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Abstract: The study of automated video surveillance systems study using computer vision techniques
is a hot research topic and has been deployed in many real-world CCTV environments. The main
focus of the current systems is higher accuracy, while the assistance of surveillance experts in effective
data analysis and instant decision making using efficient computer vision algorithms need researchers’
attentions. In this research, to the best of our knowledge, we are the first to introduce a process
control technique: control charts for surveillance video data analysis. The control charts concept is
merged with a novel deep learning-based violence detection framework. Different from the existing
methods, the proposed technique considers the importance of spatial information, as well as temporal
representations of the input video data, to detect human violence. The spatial information are fused
with the temporal dimension of the deep learning model using a multi-scale strategy to ensure that
the temporal information are properly assisted by the spatial representations at multi-levels. The
proposed frameworks’ results are kept in the history-maintaining module of the control charts to
validate the level of risks involved in the live input surveillance video. The detailed experimental
results over the existing datasets and the real-world video data demonstrate that the proposed
approach is a prominent solution towards automated surveillance with the pre- and post-analyses of
violent events.

Keywords: anomaly detection; fight detection; video classification; surveillance video analysis

1. Introduction

In traditional surveillance systems [1], human experts are assigned to monitor the
ongoing activities in a certain location using multi-view Closed Circuit Television (CCTV)
cameras, where they report any kind of anomalies, such as fighting, to the concerned
departments to avoid or to reduce the damage caused due to the violent actions or activ-
ities. On the other hand, the recent surge of CCTV has provided several opportunities
to computer vision experts for useful applications, benefiting humankind and improving
automated surveillance. The traditional sensing and functionalities of surveillance systems
are replaced by automated techniques that are used to analyze the video data from CCTV
cameras by considering different features and motion patterns to decide the nature of the
events occurring in real-world environments. These are video classification [2] techniques
to detect and to recognize different types of actions and events in surveillance videos [3],
while broadly, the activities cover normal motion patterns such as walking, and abnormal
actions such as punching, etc. In real-world surveillance environments, abnormal events
carry more importance, as they are directly related to the safety of the citizens.

Violence detection (VD) [4,5], broadly falling under the umbrella of the anomaly
detection and recognition domain, is a hot topic of research among computer vision experts
due to its key role in various applications [6]. For instance, vision-based VD is a key item to
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provide several secure surveillance applications. Video surveillance is continuously being
used to analyze and to detect the behaviors of humans, corresponding to the actions being
performed by them. The major objective of VD is the identification of violence in a very
short amount of time using automated soft computing techniques. Since then, the definition
of violence is subjective; therefore, it is a very challenging domain from an applications
perspective, as well as on a research level.

Mainstream VD methods are mostly concerned with motion patterns in the input
videos, as violence happens in a sequence of frames; therefore, state-of-the-art techniques
decide the nature of video frames as being violent or normal, based on sequential data
analysis. Although some baseline research methods consider low-level features such as
hough forest, using the Lagrangian function, among many others, to distinguish between
the normal and violent patterns, they have limited performance due to their poor represen-
tation abilities. Recent techniques, however, completely rely on deep learning techniques,
where researchers usually employ either spatial, temporal, or spatio-temporal features for
VD. The spatial deep learning techniques consider frame-level features to classify a single
input frame as being violent or non-violent. As defined earlier, VD occurs in a sequence of
frames; hence, a decision based on a single frame is biased and thus shows a limitation of
performance. Particularly, these methods are adversely affected by instantaneous changes
in motion patterns, which cause blur and occlusion effects in the input frames. In contrast,
the temporal methods are based on 3D convolution neural networks (CNNs), considering
a sequence of frames to detect violent patterns in an input video. The number of frames in
a sequence varies from method to method, but mostly, the researchers consider 16 frames
in a single sequence. These methods show a better performance in many cases, as their
decision is largely inspired from motion patterns analysis, which is an excellent parameter
for consideration in a VD task. However, the temporal techniques ignore the importance
of spatial details that are crucial for a complete visual understanding of an ongoing scene.
For instance, the spatial features highlight the role of the background and the foreground
in an input frame, thereby contributing to the final decision making process. Finally,
the spatio-temporal models consider spatial as well as well as temporal dependencies from
the input visual data, therefore improving the overall performance.

Despite the major challenges such as a difference in illumination and occlusion,
among many others in surveillance videos-based VD, the aforementioned mainstream
methods perform well in many scenarios. However, there are certain limitations that
are associated with the existing spatio-temporal features-based VD methods. Primarily,
the existing techniques, while considering the spatial features, rely only on the deeper
layer features, while the intermediate representations are ignored by these methods. This
is why most of these methods show poor results in challenging scenarios with occluded
subjects and a partial appearance of the action performer. The main reason for this is that
intermediate features contain mid-level spatial information such as details about the shapes
of the objects, while the final layer features only contain global frame-level representations.
The next big problem in the existing methods is only detecting the violence for a specific se-
quence of frames, where there are certain chances of mis-predictions by the model, but once
the violence is detected, the integrated system raises an alarm, which could be a false
alarm in many cases. Furthermore, the existing systems only predict violence without any
history maintenance or visualization techniques to assist surveillance experts in analyzing
predictions in detail for post- and pre-VD observations. In order to advance the VD domain
and to ensure its ease of deployability in real-world scenarios, we present the following
highlighted contributions to the research community.

• A novel spatio-temporal VD method considering multi-scale deep features from the
spatial domain to tackle the partial appearance of the action performer and to handle
the occluded violent actions.

• We consider the concept of control charts in the VD domain to analyze the violent be-
havior very well, to reduce false alarms, and to maintain a proper history of the events
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that occurred. To the best of our knowledge, we are the first to employ visualization
using deep models-based VD.

• Extensive experimental results are performed on benchmark datasets to prove the
effectiveness of the proposed VD model.

The rest of the paper is divided into four sections. Section 2 is related to the existing
achievements in the VD domain, and their pros and cons are explained. The proposed
method’s technical details are explained in Section 3. Experimental results are given in
Section 4, and finally, the overall manuscript is concluded in Section 5.

2. Related Work

The occurrence of abnormal activities, including human violence, is rare; therefore,
automated video surveillance significantly reduces labor and time waste [7]. Automated
video surveillance using VD techniques is an interesting research domain for computer
vision experts [8]. Therefore, there have been significant amounts of research in the VD
domain in an effort to mitigate the crime rates using efficient identification.

Considering the type of classifier being used to distinguish violence from normal
video patterns, the VD domain is broadly divided into two categories, including machine
learning (ML)- and deep learning (DL)-based methods. The ML methods are abundantly
applied in baseline research contributions, while in the last decade, DL models are widely
employed in the VD domain.

ML Methods for VD: In order to detect violent actions within videos, pixel-by-pixel
differences on consecutive frames are used as descriptors to describe the movements in
a sequence. The work proposed in [9] introduced the motion blobs computed using the
difference between the two positions. After that, the authors applied binarization and
clustering techniques on those pixels, and represented them through non-zero pixels. Based
on their centroids, the following steps only consider the K largest ones. An analysis of blob
size between consecutive frames can be used to estimate their speed. Motion blobs can be
used to distinguish fight and non-fight sequences based on the features extracted from them.
The detection of vandalism can also be achieved by analyzing the movement detected in
the video, irrespective of the number of people in the video. The Gaussian Model of Optical
Flow (GMOF) is proposed in [10] to identify candidate regions where violent activities
are likely to occur. When violent acts are observed, they should be viewed as deviations
from what the crowd is normally doing. To classify violent and non-violent frames, the
Histogram of Optical Flow (HOF) features descriptor is used for features extraction, and
Support Vector Machines (SVM) is used for classification. An interesting use of optical
flow is presented [11] for estimating the optical flow between consecutive frames in a
sequence by using a descriptor called Violence Flows (ViF). This descriptor gathers the
most significant information, and the SVM machine learning algorithm is used to classify
a video as being violent or non-violent. Using the MediaEval dataset [12], the authors
categorized videos into subclasses related to violence. During the training process, an SVM
classifier is trained on this information, along with additional video, audio, and image
features. This method is not limited to the training dataset, so it can be used on other videos
that do not have any labels attached. This is also not related to the movement of the video,
but rather, the content of the video that determines the method to be followed. The machine
learning features extractors and classifiers have lowered generalization potentials; therefore,
complex scenes with complicated motions patterns corresponding to the violent classes are
not detected very well when using these techniques. Therefore, to overcome the features
engineering issue and generalization potentials, deep learning models come into play, and
are discussed in the coming section.

DL Methods for VD: An entire video sequence is summarized in a single grayscale
image describing its movement content in the method presented in [13]. Next, a convolu-
tional neural network with two-dimensional representation is used to classify the image.
Two video detection schemes are presented in [14], based on 3D ConvNet [15], which is
capable of learning the spatiotemporal characteristics of a video without prior knowledge.
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Three-dimensional convolutional neural networks consist of a 2D network with grayscale
input frames, whereas the third dimension is the time information. The problem is solved in
several ways by combining different solutions. A temporal and spatial ConvNet stream are
employed in [16] to describe violent movements based on the trajectories of the movements,
and an analysis of the scene with strong deep learning features is implemented. As well,
the authors in [17] analyze both temporal and spatial changes and introduce an architecture
called convLSTM, which combines a convolutional neural network with an LSTM (Long
Short-Term Memory). Video frames are fed into the convLSTM architecture for classifica-
tion as violent or not. Followed by [18], the researchers presented a deep learning-based
method for detecting violence in video footage. The features are extracted from CNN
architectures such as VGG16 and Xception [19], then the authors used the Fight-CNN
model to identify fights based on whether frames are labeled as fights or not. They used the
Bi-LSTM to classify information based on how past and future sequences of information
are related. Then, an additional layer of attention determines the significant regions. The
researchers of [20] proposed a framework-based lightweight CNN with residual sequential
learning technique for anomalous events detection. However, their method considers
directly embedded features from the backbone lightweight model, which results in an
under-representation of the input frame. This practice of utilizing deep features directly
without any post analysis or refining mechanism is very common in the existing litera-
ture [7,21,22], which comes with the main disadvantage of features dependency over the
existing general categories images, rather than focusing the attention towards the contents
of the images from an objects details perspective, which are considered in our method
using multi-headed attention and a convolutional head mechanism.

3. The Proposed Framework

The complete working procedure of the proposed deep features network accompa-
nied by the attention mechanism and the sequence learning model is explained in this
section. The proposed framework majorly comprises the newly introduced spatial features
extraction model, the spatio-temporal learning sequence prediction model, and the control
charts construction mechanism. These major modules are visualized in Figure 1 and are
elaborated in detail in the subsequent sections.

Figure 1. The proposed deep multi-scale features fusion attention-based network for violence detection.
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3.1. Spatial Features Extraction

It is a common practice in many video classification tasks such as human activity
recognition [23] to utilize an existing deep learning model’s pretrained weights in an
encoder module to extract learned spatial features. These spatial features are then stacked
together for a specified number of frames (defined as a single sequence), forming a unified
huge sized representation of the input sequence of frames. The sequence-based feature
representation is then processed using a temporal learning mechanism to advance towards
the final video classification task. Traditionally, these features are extracted from the final
layers of different deep learning models; for instance, many video classification approaches
can be observed in a spatiotemporal learning-based review article [23]. It is evident from
these articles that the features extracted from the backbone model are not processed further;
rather, they are directly fed to the spatiotemporal deep learning model. This is why these
models’ final classification results are not generalizable.

In this framework, we rethink the encoder-based existing model’s features and replace
the traditional working of the spatial features extraction module. In the proposed encoder
(ε), the deep features (Fα) from an existing backbone model are further refined to highlight
the most important contents and to select significantly contributing details from an input
frame. The feature vector Fα contains textures and shapes information that are generic to
the categories of the objects present in ImageNet. Since the features are extracted using
the CNN mechanism, the values representing an input frame are therefore highly static
without considering the relative positions of different features. Furthermore, tracking
long-range dependencies via CNN features requires large receptive fields and the existing
researchers lack a focus on the design of the backbone model for VD task while extracting
spatial features. On top of this, large receptive fields have several other disadvantages such
as compromising the computational and statistical efficiency of the network. Therefore,
considering these key points, we employ the self-attention module over the spatial fea-
tures extracted from a backbone CNN model. The core elements of self-attention focus on
capturing long-term information dependencies between the sequence elements, thereby pro-
ducing better results for sequence learning problems such as VD. A self-attention module
is employed over the CNN features to model the interactions between the entities of the
feature representation Fα, where the self-attention layer aggregates the global information
from the input sequence and updates each layer [24]. Herein, we employ multi-headed
attention, ϑ, which comprises several self-attention blocks, and each block contains its own
learnable weights.

After processing the spatial feature maps using multi-headed attention, we acquire
refined features Fβ. The refined feature vector is further processed using a series of convo-
lution operations to make the Fβ distortion invariant and to obtain the perks of CNN layers,
as validated by [25]. Finally, after the convolution head, we obtain a linear feature vector, Fγ

that is advanced to the spatio-temporal learning mechanism for final violence identification.
The mathematical formulation of the proposed encoder’s ε features extraction and

refining is given in Equation (2).

Fα = τ(IRGB(H×W)),

Fβ = ϑ(Fα),

Fγ = Λ(∅ · · ·Λ(· · ·∅(π3(π2(π1(Fβ)))))),

(1)

where τ is the backbone model, π refers to the convolution layer, ∅ donates the activa-
tion, · · · represents a series of layers such as linear and convolutions, and Λ is used for
fully connected linear layers.

The backbone model selection [26,27] for spatial features extraction is a very critical
decision for a complex computer vision problem such as violence detection. Therefore, we
carefully observe the role of various spatial features extractors in different computer vision
domains. The VGG family is frequently used as a backbone for the most precise object
detection models such as R-CNN, Faster R-CNN, and SSD. Similarly, the effective features
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representation potentials of the VGG family are analyzed in various tasks; for instance,
Ale et al. [28] produced various ablation results to test the features representation potentials
of backbone models. The authors conclusively presented a good trade-off between the
number of parameters of a backbone model and the error rates. Therefore, considering the
theoretical and experimental verification, we have used the VGG-19 model as our backbone
for spatial features extraction.

3.2. Spatio-Temporal Learning Mechanism

The spatial features are effective for many image-based classification and recognition
domains, but they show limited performance in sequence-based problems such as video
classification. Therefore, in the video classification domain, sequence learning strategies
are applied over the spatial features to enhance their potentials for sequential problems
involving spatial object details and motion patterns learning. Spatio-temporal learning
in the computer vision domain is widely adopted using Recurrent Neural Networks
(RNNs), which are famous for sequential information processing using spatial and temporal
sequential data effectively. RNNs were initially introduced to identify the patterns between
sequential data i.e., from a sequence of frames that can lead to effective events recognition.
However, later on, for long sequences, RNNs forget the information about the earlier
patterns and this problem is known as vanishing gradient. This challenge is handled using
Long Short-Term Memory (LSTM), which is an advanced variant of RNN, having the
potentials to identify and to learn long-range dependencies.

The basic structure of LSTM contains input, forget, and output gates, where the sigmoid
activation function is used among these gates to decide whether a gate should be closed or
open. The data operate from the input unit leading to the output gates. Further detailed
information about the internal architecture of LSTM is out of the scope of this paper and
can be deeply studied from the existing research [29]. In the proposed framework, inspired
from the role of bi-directional LSTM in action recognition domain [29], we employ it in our
research. The bi-directional LSTM structure processes sequential information using two
stacked LSTMS, where one processes information in the forward direction and the other
one observes information in the backward direction. Finally, their integrated output is
computed using the hidden layer of the forward and backward LSTM layer. The classifier
performance of the LSTM is validated and back-propagated after the output layer.

VDprediction = µ2(µ1(Fσ)), (2)

where µ represents an LSTM layer and the final VD is predicted from the second LSTM layer.

3.3. Control Charts Construction

In statistical process control, the control charts that are also known as quality control
chart are normally used to identify whether a process operation is normal or abnormal.
The control charts monitor the ongoing processes using upper and lower control limits.
Upper control limit is called UCL, while lower control limit is known as LCL. A central
line in the control chart indicates normalcy, where an ongoing operation is considered as
normal or in a state of control when the data points are between UCL and LCL.

In our problem, we draw a control chart for the confidence of the detected violence
from the proposed deep learning model. In Figure 2, some sample frames of a video are
given, and the anomaly and violence score predicted by the proposed model is given on
the x-axis, while the time series data, i.e., the number of frames, is displayed on the y-axis.
The area marked in red contains some frames sequences in a range from 10 to 90, where the
violence score predicted by the model is greater than 0.9. The control charts are used to
keep track of such records, and they also present a similar figure to the surveillance expert
while the real-time surveillance is analyzed.



Sensors 2022, 22, 9383 7 of 15

Figure 2. The visual representation of control charts.

3.4. Implementation Details

Inspired from the generalized features extraction potentials of the VGG model, we have
used the backbone VGG19 model’s pretrained weights. The features Fα are extracted from
the input RGB image, IRGB(H×W) with an output dimension of 7 × 7 and with 512 channels.
The Fα features are then refined using ϑ multi-headed attention with four heads, which out-
puts the same dimension features, named as Fβ. After the attention mechanism, the features
undergo a flattening procedure through a convolution head block. This block contains three
convolution layers, relu activation, two convolution layers, and a relu activation, followed
by the features flatten layer, and finally, two fully connected layers with relu activation,
producing 1× 2048 and 1× 1024 dimension features, respectively. The 1× 1024 features are
input to the spatio-temporal model, which firstly processes it using the initial LSTM layer
µ1, whose output is considered as the input for µ2. The output of µ2 undergoes dropout,
dense layers with relu activation, and finally, the SoftMax layer for optimal classification.

4. Experimental Results

The detailed experimentation results, the settings used to train and test the proposed
model, and the datasets utilized for comparison against state-of-the-art (SOTA) are ex-
plained in this section.

4.1. Setup

Training details: The proposed VD method is implemented in the famous deep
learning frameworks Pytorch and Keras. The spatial features extraction is performed
using Pytorch, while the spatio-temporal learning model is developed in Keras with a
Tensorflow backend. It should be noted that the backbone VGG19 model weights are
used to initialize the spatial features extractor, and then the backbone features are further
refined using attention mechanism, followed by the convolutional head and dense layers.
In the spatio-temporal learning model, binary cross entropy loss is used with the Adam
optimizer. The spatio-temporal learning deep learning architecture is initialized without
any backbone model pretrained weights. Furthermore, during the spatio-temporal learning
model training, callbacks are implemented during training to obtain the most accurately
trained model. Initially, the input frames are resized into a standard 224× 224, and the initial
learning rate is set as a default of 0.01. In the first LSTM layer, there are 128 units, while
in the second LSTM layer, there are 64 units. We have used a Windows 64-bit operating
system in an Intel(RB) Core(TM) i5 CPU and the GPU utilized for experimentation is
an NVIDIA Gefore 3050 Ti laptop GPU. The overall training procedure is visualized in
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Figure 3. In Figure 3, the labeled data from an under process dataset are considered as
input. A sequence from the training data is considered, where a single frame is first input
to the backbone model to extract features. The extracted features are stacked on top of
each other sequentially until the sequence reaches its thresholded limit i.e., 15 in our case.
The combined features vector is attached with the relevant label to produce one hot vector,
as the violent label features vector is shown in Figure 3. The one hot vector is input to the
sequence learning deep learning model to produce a trained model that is tested in the
next phase to produce violent or normal labels.

Figure 3. The overall training procedure of the proposed framework.

4.2. Datasets

The experiments are carried out using seven VD benchmark datasets from diverse
categories, where some of them purely relate to real world surveillance violence and
the others comprise sports and movie violence. Each of the dataset is explained in the
subsequent sections. The overall details of these datasets are given in Table 1.

Table 1. Statistical details of the datasets used to analyze the performance of the proposed VD model.

Dataset # Videos # Violent # Non-Violent FPS

Hockey fight 300 150 150 20–30
RWF-2000 2000 1000 1000

Violent flow 246 123 123 25
Violence in movies 1000 500 500 25

4.2.1. Hockey Fight

Hockey fight is the most commonly used dataset [30] in the VD domain, comprising
a total of 1000 short video clips that are extracted from the videos of a National Hockey
League. The splitting of the dataset into fight and non-fight classes is adequately balanced,
i.e., 500 videos in each category.
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4.2.2. RWF-2000

RWF-2000 [31] is one of the most challenging VD datasets, and it is different from
most of the existing datasets in terms of the recording environment. A majority of the VD
datasets are recorded in some sort of controlled environments with easily differentiable
background and foreground. Furthermore, real-world violence using vision sensory data
contain many challenges such as small scale objects, and different kind of resolutions and
view points, etc. The RWF-2000 is generated from the YouTube repository, where the videos
have only five second durations, with degraded image quality.

4.2.3. Others

The other datasets that are used for experimentation include violent crowd, also
known as violent flow [11], violence in movies [30], surveillance fight, and industrial
surveillance [21]. The violent flows dataset is derived from YouTube videos, and the
industrial surveillace datasets contains videos downloaded from YouTube, where the
events include real-world environments-based violence.

4.3. Discussion

The experimental results attained, and the training and validation graphs of the pro-
posed method are shown in Figures 4 and 5. The Hockey fight dataset training performance,
as well as the validation evaluation, is given in Figure 4a. In this figure, it can be observed
the training loss gradually decreases with the number of epochs, but the validation loss is
somehow unstable, although converging at the final epochs. The training and validation
accuracies on the same dataset increase at a constant slow pace, where it finally converges
to a still value after 18 epochs. The spikes in the loss of the proposed model and the
comparatively lowered accuracy for the Hockey fight dataset are due to the lack of proper
long-range patterns.

(a) (b)

(c) (d)

Figure 4. The training and validation graphs of the proposed model for different VD datasets.
The x-axis represents the number of epochs, while the y-axis stands for the unit score of loss and
accuracy. (Please zoom in for better reading). (a) Hockey fight; (b) RWF-2000; (c) Violent crowd;
(d) Surveillance fight.
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The RWF-2000 training and validation loss, and accuracy graph for the proposed
model is shown in Figure 4b. The training and validation accuracy line from the start of
the training until the final epochs is in a stable position. In contrast, the validation loss
deviates from the training in the final epochs. The RWF-2000 is a challenging dataset and
the proposed model is able to model the temporal long-range dependencies in an effective
manner with good accuracy.

The violent crowdviolent flow dataset performance is also stable for the training and
validation accuracy, showing a stable line graph in Figure 4c. It can be verified from this
figure that the proposed model provides better pattern learning abilities for the video data
containing complex patters. As discussed in previous sections, the violent flow dataset
resolution is very disturbed, with motion blur effects and many more challenges, but we
have still achieved a significantly higher performance.

Similarly, in the other scenarios, for the surveillance fight dataset, the accuracy is
comparatively lower, as well as the loss being higher due to the high-level of variability
among the videos sets, as they are not recorded in some controlled environments. The graph
is shown in Figure 4d.

Towards the most non-challenging Peliculas dataset, that is shown in Figure 5a, the pro-
posed method is able to achieve a higher accuracy and a stable loss in the final epochs.
Furthermore, the model’s performance gradually increases, where it converges very well
until 20 epochs.

The training graph of the violence in movies dataset is visualized in Figure 5b, where
we achieved stable validation accuracy and the model’s training converges gradually in
the final epochs.

The industrial surveillance fight dataset’s training graph is given in Figure 5c. It is a
very challenging dataset, yet the proposed model validation accuracy is satisfying enough
to be implemented in real-world surveillance scenarios.

(a) (b)

(c)

Figure 5. The training and validation accuracies and losses of the proposed model trained using
BD-LSTM. The x-axis represents the number of epochs, while the y-axis stands for the unit score
of loss and accuracy. (Please zoom in for better reading). (a) Peliculas; (b) Violence in movies;
(c) Industrial surveillance fight.
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Some visual frames and the proposed model output results from a random fight video
happening inside a shop are given in Figure 6. The first frame (i) shows the beginning of the
fight scene that is captured correctly by the proposed model, although in this frame, there
is a sudden transition of events from normal to violence. Therefore, this sequence of frames
can be considered as the most challenging one. Similarly, the frames i2, i3, and eventually
i4 also contain some sudden motion patterns with spatial information about very close
objects, that makes the proposed model make a decision on the video as being fight, based
on the learned parameters in the spatiotemporal deep learning model.

Figure 6. Visual output results of the proposed model over testing data from YouTube.

4.4. Comparison with SOTA

The comparison of the proposed model with existing SOTA techniques is discussed in
this section. Overall, for most of the standard datasets, the proposed model achieved the
best performance against SOTA. In some cases the proposed model’s results are lagging
behind some methods, as is explained in subsequent paragraphs.

In Table 2, the performance comparison of the proposed model against the standard
Hockey dataset is given. The proposed model achieved 91.29% accuracy, while for the
same dataset, there are some methods achieving very higher accuracy values; for instance,
Freire et al. achieved 99.4% accuracy. The Hockey fight dataset is not a very challenging
dataset, and the videos given in this dataset contain very few sequences. Furthermore,
there are no long-range dependencies between the frames of the Hockey fight datasets;
therefore, even simple deep sequential models and spatial features are able to identify
fight and non-fight classes very well. We also made experiments using a simple sequential
learning bi-directional Gated Recurrent Network (GRU) to validate the phenomena that the
Hocekey fight patterns are easily identifiable, and the BD-GRU performed very well, even
better than our BD-LSTM model. Thus, it is concluded that the proposed model has limited
performance towards the video sequences containing a smaller range of dependencies
and quick actions happening in a small amount of frames. Finally, it should also be noted
that the Hockey fight dataset actions are simple, where the proposed model is designed to
recognize complex violent activities. The simple violent activities can be easily recognized
by directly embedding the spatial features of an existing backbone model to a sequential
learning mechanism. The fact is proven from the existing literature [20,21] that the direct
embedding of spatial features to spatiotemporal learning has enough space for simple
actions, yet limited performance for complex violent activities.

In Table 2, we have shown the evaluation results of the proposed model against recent
deep learning models. We ignore the roles of traditional models because their performances
are limited for challenging datasets. The RWF-2000 is the most challenging VD dataset,
comprising complex actions and sequence information among different events containing
long-range temporal dependencies. It can be seen from Table 2 that the proposed model is
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able to identify violence patterns very well, so far achieving the best accuracy. The existing
methods relying on a deep learning model’s features direct embedding have reduced
performance over the RWF-2000 dataset. For instance, Ullah et al. [21] and Cheng et al. [31]
have scored the second- and third-best performances over the RWF-2000. Ullah et al. [21]
achieved comparatively better performances against other methods due to the role of
Convolutional LSTM’s better learning abilities for sequential patterns. However, this
method did not have the best performance against our model due to the absence of spatial
information and features consideration. The proposed model has the ability to focus on
spatial level object details, as well as the learning potentials of long-range dependencies.
The confusion matrix using RWF-2000 is shown in Figure 7b, which indicates that most of
the sequences are predicted correctly as violent, and similarly, the other non-violent classes.
It is worth noting that the violence class is more confused with normal in the confusion
matrix because some of the events happening in the RWF-2000 dataset are very challenging
to identify as normal, due to their motion patterns.

Table 2. Performance evaluation and detailed comparison of the proposed model with the state-of-
the-art violence detection techniques (red indicates the best accuracy and blue the second-best results,
while o represents Not Available).

Method
Accuracy (%)

Hockey Fight RWF-2000 Violent Crowd Industrial Surveillance

Hassner et al. [11] 58.20 o 81.20 o
Ding et al. [14] 91.00 o o o
Bilinski et al. [32] 93.40 o o o
Mabrouk et al. [33] 88.60 o 85.83 o
Sudhakaran et al. [17] 97.10 o o o
Xia et al. [34] 95.90 o o o
Ullah et al. [35] 96.00 o o o
Carreira et al. (a) [36] o 85.75 o o
Carreira et al. (b) [36] o 75.50 o o
Carreira et al. (c) [36] o 81.50 o o
Traore et al. [37] 96.50 o o o
Ullah et al. [21] 98.50 88.20 o 83.57
Ullah et al. [38] 98.20 o o o
Freire et al. [39] 99.40 o o o
Cheng et al. [31] o 87.25 o o
Tran et al. [15] o 82.75 o o
Ours 91.29 90.47 89.63 81.22

Additionally, the experimental results over other datasets comprising violent crowd,
industrial surveillance, surveillance fight, peliculas, and violence in movies have witnessed
a stable performance by the proposed model for the VD tasks. The proposed model
achieved convincing and balanced results for all of the datasets. It should be noted that
instead of using multi- or dual-stream CNNs [40], we achieved a higher accuracy with a
simple neural network by utilizing the backbone features effectively. The usage of spatial
features following the attention mechanism in the VD domain is not very common. To the
best of our knowledge, we are the first to utilize refined spatial features from a backbone
model’s weights in an effective manner.

The confusion matrices of the proposed model for all the datasets are given in
Figures 7 and 8. The performance analysis indicates that the proposed model is able to
detect violence activities very effectively. In the Hockey fight dataset, the proposed method
only mis-predicted 13 and 21 sequences as non-violence and violence, respectively, while in
the RWF-2000 dataset, the mis-predictions are comparatively higher. On all other datasets,



Sensors 2022, 22, 9383 13 of 15

the proposed model is able to detect violence effectively with a reduced amount of mis-
predictions and confusing outputs for the predicted classes against the actual classes.

(a) (b)

(c) (d)

Figure 7. Confusion matrices of the proposed deep features attention model for VD using various
benchmark datasets. (a) Hockey fight; (b) RWF-2000; (c) Violent crowd; (d) Surveillance fight.

(a) (b)

(c)

Figure 8. Performance analysis of the proposed model using standard VD datasets (zoom in for
better visibility). (a) Peliculas; (b) Violence in movies; (c) Industrial surveillance fight.
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5. Conclusions

Vision sensory data is utilized in the proposed research article for effective VD and
its useful visualization, which assists surveillance experts. Although there are many
research contributions using spatio-temporal modeling techniques for accuracy in VD, their
performance is limited from a real-world feasibility perspective. Therefore, considering the
challenges encountered in real-world surveillance environments such as false alarms and
poor image quality, among others, we presented a novel deep features attention network
and spatio-temporal learning model for effective VD. We extracted spatial features using a
customized encoder for excellent frames representation potentials, followed by the widely
followed BD-LSTM structure for optimal VD. The detected violence is analyzed using a
famous process improvement technique called control charts, to eradicate or to reduce the
false alarms in the VD domain.

With these contributions, we feel that the current research can be further improved
using embedded vision technologies for a better practical implementation of the pro-
posed system.
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