, it quickly converged
better at epoch 270, and this showed that our algorithm had enough data during the
training phase, although initially, there seemed to be problems with not getting enough
data at the beginning of the training. Therefore, the bouncing [34] could be due to data
fitting, as we can see that as we trained the algorithm with more epochs, we got better and
more stable results for both datasets.

Performance Comparison with State-of-the-Art Methods

To demonstrate the overall accuracy performance and specificity of our algorithms
for the VRV dataset and VeRi776, we compared our precision results to state-of-the-art
paradigms. The results are summarized in Tables 3 and 4, respectively.
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Table 3. Comparison with state-of-the-art methods for testing the subset of the VRV dataset.

Methods Precision Recall F Score Accuracy

MatchNet [5] 98.42% 94.50% 87.10% 90.70%
LENETS [37] 97.80% 89.60% 85.20% 87.30%
MICRO [27] 97.40% 88.80% 81.80% 85.10%
VAMI [31] 98.40% 91.30% 90.60% 92.60%

TSDCNN (Ours) 98.20% 97.20% 95.09% 96.10%

Table 4. Comparison with state-of-the-art methods for testing the subset of the VeRi776 dataset.

Methods Precision Recall F Score Accuracy

Appearance+Color+Model [19] 87.70% 61.11% 89.27% 90.76%
FACT+Plate-SNN+STR [37] 58.21% 59.47% 61.44% 62.61%

Combining Network [27] 77.40% 60.19% 60.54% 60.60%
CNN-FT+CBL-8FT [38] 78.55% 62.62% 61.83% 60.83%

TSDCNN (Ours) 89.40% 90.30% 89.97% 90.00%

Therefore, from Tables 3 and 4, it was observed that our strategy outperformed the
current online state-of-the-art paradigm by 0.28% and 1.70%, respectively. This proved
that the proposed approach training procedure was more convenient for real-time vehicle
tracking than many other methods presented in Tables 3 and 4. However, as illustrated
in Figure 4c,d it faced challenges with angle view rotations, and as a result suffered from
overlapping detection boxes, misdetection, and vehicle re-identification.

6. Conclusions

In this paper, we presented a deep convolutional network learning based on a three
streams approach for real-time vehicle tracking and re-identification (Re-ID) problems.
The study was conducted on public vehicle datasets with multiple views for vehicle
detection, identification, and tracking, based on the combined three streams‘ descriptors,
such as shape, plate, and OCR. This deep neural network model extracted both the global
and local visual features that were more robust, representing the vehicles’ characteristics.
Specifically, the stream is effectively used to extract the shape and plate. Additionally,
we enhanced the license plate stream verification technique with the integration of OCR
for low-resolution character reading and then used the deep neural network to calculate
the similarity appearance and trajectories with the Euclidean method. This improved the
overall results and proved that the proposed technique produces better detection rates
and data associations. However, our algorithm experienced a poor detection rate on fast-
moving vehicles. Therefore, our future work will involve implementing the algorithm for
tracking multiple fast-moving vehicles on a huge dataset with a 360◦ angle view.
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