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Abstract: As a power source for autonomous underwater vehicles (AUVs), lithium-ion batteries play
an important role in ensuring AUVs’ electric power propulsion performance. An accurate state of
charge (SOC) estimation method is the key to achieving energy optimization for lithium-ion batteries.
Due to the complicated ocean environments, traditional filtering methods cannot effectively estimate
the SOC of lithium-ion batteries in an AUV. Based on the standard extended Kalman filter (EKF),
an adaptive iterative extended Kalman filter (AIEKF) method for the SOC in an AUV is proposed
to address the traditional filter’s problems, such as low accuracy and large errors. In this method,
the adaptive update is introduced to deal with the uncertain noise from the lithium-ion battery.
The iteration is used to improve the convergence speed and to reduce the computational burden.
Compared with the EKF, iterative extended Kalman filter (IEKF) and adaptive extended Kalman
filter (AEKF), the proposed AIEKF has a higher estimation accuracy and anti-interference capability,
which is suitable for the AUV’s SOC estimation. In addition, based on the second-order equivalent
circuit model of the lithium-ion battery, a forgetting factor recursive least squares (FFRLS) method is
proposed to deal with the multi-variability problem. In the end, four different methods, including
EKF, IEKF, AEKF, and the proposed AIEKF, are compared in computational time. The experiment
results show that the proposed method has high accuracy and fast estimation speed, meaning that it
has good application potential in AUVs.

Keywords: lithium-ion battery; state of charge; forgetting factor recursive least squares; adaptive
iterative extended Kalman filter

1. Introduction

AUVs are multi-functional underwater vehicles capable of autonomous propulsion.
A battery provides the power source for an AUV’s propulsion, its range, and the de-
velopment of various technologies. Therefore, it is critical to select a high-performance
underwater power battery technology for AUVs. Lithium-ion batteries with a low self-
discharge rates, high energy ratios, and long cycle life are reliable solutions for AUV energy
storage. The SOC of lithium-ion batteries reflects the power consumption condition and
remaining capacity of the battery, and SOC estimation is an important function of the
battery management system (BMS) [1–3]. Because SOC cannot be measured directly in
practical applications, a high-precision estimation method of SOC is essential to more
effectively manage lithium-ion batteries and achieve optimal control of the charging and
discharging process [4,5]. Additionally, the state of health (SOH) is another important
factor to measure the ability of lithium-ion batteries to safely operate, and the deterioration
of the battery will have an impact on the SOC estimation of lithium-ion batteries; therefore,
it is crucial to accurately predict the health of the battery [6].

At present, many methods for SOC estimation have been proposed. The ampere-
hour counting method [7] is simple to implement, but the initial value of the SOC and
the current measurement noise can affect the estimation accuracy, which can lead to
a significant increase in the estimation error after accumulation. The open-circuit voltage
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(OCV) method [8] is used to estimate SOC by determining the function between OCV and
SOC, and then the SOC is estimated from the OCV value, but this method requires the
battery to sit for sufficient time to reach internal equilibrium, so it is not suitable for online
estimation. In addition, because the OCV–SOC curve of lithium-ion batteries is flat in the
middle part, a slight deviation of OCV may lead to a large error in SOC estimation. The data-
driven approach enables the direct use of data for battery SOC estimation, such as neural
networks [9], support vector machines [10], fuzzy systems [11], and so on. However, data-
driven methods require a large amount of data for simulation training and the performance
depends on the quality of the training dataset. Poor data allocation can also affect the
estimation results. Accurate estimation of battery SOC and parameter identification cannot
be achieved without modeling it. Equivalent circuit models have the advantage of being
simple and easy to implement online, and have been widely used in battery SOC estimation.
An accurate and efficient equivalent circuit model is an important factor for effective SOC
estimation. The commonly used equivalent circuit models are the Rint model, Thevenin
model, and multi-order dynamic model [12–14]. Meng et al. [15] proposed an extended
battery equivalent circuit model and performed an observability analysis of the nonlinear
extended model, which provides important theoretical support for the battery charging
control design and the development of a battery monitoring framework. A commonly
used model-based approach is to combine the equivalent circuit model with a filter to
estimate the SOC. They generally include the extended Kalman filter [16], unscented
Kalman filter [17], cubature Kalman filter [18], H∞ filter [19], particle filter [20], and so
on. Misyris et al. proposed a hybrid SOC estimation technique in [21], which combines
the advantages of three different SOC estimation methods and can effectively improve the
estimation accuracy under different conditions, reducing the computational burden and
obtaining more accurate SOC estimates. Before the battery SOC estimation, the parameters
of the battery model must be identified, and the parameter accuracy of the battery model
affects the estimation performance of the battery equivalent circuit model. The commonly
used parameter identification methods are the offline identification method [22], recursive
least squares method [23–25], genetic algorithm [26,27], and particle swarm optimization
method [28].

In order to overcome the shortcomings of the traditional EKF in terms of SOC estima-
tion accuracy, an iterative part is added to the EKF. The IEKF updates the Jacobi matrix
of the observation equation by bringing the obtained a posteriori estimates into the obser-
vation equation, and in each iteration of the calculation process. The estimated value is
continuously kept close to the true value by continuously using the observed value during
each iteration of the calculation. The absolute value of the difference between the estimated
terminal voltage and the measured terminal voltage is set as the threshold value to deter-
mine whether to perform the iteration or not. When the voltage error value is less than the
threshold value, this process meets the accuracy requirements, and the iteration process is
not required. This avoids unnecessary iterative processes and reduces the computational
burden. When the voltage error is greater than the threshold value, an iterative process is
required. The uncertainty due to system noise affects the accuracy of SOC estimation. To
solve this problem, we incorporated the adaptive update scheme. An improved Sage–Husa
estimator was used for adaptive updating of process noise and measurement noise, which
overcomes the fluctuation of noise due to the influence of external factors. Based on the
above, this paper proposes the adaptive iterative extended Kalman filter.

The rest of the paper is structured as follows. Section 2 describes the structure of
the battery model chosen in this paper and the FFRLS parameter identification method.
Section 3 presents the principle of SOC estimation based on AIEKF. Section 4 conducts
experiments based on LiFePO4 batteries to verify the reliability of the proposed method.
Finally, Section 5 presents the conclusions of this paper.
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2. Lithium-Ion Battery Modeling
2.1. Equivalent Circuit Model

The second-order equivalent circuit model is more accurate than the first-order equiva-
lent circuit model because increasing the number of RC networks can improve the accuracy
of the model. The second-order equivalent circuit model has less computational complexity
than other higher-order circuit models and better reflects its polarization characteristics [29].
Therefore, in the case of low system excitation [21], the second-order equivalent circuit
model was chosen for the SOC estimation of lithium batteries. The structure of the second-
order RC equivalent circuit model is shown in Figure 1.
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Figure 1. Second-order equivalent circuit diagram of lithium-ion battery. where Uoc is the battery’s
open-circuit voltage; U1 is the battery’s electrochemical polarization voltage; U2 is the battery’s
concentration polarization voltage; Ut is the terminal voltage of the battery; It is the operating
current of the battery; R0 is the battery’s ohmic resistance; R1 and C1 are the battery’s electrochemical
polarization resistance and polarization capacitance, respectively, characterizing the slow electrode
reaction inside the battery; and R2 and C2 are the battery’s concentration polarization resistance and
polarization capacitance, respectively, characterizing the fast electrode reaction inside the battery.

The second-order equivalent circuit model equation can be derived from Figure 1:

It = C1
dU1
dt + U1

R1

It = C2
dU2
dt + U2

R2

Ut = Uoc −U1 −U2 − ItR0

(1)

SOC reflects the remaining capacity of the battery and is defined as the ratio of the
remaining capacity of the battery to the total capacity with the following formula:

SOCt = SOCt0 −
∫ t

t0

η It

Qc
dt (2)

where SOCt denotes the SOC at time t, SOCt0 denotes the SOC at time t, η is the Coulomb
efficiency coefficient, and Qc is the nominal capacity of the battery.

According to the second-order RC equivalent circuit model of the lithium-ion battery,
the current is taken as the model input, and the voltage Ut is taken as the model output.

Select [U1, U2, SOC]T as the state variable to establish the state space equation of
the battery:
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 U1,k+1
U2,k+1

SOCk+1

 =

e−
t

τ1 0 0

0 e−
t

τ2 0
0 0 1


 U1,k

U2,k
SOCk

+


R1

(
1− e−

t
τ1

)
R2

(
1− e−

t
τ2

)
− η It

Qc

It,k +

w1,k
w2,k
w3,k

 (3)

Ut,k = Uoc(SOCk)−U1,k −U2,k − vk (4)

where τ1 = R1C1, τ2 = R2C2, the state variable is xk = [U1,k, U2,k, SOCk]
T , the con-

trol variable is uk = It,k, the observation variable is yk = Ut,k, and the system noise is
wk = [w1,k, w2,k, w3,k]

T , whose covariance is Q, and the observation noise is vk, whose
covariance is R.

2.2. Parameter Identification of the Battery Model

In order to establish an accurate battery model, multiple unknown parameters in the
model need to be identified. In this study, an online parameter identification method based
on the FFRLS algorithm was used to reduce the influence of historical data on new data
during the recursive process by setting the forgetting factor and continuously updating the
model parameters to obtain more accurate battery parameters.

The Laplace equation of the battery model is obtained from Equation (1).

G(s) =
Uoc(s)−Ut(s)

I(s)
=

U(s)
I(s)

= R0 +
R1

1 + τ1s
+

R2

1 + τ2s
(5)

The above equation is discretized using a bilinear variation, so that s = 2
T

1−z−1

1+z−1 , and
the discretized transfer function can be expressed as:

G
(

z−1
)
=

b3 + b4z−1 + b5z−2

1− b1z−1 + b2z−2 (6)

where z is the discrete operator, T is the sampling time, and b1, b2, b3, b4, b5 are the coeffi-
cients to be determined.

Equation (1) can be rewritten as a difference equation.

U(k) = b1U(k− 1) + b2U(k− 2) + b3 I(k) + b4 I(k− 1) + b5 I(k− 2) (7)

Let ψ(k) = [U(k− 1) U(k− 2) I(k) I(k− 1) I(k− 2)], ϑ(k) = [b1 b2 b3 b4 b5] and the
sensor sampling error at moment k is e(k), U(k) can be expressed as:

U(k) = ψT(k)ϑ(k) + e(k) (8)

The recursive least squares formula with the forgetting factor is as follows:

K(k) = P(k−1)ψ(k)
λ+ψT(k)P(k−1)ψ(k)

P(k) = λ−1P(k− 1)
[
I − K(k)ψT(k)

]
ϑ̂(k) = ϑ̂(k− 1) + K(k)

[
U(k)− ψT(k)ϑ̂(k− 1)

]
(9)

where ψ is the error covariance matrix of FFRLS, K is the gain of FFRLS, and λ is the
forgetting factor, generally 0 < λ < 1, where λ = 0.95 is taken.
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The relationship between the battery model parameters and coefficients is:

R0 = b3−b4+b5
1+b1−b2

τ1τ2 = T2(1+b1−b2)
4(1−b1−b2)

τ1 + τ2 = T(1+b2)
(1−b1−b2)

R0τ1 + R0τ2 + R1τ2 + R2τ1 = T(b3−b5)
(1−b1−b2)

R0 + R1 + R2 = b3+b4+b5
(1−b1−b2)

(10)

The hybrid pulse power characterization (HPPC) experimental data are used for
parameter identification, and the parameter identification results are shown in Figure 2.
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3. SOC Estimation Based on AIEKF

In this paper, an AIEKF based on the Sage–Husa maximum a posteriori estimator is
proposed for battery SOC estimation. The EKF linearizes the nonlinear system by truncating
the higher-order terms through Taylor series expansion. Although the EKF improves the
algorithm’s ability to handle nonlinear systems and simplifies the computational process,
the resulting higher-order loss errors lead to a decrease in estimation accuracy. In order to
solve the above problems in EKF, some optimization improvements are made to the EKF
algorithm to reduce the influence of the above factors. The iterative idea is introduced in
which the posterior estimate is substituted into the observation equation and the Jacobi
matrix of the observation equation is updated by means of a multiple iterative measurement
update process. By repeatedly using the observations, the estimates are continuously
approximated to the true values during each iteration of the calculation. The absolute value
of the difference between the measured end voltage and the estimated end voltage is used
as the threshold value, and when the voltage error value is less than the threshold value,
the iterative process is not required to reduce the computational burden. When the voltage
error is greater than the threshold value, an iterative process is required. Because the system
in the implementation of the estimation process will be affected by interference and random
parameters, the process noise covariance and measurement noise covariance are constantly
changing, which usually produces large estimation errors and affects the accuracy and
robustness of SOC estimation. Incorporating the Sage–Husa maximum posteriori estimator
and adaptively updating the process noise covariance matrix and measurement noise
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covariance matrix in real-time can improve the estimation accuracy and convergence speed
of the algorithm under unknown system noise conditions, and further improve the filtering
effect of the algorithm.

The nonlinear system model can be described as:{
xk = f (xk−1, uk−1) + wk
yk = g(xk, uk) + vk

(11)

Initialization: {
x̂0 = E(x0)

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
] (12)

where x̂0 is the initial estimate and P0 is the initial covariance matrix.
Time to update:

x̂k|k−1 = f
(

xk−1|k−1, uk−1

)
(13)

P̂k|k−1 = AkPk−1|k−1 AT
k + Qk (14)

where AK = ∂ f
∂(x)

∣∣∣
xk=x̂k|k−1

.

Measurement update:
Let the number of iterations be N, the estimated value of the ith iteration be xi

k|k, and

the estimated covariance be Pi
k|k

xi
k|k = x̂i

k|k−1 + Ki
k

(
yk − ŷi

k

)
(15)

Ki
k = P̂i

k|k−1Ci
k

(
Ci

k P̂i
k|k−1Ci

k + Rk

)−1
(16)

Pi
k|k = P̂i

k|k−1 − Ki
kCi

k P̂i
k|k−1 (17)

where Ci
k =

∂g
∂(x)

∣∣∣
xk=x̂i

k

.

The absolute value of the difference between the measured terminal voltage and the
estimated terminal voltage is used as the threshold value, and the threshold value is set to
σ. When ∆k = |yk − ŷk| < σ, no iterative process is required. When ∆k = |yk − ŷk| > σ, the
iterative process is performed.

Adaptive update:
Adaptive correction for process noise and measurement noise using an improved

Sage–Husa estimator.
ek = yk − g(xk, uk) (18)

R̂k = (1− dk)R̂k−1 + dkekeT
k − CkPkCT

k (19)

Q̂k = (1− dk)Q̂k−1 +
(

KkekeT
k KT

K + Pk − Ak|k−1Pk−1 AT
k|k−1

)
(20)

where dk =
1−b

1−bk+1 , and b is the forgetting factor.
The method uses the measurement data for recursive filtering while estimating and

correcting the statistical characteristics of the system process noise and measurement noise
in real-time, thus achieving the purpose of adaptive filtering.

4. Experimental Results and Discussion
4.1. Battery Test Platform

In order to obtain the experimental data of battery current, voltage and capacity,
we set up an experimental platform consisting of the host computer and the NEWARE
BTS-4000 battery charge/discharge test system for experimental verification, whose struc-
tural configuration is shown in Figure 3. The host computer was connected to the battery
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test equipment for online control and data collection, and the NEWARE BTS-4000H was
used to load the battery voltage and current. In this paper, a LiFePO4 battery with a nominal
capacity of 6 Ah was selected as the experimental test object.
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4.2. SOC–OCV–T Test

The discharge characteristics of the battery were experimented with by the HPPC test
method [30,31]. The terminal voltage OCV of the battery in the operating state depends on
the charge state SOC, so the open-circuit voltage at different SOCs needs to be collected in
real-time. Because the SOC–OCV relationship is affected by temperature, the tests were
performed in different temperature conditions. The effects of different temperatures on the
SOC–OCV curves are shown in Figure 4. The HPPC operating current and cell terminal
voltage at 25 ◦C are shown in Figure 5.

4.3. Analysis of Simulation and Experimental Results

In order to verify the effectiveness and superiority of the proposed method in terms
of estimation accuracy, the proposed AIEKF is compared with the AEKF, IEKF, and EKF
in this paper. The SOC estimation of the lithium-ion battery was performed under HPPC
operating conditions and dynamic stress test (DST) operating conditions, and the estimated
results are shown in Figures 6 and 7. The actual SOC of the lithium-ion battery is obtained
from Equation (2).
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In this paper, the maximum estimation error (MAE) and the root mean square error
(RMSE) are used as performance indicators to evaluate SOC estimation. The MAE and
RMSE are calculated using Equations (21) and (22). The results of the MAE and RMSE
calculations for the two operating conditions are shown in Table 1.

MAE = max
∣∣SOC(t)− SÔC(t)

∣∣ (21)

RMSE =

√
1
n

n

∑
k=1

(
SOC(t)− SÔC(t)

)2 (22)

where SOC(t) is the measured value at moment t, SÔC(t) is the estimated value at moment
t, and n is the number of data points in the sequence.

Table 1. Evaluation results of different SOC estimation methods under two operating conditions.

Method
HPPC DST

MAE (%) RMSE (%) MAE (%) RMSE (%)

EKF 1.2648 1.1783 1.4357 1.2518
IEKF 1.1450 0.9256 1.3274 1.0392
AEKF 0.9715 0.7482 1.1509 0.8253
AIEKF 0.6582 0.2549 0.8326 0.3471

The performance of the lithium-ion battery under operating conditions is analyzed
under HPPC operating conditions. Figure 6 shows the comparison results of SOC esti-
mation for AIEKF, IEKF and EKF under HPPC operating condition. Figure 7 shows the
comparison results of SOC estimation for AIEKF, AEKF and EKF. From Figures 6 and 7, it
can be seen that the SOC estimation results of AIEKF are closer to the real value, which is
better than the other algorithms compared in this paper and has better estimation accuracy.

In order to further verify the reliability of the proposed method, a more complex
DST condition was used to experiment with and analyze the lithium-ion battery. The DST
current condition is shown in Figure 8a. The model-predicted voltage and the measured
voltage are shown in Figure 8b. Figure 8c compares the SOC estimation results of AIEKF,
IEKF, and EKF. Figure 8d compares the SOC estimation errors of the AIEKF, IEKF, and
EKF. It can be seen from Figure 8 that the SOC estimation result of AIEKF is closer to the
true value, and its estimated value continuously follows the true value. Additionally, the
estimation error of AIEKF is smaller.

Figure 9 shows the SOC estimation results of AIEKF, AEKF, and EKF. In Figure 9,
we can see that the SOC estimation result of AIEKF is closer to the true value and the
estimation results are better than AEKF, and then, we can verify that the SOC estimation
accuracy can be further improved by introducing the iterative idea in the adaptive case.

The results show that the AIEKF-based SOC estimation method proposed in this paper
can maintain lower SOC estimation error, higher tracking accuracy and lower fluctuation
under two current conditions compared with the AEKF, IEKF and EKF. The MAE and RMSE
of AIEKF were calculated as being less than 1%, and the data verify that the estimation
accuracy of AIEKF was better than that of AEKF, IEKF and EKF, so AIEKF can effectively
improve the SOC estimation accuracy.

Three temperatures of –20, 0, and 30 ◦C were selected to verify the estimation effect
of the proposed method at different temperatures under DST operating conditions. The
SOC estimation was performed at the three temperatures with and without considering the
temperature effect, and the results are shown in Figure 10. In Figure 10, the SOC1 is the
SOC estimation result with considering the temperature effect and the SOC2 is the SOC
estimation result without considering the temperature effect. From Figure 10, it can be seen
that the proposed AIEKF can efficiently perform SOC estimation at different temperatures
in this paper.
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By evaluating the SOC estimation performance of different KF family algorithms
using model-based algorithms in previous studies with the proposed algorithm in this
paper, the comparison results are shown in Table 2. The MAE < 1% of AIEKF is smaller
among the results listed in Table 2, so the AIEKF proposed in this paper has a better
estimation accuracy.

Table 2. Comparison of different SOC estimation methods.

Reference Method Model MAE (%)

[32] EKF Rint <4
[33] AEKF 2RC <2
[34] UKF 1RC <1.7
[35] AUKF 2RC <1.5

Although the AIEKF proposed in this paper can improve the accuracy of SOC estima-
tion for lithium-ion batteries, the computational burden is still affected to some extent. The
discrete-time model with a sampling period of 1 s was simulated using MATLAB/Simulink
R2020b on a desktop with an Intel (R) Core (TM) i7-6500 CPU and 8 GB RAM. The com-
putation times of the three estimation algorithms are listed in Table 3, and the evaluation
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demonstrates that the AIEKF proposed in this paper is able to reduce the unnecessary
computational burden.

Table 3. Computational burden evaluation.

Method Computational Time (s)

EKF 0.6418
IEKF 1.1273
AEKF 1.0849
AIEKF 0.9524

5. Conclusions

The SOC is a valuable parameter for the AUV’s control system to distribute electric
energy to the propulsion system. In order to quickly obtain an accurate SOC, an improved
AIEKF SOC estimation method for lithium-ion batteries was proposed in this paper. In
addition, the FFRLS method was applied to update the parameters of the second-order
RC equivalent circuit model of lithium-ion battery online to obtain an accurate model
parameter. The computational accuracy was improved, and the unnecessary computational
burden was reduced by setting a threshold value. An improved Sage–Husa estimator
was used for an adaptive update optimization of process noise and measurement noise
to eliminate the effect of noise. The validity of the AIEKF and its good estimation perfor-
mance were demonstrated by experimental verification analysis with different currents
and temperatures. The experimental results show that the RMSE of the SOC estimation
results can reach 0.25%.

Further research would focus on the battery aging effect on SOC estimation and the
prediction of the SOH of lithium-ion batteries in AUVs so that a more intelligent battery
energy management system for AUVs can be established to adopt to a long-term voyage in
the ocean environment.
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