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Abstract: On the example of a control system for an unmanned aerial vehicle, we consider the
problems of filtering, smoothing and restoring derivatives of reference action signals. These signals
determine the desired spatial path of the plant at the first approximation. As a rule, researchers have
considered these problems separately and have used different methods to solve each of them. The
paper aims to develop a unified approach that provides a comprehensive solution to mentioned prob-
lems. We propose a dynamic admissible path generator. It is constructed as a copy of the canonical
control plant model with smooth and bounded sigmoid corrective actions. For the deterministic case,
a synthesis procedure has been developed, which ensures that the output variables of the generator
track a non-smooth reference signal. Moreover, it considers the constraints on the velocity and
acceleration of the plant. As a result, the generator variables produce a naturally smoothed spatial
curve and its derivatives, which are realizable reference actions for the plant. The construction of the
generator does not require exact knowledge of the plant parameters. Its dynamic order is less than
that of the standard differentiators. We confirm the effectiveness of the approach by the results of
numerical simulation.

Keywords: UAV path planning; path smoothing; signal filtering and differentiation; sigmoid function

1. Introduction

In automatic control systems for various technical plants and mobile robots, it is
often necessary to solve an auxiliary problem of processing sensor signals and external
influences. For example, sensor signals often contain measurement noise, which requires
their preliminary filtering. The reference actions determine the path of an unmanned
moving plant and can enter the control system in real time from an autonomous source.
They must be filtered, differentiated, and smoothed. The quality of functioning of the entire
automatic control system depends on the methods used to solve these problems. Therefore,
the development of efficient and real-time signal processing methods is an urgent task.
Let us consider the key aspects of each of these problems and the existing methods for
their solution.

In automatic control systems with feedback, various controllers are used: linear
and non-linear, continuous and discontinuous. The selection of controller depends on
the purpose of control and priori information about the plant and environment for its
operation. Many controllers are quite sensitive to noise, which affects the quality of
control. In order to solve the problem of filtering measurements, the Kalman filter is
traditionally used. It also performs the function of a state observer if the set of sensors
is not complete. Note that, when estimating, it is fundamentally impossible to separate
the useful signal from the noise in the case when they operate in the same frequency
band. Under certain conditions, the Kalman filter can be optimally tuned according to
the criterion of minimum mean square estimation error [1]. The implementation of the
Kalman filter requires exact knowledge of the parameters of the plant model, or their
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adequate identification, which is not always possible. In some cases, it is possible to restore
unmeasurable derivatives of output signals without using a dynamic model of the control
plant. One can use numerical differentiation based on the calculation of finite differences [2],
or more complex computational algorithms [3]. However, these methods are not efficient
for noisy measurements, as they lead to a delay in the system and increase the noise
amplitude. Using them, estimation errors accumulate with an increase in the order of the
restored derivative. The use of multidimensional low-pass filters also generates a delay [4],
which can lead to the loss of stability of a closed-loop system. Thus, the differentiation of
signals using dynamic models is preferable.

In this paper, we consider the problem associated with estimating not the state vari-
ables of the control plant, but the derivatives of the reference actions. These signals enter the
control system from an autonomous source. There is no analytical description of reference
actions; only their current values are known. This situation arises in control systems for
unmanned mobile robots. For the synthesis of a high-precision tracking system and the
formation of control (as a function of a time or in the form of feedback), it is necessary to
restore the derivatives of the reference actions. The order of the required derivatives is
equal to the relative degree of the system (the number of differentiations of the controlled
variables that must track the reference actions before the appearance of control). In the
deterministic case, with a small relative degree of the system, methods of numerical differ-
entiation of signals can be used to restore the derivatives of the reference actions. As noted
above, it is advisable to use dynamic differentiators to obtain high-order derivatives.

The principle of constructing and tuning a dynamic differentiator is similar to solving
the problem of observing unmeasured state variables of a control plant. The difference
is that the differentiator restores the state variables of the virtual canonical system with
an undefined input. The output of this system is the reference signal. Its state variables
are the derivatives of the reference signal to be restored, and the unknown input is the
next derivative [5]. On the basis of this system, one construct state observers of various
structures with various corrective actions. They ensure the convergence of the observer-
differentiator variables to the output signal and its unmeasured derivatives. In the presence
of noise, an undefined input is an obstacle to tuning the observer-differentiator for filtering
purposes. It is interpreted as an external bounded disturbance, which requires the use of
special methods to suppress it.

The standard solution is to use a linear observer with high gains [6–8]. It has a
fairly simple tuning; the settling time of the estimation error is controlled by just one
parameter that defines a hierarchy of high gains. In order to reduce the noise component,
one introduces low-pass filters into the observation loop [9]. The main drawback of an
observer with high gains is the peaking phenomenon. This effect is related to the overshoot
of estimating signals that arise due to the unboundedness of linear corrective actions.

In [10], Levant has developed the second order sliding mode observer with discontin-
uous corrective actions bounded in absolute value. Due to this observer, one can obtain
estimates of derivatives in finite time without large overshoot. Hybrid observers are
known [11], in which corrective actions contain both linear and discontinuous functions.
However, the use of discontinuous controls leads to the problem of chattering (when an
unwanted high-frequency component is present in the received estimated signals). In order
to eliminate chattering, in particular, higher-order sliding modes are used [12,13]. Here,
the order of the sliding mode must be at least one greater than the order of the estimated
derivative. An alternative method is to approximate the sign function by a linear function
with saturation [11,14–16]. Such observer-differentiators combine the advantages of linear
observers with high-gains and sliding mode observers, but are free from their drawbacks.

One can conclude that the problem of restoring the derivatives of the measured signals
has been studied quite fully, including in the presence of noise. However, in this paper,
the subject to be processed are the reference actions for technical control plants. These
signals may require not only filtering but also smoothing. The reference actions track the
output variables of mechanical and electromechanical plants. Therefore, they determine
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the allowable movement in the workspace and be implemented by the plant. Thus, the
given path of a mobile robot on a plane or in space must be sufficiently smooth. It must
have bound continuous curvature since the robot cannot instantly change its movement di-
rection. The problem of admissible trajectory planning is a separate, rather time-consuming
task. As a rule, it is solved off-line, using spline interpolation or complex geometric
calculations [17–25]. If there is reason to believe that the given curves are smooth and
realizable, then one can solve the problem of restoring their derivatives and filtering by
the above methods (using dynamic differentiators with special tuning). In this paper, we
assume that the given path is constructed at the first approximation and is not smooth. For
example, it could be a polyline connecting waypoints. Therefore, an additional problem
arises, to smooth the reference action signals in real time, considering the constraints on the
velocity and acceleration of the control plant. Note that conventional dynamic differentia-
tors do not have a smoothing effect. The reason is that the differentiator works as a state
observer. It is tuned so that the differentiator variables reproduce the measured signal and
its unmeasured derivatives as accurately as possible.

The hypothesis of this study is that it is necessary to use a tracking differentiator [26,27]
for simultaneous smoothing and restoration of derivatives. It has the input-output canonical
form. The input (corrective action) is a stabilizing function that depends on the tracking
error (residual between the reference action and the output of the tracking differentiator).

Using this concept, we have developed a dynamic generator of realizable reference
actions with S-shaped corrective actions. The generator allows us to complexly solve the
problems of restoring derivatives, filtering and smoothing signals. Note that in papers
devoted to tracking differentiators, the problem of smoothing the processed signal is not
posed. As a rule, only the first two problems are considered.

We demonstrate all the constructions on an example of an unmanned aerial vehicle
(UAV) control system in flight mode. A specific plant was selected to detail the developed
approach. Without loss of generality, one can apply it to other automatic control plants.

Section 2 describes a model for the spatial motion of the UAV center of mass. We
propose a typical control law that ensures that the center of mass follows a given spatial path.
The problem of information support of the control law is formalized in terms of processing
the vector signal of the reference action: (i) restoring its first and second derivatives,
(ii) filtration, and (iii) smoothing in real time, considering the constraints on the velocity
and acceleration of the control plant.

Section 3 presents the main results of this paper. Section 3.1 substantiates the structure
and method for synthesizing a dynamic generator capable of providing a comprehensive
solution to the posed problems. Section 3.2 presents a procedure for synthesizing a dynamic
generator. This procedure ensures that the output variables of the generator track a
given non-smooth, non-noisy signal with some accuracy. It is shown that the use of
the block approach and S-shaped smooth and bound feedback [28–31] makes it possible
to consider the constraints on the velocity and acceleration of the control plant. Therefore,
generator variables produce a naturally smoothed space curve and its derivatives in real
time. Hence, these variables are used to form the control law in the UAV. We present
the simulation results, which demonstrate the fulfillment of the design constraints in a
closed-loop tracking system with a dynamic generator. Section 3.3 additionally considers
the aspects of filtration of reference actions. We put forward various hypotheses about
filtration, which are confirmed by numerical simulation. Finally, we present the results of a
comparative analysis of closed-loop tracking systems with a dynamic generator and with
various cases for installing additional low-pass filters with noisy reference actions.

2. Problem Definition

For an unmanned aerial vehicle (UAV) of an aircraft type, let us consider the problem
of automatic control of movement along a given path. It is assumed that the UAV has a
rigid body with an axis of symmetry, the Earth is flat and motionless; the atmosphere is at
rest relative to the Earth. We consider the model of the spatial movement of the center of
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mass (material point) of the UAV in the trajectory coordinate system [32] as a mathematical
model of the control plant:

.
L = V cos θ cos Ψ,

.
H = V sin θ,

.
Z = −V cos θ sin Ψ;

.
V = (nx − sin θ)g,

.
θ =

(ny cos γ−cos θ)g
V ,

.
Ψ = − gny sin γ

V cos θ ,
(1)

where L is the longitudinal flight range, H is the flight altitude, Z is the lateral deviation,
V is the ground velocity, θ is the angle of inclination of the flight path to the horizon, Ψ
is the flight path angle, and g = 9.8 [m/s2] is the gravitational acceleration. As a control
u = (u1, u2, u3)

T, we take the longitudinal nx and transverse ny overloads and the roll
angle γ, |γ| < π in the following form:

u1 = nx, u2 = ny cos γ, u3 = ny sin γ. (2)

The output (controlled) variables of the model (1) are spatial coordinates that deter-
mine the position of the center of mass of the UAV in the flight mode in the trajectory
coordinate system. Let us introduce the following notation for the vector of controlled
variables and their velocities:

y1 = (y11 := L, y12 := H, y13 := Z)T,
.
y1 = y2 = (y21 :=

.
L, y22 :=

.
H, y23 :=

.
Z)

T
. (3)

The standard problem is to use control as a function of a time or in the form of
feedback to ensure that the output variables y1(t) track the reference actions χ1(t) =

(χ11(t), χ12(t), χ13(t))
T, which determine the desired path. Let us assume that there are no

wind disturbances, and all state variables are measured. The reference actions are realizable
by the given UAV, and their first and second derivatives are known. Under these conditions,
we can provide asymptotic stabilization of tracking errors ξ1(t) = (ξ11(t), ξ12(t), ξ13(t))

T,
namely,

lim
t→+∞

ξ1j(t) = 0, ξ1j(t) = y1j(t)− χ1j(t), j = 1, 2, 3. (4)

To solve problem (4), we apply a typical feedback linearization technique, which is
convenient for designing a tracking system in nonlinear minimum-phase control plants [33].
The synthesis procedure consists of three stages.

In the first stage, we transform the mathematical model of control plant (1)–(2) to the
input–output form in the coordinate basis of variables (3). In the flight mode, the conditions
V > 0, |θ(t)| < π/2, |Ψ(t)| < π/2, t ≥ 0 are met. Therefore, there are diffeomorphic
changes of variables,

y21 := V cos θ cos Ψ, y22 := V sin θ, y23 := −V cos θ sin Ψ, (5)

which transform (1)–(2) to the canonical form,

.
y1 = y2,
.
y2 = ag + B(θ, Ψ)gu,

(6)

where a = (0; −1; 0)T;

B =

 cos θ cos Ψ − sin θ cos Ψ sin Ψ
sin θ cos θ 0

− cos θ sin Ψ sin θ sin Ψ cos Ψ

, detB ≡ 1, B−1 = BT,

V(t) =
√

y2
21(t) + y2

22(t) + y2
23(t), y2

21(t) + y2
23(t) 6= 0,

sin Ψ(t) = y22(t)
V(t) , cos θ =

√
1− y2

22(t)
V2(t) ,

cos Ψ(t) = y21(t)
V(t) cos θ(t) , sin Ψ(t) = − y23(t)

V(t) cos θ(t) .

(7)
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In the second stage, we will represent system (6) on the coordinate basis of tracking
errors ξ1 = y1 − χ1 and their derivatives

.
ξ1 = ξ2 =

.
y1 −

.
χ1, namely,

.
ξ1 = ξ2,
.
ξ2 = ag− ..

χ1 + B(θ, Ψ)gu.
(8)

In the third stage, we will form the control law in the form of feedback,

u = BT(θ, Ψ)(−C1ξ1 − C2ξ2 − ag +
..
χ1)/g =

= −BT(θ, Ψ)(C1(y1 − χ1) + C2(y2 −
.
χ1) + ag− ..

χ1)/g,
Ci = diag

{
cij
}

, cij = const > 0, i = 1, 2, j = 1, 2, 3,
(9)

which linearizes the closed-loop virtual system (8),

.
ξ1 = ξ2,

.
ξ2 = −C1ξ1 − C2ξ2

and provides its matrix with the desired eigenvalues λ1j, λ2j, Re(λij) < 0: c1j = λ1jλ2j,
c2j = −λ1j − λ2j, j = 1, 2, 3. The goal of control is achieved both in the given system and
in the closed-loop system (6), (9) accordingly:

.
y1 = y2,
.
y2 = −C1y1 − C2y2 + C1χ1 + C2

.
χ1 +

..
χ1.

(10)

Note that the control law as a function of a time that provides (4) has a form similar to
(9), in the sense that its implementation requires knowing the first

.
χ1(t) and the second

..
χ1(t) derivatives of the vector reference action.

In this paper, we consider the problem related to the features of the reference actions
χ1(t). Let us introduce the following assumptions.

1. Vector signal χ1(t) = (χ11(t), χ12(t), χ13(t))
T enters the control system in real time

from an autonomous source, its analytical form and its derivatives are not known in
advance. The first problem follows from this; it is necessary to restore the first and
second derivatives of this signal in real time to form the control law (9).

2. The unknown noises η(t) = (η1(t), η2(t), η3(t))
T can be superimposed on the useful

signal χ1(t). Next, noisy vector signal χ1(t) = χ1(t) + η(t) enters the control system.
It leads to the second problem associated with the need to filter the reference actions:
it is necessary to isolate the useful signal and obtain its derivatives.

3. The components of the useful signal χ1j(t), j = 1, 2, 3 are continuous. However,
they are non-smooth functions of time (derivatives

.
χ1j(t) have finite discontinuities).

For example, such a situation is possible in the case when the specified path is
constructed at the first approximation in the form of a spatial polyline connecting
the reference waypoints. Hence, the third problem arises; it is necessary to smooth
out the polyline junctions in real time to prevent outliers of the values of derivatives
at discontinuity points. Otherwise, this will lead to unacceptable outliers of control
actions. Additionally, the curvature of the approximating path must satisfy the
constraints on the velocity and acceleration of a particular UAV in order for the
reference action to be realizable.

As noted in the introduction, dynamic differentiators of one type or another can be
used to solve the first two problems [4–16]. Let us briefly outline the principles of their
construction. A dynamic differentiator with a filtering effect is constructed as a state
observer of a virtual dynamic model of a useful signal, which has a canonical form. This
model is required to restore the first and second derivatives of a vector signal χ1(t) ∈ R3. It
consists of three connected blocks of the third order, namely,

.
χ1 = χ2,

.
χ2 = χ3,

.
χ3 = χ4, χi ∈ R3, i = 1, 4. (11)
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In system (11), the state variables are the useful signal and its first and second deriva-
tives

.
χ1 = χ2,

..
χ1 = χ3. The third derivative

...
χ1 = χ4 is treated as an unknown bounded

input. The state observer is constructed as a copy of model (11) in the form

.
z1 = z2 + v1(χ1 − z1),

.
z2 = z3 + v2(χ1 − z1),

.
z3 = v3(χ1 − z1), zi, vi ∈ R3, i = 1, 3. (12)

Each i-th block has its own corrective action vi, which is formed by the measured
noisy signal χ1(t) = χ1(t) + η(t). The observation problem is reduced to the stabilization
of observation errors εi = χi − zi ∈ R3 in a virtual system with an undefined input

.
ε1 = ε2 + v1(χ1 − z1),

.
ε2 = ε3 + v2(χ1 − z1),

.
ε3 = χ4 + v3(χ1 − z1). (13)

The presence of an undefined input χ4 does not allow the use the standard Kalman
linear correction [1]. In order to suppress disturbances in systems (12), (13), one can select
discontinuous corrective actions [11]. Another approach is to expand the state space of
the virtual system (11) by adding a low-pass filter, the input of which is a noisy signal [4].
The filter variables are used to form corrective actions of the extended observer, which
improves the filtering properties of the algorithm.

Note that these methods are mainly used to process smooth noisy signals. Tuning of
corrective actions is made so that the observer’s evaluation signals reproduce the useful
signal and its derivatives as accurately as possible zi(t) ≈ χi(t), i = 1, 2, 3. Therefore,
dynamic differentiators are not suitable for solving the third problem of smoothing reference
signals and generating realizable spatial paths. By tuning these differentiators, it is rather
difficult to consider the constraints on the state variables of the control plant.

The next section presents the main result. We propose a new approach to a comprehen-
sive solution of all three of these problems and introduce a dynamic generator of realizable
reference actions. It simultaneously filters and smooths the reference signal and restores its
first and second derivatives.

3. Results
3.1. Substantiation of the Model and Design of a Dynamic Generator

As for the dynamic differentiator, we use the canonical model to construct a dynamic
generator since one of its functions is the derivative restoring. In order to consider the
properties of the control plant, let us use canonical system (6) as a basis for the construction.
Moreover, there are constraints on the velocity and acceleration (overload) of a particular
UAV, namely,

‖y2‖ ≤ V, ‖u‖ ≤ U,
∥∥ .

u
∥∥ ≤ U, V2

< U, U2 < U, (14)

here and below ‖∗‖ is l∞-norm of the vector, V, U, U are design bounds on the norm
for velocity, overload and the rate of change of overload for a particular UAV. The upper
estimate of the acceleration vector norm is calculated using the value of U:∥∥ .

y2
∥∥ = g‖a + B(θ, Ψ)u‖ ≤ 3gU. (15)

The basic mathematical model of a dynamic generator for pre-processing of the
reference action consists of two connected blocks of the third order,

.
x1 = x2,

.
x2 = ag + Bgw. (16)

The generator variables (16) have the following meaning: w = (w1, w2, w3)
T is the

vector of corrective actions. It must be selected in the form of feedback to ensure that the
output variables of the generator x1(t) ∈ R3 track useful vector signal χ1(t) ∈ R3. Next,
x1 = (x11, x12, x13)

T is estimation of the vector of reference actions, x2 = (x21, x22, x23)
T

and
.
x2 = (

.
x21,

.
x22,

.
x23)

T are restored first and second derivatives of reference actions,
respectively. Thus, it is possible to solve the first posed problem due to the virtual
system (16).
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As was mentioned in Section 2, the useful signal elements are assumed to be piecewise-
continuous deterministic functions of time with bounded derivatives. The smoothness
requirements are not imposed on them, their analytical description is unknown. The
constraints are understood as one-sided at the points of finite discontinuity. We assume
that the norm of the vector of reference action velocity is less than the design bound on the
norm of the UAV velocity vector in the areas of continuity∥∥ .

χ1(t)
∥∥ ≤ X2 < V, t ≥ 0. (17)

Note that the dynamic generator (16) (as well as the dynamic differentiator (11)) is
constructed autonomously from the control plant (1) and does not receive any signals
from it. The feedback is formed according to the variables of system (16) and the refer-
ence action signal. However, vector variables x2, w,

.
w of system (16) are analogs of the

variables y2, u,
.
u of the canonical model (6), respectively. Thus, we must provide the corre-

sponding constraints (14), (15) on state variables and corrective actions in the closed-loop
system (16), namely,

‖x2(t)‖ ≤ V, ‖w(t)‖ ≤ U ⇒
∥∥ .

x2(t)
∥∥ ≤ 3gU,

∥∥ .
w(t)

∥∥ ≤ U, t ≥ 0. (18)

The fundamental difference in systems (12)–(13) and (16) tuning is that in system (16)
we do not set the tracking error stabilization accuracy e1(t) = x1(t)− χ1(t) a priori. Its
minimum value is determined by constraints (18) and the response of controlled variables
during the processing of jumps. As a result, the output of the generator x1(t) will produce
a path that is a smoothed analog of the useful vector signal χ1(t). Next, x1(t) enters
control system as a reference action. It will be realizable by the plant since smoothing is
produced naturally using dynamic model (16) considering the constraints on particular
UAV. Thus, due to the dynamic generator (16), we can automatically provide an on-line
solution to the third posed problem without complicated off-line geometric calculations
(see, for example, [25]).

In order to fulfill the given constraints (18), we propose the use the block control
principle in the synthesis of corrective actions w and nonlinear bounded feedback. Such
feedback is S-shaped sigmoid function, which is a modification of the hyperbolic tangent
σ(x) = −th(−x/2) [28–31]. This function is defined on the whole number line. It is a
smooth, odd and bounded |σ(x)| < 1. In a small neighborhood of zero |x| ≤ ∆, sigmoid
function is similar to a linear function. While when |x| > ∆ at infinity, it tends to sign
function. We can say that the sigmoid function is a smooth analog of a linear function with
saturation. Therefore, it can be used both as a fictitious and as a true control for stabilizing
the controlled variables and suppressing matched external disturbances while meeting the
requirements for smoothness and boundedness of control actions.

In order to tune the sigmoid feedback, we introduced two scaling factors into the
sigmoid function k, m = const > 0, namely,

mσ(kx) = m
1− exp(−kx)
1 + exp(−kx)

,

where a factor k determines the slope of the sigmoid function in a small neighborhood
of zero. It plays a role as a high-gain factor in further constructions, and the tracking
accuracy depends on its value. A factor m, which we will call the amplitude, determines
the expansion of the sigmoid function along the vertical axis and limits its maximum in
absolute value.

The derivative of the sigmoid function has a recursive form:

mσ′(kx) = 0.5mk(1− σ2(kx)), 0 < mσ′(kx) ≤ 0.5mk, x ∈ R.

For the convenience of analyzing systems with sigmoid control, we introduce the
points of division of the sigmoid function into conditionally linear and conditionally
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constant, σ(±2.2) ≈ ±0.8. We obtained the number 2.2 by the criterion of the minimum of
the basic estimate of the modulus of the change rate of the sigmoid control in an elementary
system with an external disturbance [30]. Next, outside a small neighborhood of zero
|x| ≤ ∆, we have,

0.8m ≤ m|σ(kx)| < m, |x| > ∆ ≥ 2.2/k. (19)

First, we will consider the basic procedure for tuning a dynamic generator (16) with
sigmoid corrective actions that provide a solution to the first and third problems in a
deterministic formulation. After that, we will additionally study its filtering properties.

3.2. Synthesis of a Dynamic Generator in a Deterministic Formulation
3.2.1. Theoretical Background

For system (16), we pose the problem of synthesizing corrective actions that ensure
tracking with some accuracy of an external vector signal χ1(t) ∈ R3. Its elements are
assumed to be deterministic. In the general case, they are non-smooth functions of time
with unknown derivatives. The purpose of control is to fulfill the given constraints on state
variables, corrective actions and their derivatives (18) in a closed-loop system. To solve this
problem, we will perform the following actions:

• Write down the system (16) with respect to the tracking error and form sigmoid local
feedback and corrective actions;

• Formulate sufficient conditions for stabilization of the obtained system, under which
the tracking problem will be solved with some accuracy;

• Make sure that the variables x2(t),
.
x2(t) will be bounded when t ≥ 0 in the closed-loop

system (16);
• Compose inequalities for selecting the parameters of corrective actions, under which

the given constraints (18) will be fulfilled in closed-loop system (16).
• The fundamental difference from the tracking system synthesis procedure (6), (9) is

that we do not know the first and second derivatives of the external signal. Therefore,
in the first equation of system (16), written with respect to tracking errors

.
e1 = x2−

.
χ1,

the first derivative of the external signal
.
χ1(t) is treated as an external bounded

disturbance (17). To ensure the stabilization of tracking errors with invariance to the
disturbance, we will consider the vector state variable x2 as fictitious control. Next, let
us form sigmoid local feedback

x∗2 = −m1σ(k1e1), σ(k1e1) = (σ(k1e11), σ(k1e12), σ(k1e13))
T, m1, k1 = const > 0.

This leads to the problem of stabilizing the residual between the real and the selected
fictitious control,

e2 = x2 − x∗2 = x2 + m1σ(k1e1). (20)

In order to solve this, we rewrite system (16) with respect to residuals e1, e2

.
e1 = −m1σ(k1e1) + e2 −

.
χ1,

.
e2 = ag + 0.5m1k1Λ1(x2 −

.
χ1) + Bgw,

(21)

where,
Λ1 = diag(Λ1j), Λ1j = 1− σ2(k1e1j)), 0 < Λ1j ≤ 1, j = 1, 2, 3. (22)

Note that, in contrast to systems (6), (8), (16), the resulting system (21) is non-canonical.
Using corrective actions, we compensate all known terms in the second equation of
the virtual system (21) and introduce stabilizing sigmoid feedback, which depends on
residual (20),

w = −BT(m2σ(k2e2) + ag + 0.5m1k1Λ1x2)/g,
m2, k2 = const > 0, σ(k2e2) = (σ(k2e21), σ(k2e22), σ(k2e23))

T.
(23)
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As a result, we obtain closed-loop virtual system (21), (23) of the form,

.
e1 = −m1σ(k1e1) + e2 −

.
χ1,

.
e2 = −m2σ(k2e2)− 0.5m1k1Λ1

.
χ1.

(24)

We must select amplitude values of sigmoid feedback m1, m2 > 0 so that the vari-
ables of the virtual system (24) sequentially converge in the following neighborhoods of
zero (19):

‖e2(t)‖ ≤ 2.2/k2 ⇒ ‖e1(t)‖ ≤ 2.2/k1, (25)

where the values of high-gain factors k1, k2 > 0 determine the accuracy of stabilization of
the residuals in the steady state.

Let us use the second Lyapunov method and evaluate the terms of the derivatives of
the quadratic form 0.5eT

1 e1 + 0.5eT
2 e2 outside the neighborhoods (25). Using (19), (22), we

do it as following:

eT
1

.
e1 = eT

1 (−m1σ(k1e1) + e2 −
.
χ1) ≤ ‖e1‖(‖e2‖+

∥∥ .
χ1
∥∥− 0.8m1),

eT
2

.
e2 = eT

2 (−m2σ(k2e2)− 0.5m1k1Λ1
.
χ1) ≤ ‖e2‖(0.5m1k1

∥∥ .
χ1
∥∥− 0.8m2).

(26)

Stabilization of residuals with some accuracy (25) will be provided if expressions (26)
are negative. With respect (17), sufficient conditions are met for the following values of the
amplitudes:

0.8m2 > 0.5m1k1X2 ⇔ m2 > 0.625m1k1X2 ⇒ ‖e2(t)‖ ≤ 2.2/k2 ⇒
0.8m1 > 2.2/k2 + X2 ⇔ m1 > 2.75/k2 + 1.25X2 ⇒ ‖e1(t)‖ ≤ 2.2/k1.

(27)

In the dynamic generator (16) (as well as in the dynamic differentiator (12)), we can
set any initial values of the state variables. To ensure (25) and, therefore, mi

∣∣σ(kieij)
∣∣ ≤

0.8mi, i = 1, 2; j = 1, 2, 3 when t ≥ 0, it is beneficial for us to set the following
initial values,

x1(0) = χ1(0)⇒ e1(0) =
→
0 ⇒ e2(0) = x2(0), 0 < ‖x2(0)‖ < 2.2/k2. (28)

It follows from (20) that x2 = e2 −m1σ(k1e1). This variable is an analog of velocity
vector of UAV. Therefore, if we select amplitudes to fulfill (27), the norm of x2(t) will
be bounded:

‖x2(t)‖ ≤ 2.2/k2 + 0.8m1, t ≥ 0. (29)

We initially introduced corrective actions in (23) to justify the final form of the dynamic
generator, which is implemented as a closed-loop system (16), (23) and does not depend on
the matrix B(θ, Ψ):

.
x1 = x2,
.
x2 = −m2σ(k2e2)− 0.5m1k1Λ1x2 = −m2σ(k2(x2 + m1σ(k1(x1 − χ1))))−

−0.5m1k1

 1− σ2(k1(x11 − χ11)) 0 0
0 1− σ2(k1((x12 − χ12))) 0
0 0 1− σ2(k1((x13 − χ13)))

x2.
(30)

The variable
.
x2(t) is analog to the UAV acceleration vector. Using (22) and (29), we can see

that the norm of
.
x2(t) is also bounded in (30):∥∥ .

x2(t)
∥∥ ≤ 0.8m2 + 0.5m1k1(2.2/k2 + 0.8m1), t ≥ 0. (31)

Note that the dynamic generator (30) contains fewer blocks than the standard dynamic
differentiator (12). In system (30), the estimated signal of the second derivative of the
reference signal

..
χ1(t) is the right side of the second block of the system (30). It is defined

by the expression −m2σ(k2e2(t))− 0.5m1k1Λ1(t)x2(t).
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Using (27), (29) and (31), let us compose a system of double inequalities for selecting
the parameters of the sigmoid feedback that satisfies the given constraints (18):{

2.2/k2 + X2 < 0.8m1 ≤ V − 2.2/k2 ⇒ k2 > 4.4/(V − X2),
0.5m1k1X2 < 0.8m2 ≤ 3gU − 0.5m1k1V ⇒ m1k1 < 6gU/(V + X2).

(32)

Double inequalities (32) are consistent and have a non-empty set of solutions due to a
priori assumptions (14).

Let k2(U) be the maximum allowable value of a high-gain factor k2, determined by
the design constraints on the rate of control change (14). We take a specific value k2 = k∗2
under the assumption that the following condition,

4.4/(V − X2) < k∗2 ≤ k2(U) (33)

is met. Let us take a specific value of m1 = m∗1 based on the first inequality (32), namely,

2.75/k∗2 + 1.25X2 < m∗1 ≤ 1.25V − 2.75/k∗2. (34)

Finally, based on the second inequality (32), we successively take specific values
k1 = k∗1 and m2 = m∗2 :

0 < k∗1 <
6gU

m∗1(V + X2)
; 0.625m∗1k∗1X2 < m∗2 ≤ 3.75gU − 0.625m∗1k∗1V. (35)

Upper bounds for selection high-gain factors k1 (35) and k2 (33) determine the thresh-
old values of the stabilization accuracy of the tracking error and residual (25),

‖e1(t)‖ ≤ ∆1, ∆1 >
0.04m∗1(V+X2)

U ≥ 0.04(2.75/k2(U)+1.25X2)(V+X2)
U ;

‖e2(t)‖ ≤ ∆2, ∆2 ≥ 2.2
k2(U)

.
(36)

It follows from estimates (36) that the following values should be set to minimize
the tracking error: k∗2 = k2(U)− α, m∗1 = 2.75/k∗2 + 1.25X2 + α, where α is positive small
constant. Note that with the accepted initial values (28), there is no need to waste the
resources of sigmoid feedback on acquiring the state variables of the virtual system (24) in
the neighborhood of zero (25).

Thus, the variables of the dynamic generator (30) produce smoothed vector signals
x1(t), x2(t),

.
x2(t) after processing the reference non-smooth signal χ1(t). These signals are

realizable for a particular UAV. They are used in real time in the control law (9) instead of
χ1(t),

.
χ1(t),

..
χ1(t), namely,

u = −BT(C1(y1 − x1) + C2(y2 − x2) + ag− .
x2)/g. (37)

Additionally, they do not result in inadmissible overloads.

3.2.2. Simulation Results

For numerical simulation of the developed algorithms (which was carried out in
MATLAB-Simulink with the Euler integration method with a fixed step of 0.0001 s), we
considered a micro-UAV, which parameters are summarized in Table 1. Such aircraft
perform reconnaissance functions and provide information about the current situation.
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Table 1. The parameters of micro-UAV.

Parameter Value

Maximum weight, kg 5
Maximum altitude, m 5000

Maximum flight velocity, m/s 26
Flight duration, min 60

The reference signal determines the desired path of the UAV at the first approximation.
It is given in the form of a continuous but non-smooth spatial broken line:

χ11 = 0, χ12 = 2t + 100, χ13 = 2t, t ∈ [0; 5);
χ11 = 2t− 10, χ12 = 115− t, χ13 = 10, t ∈ [5; 10);
χ11 = 10, χ12 = 125− 2t, χ13 = 30− 2t, t ∈ [10; 15);
χ11 = 40− 2t, χ12 = t + 80, χ13 = 0, t ∈ [15; 20);
χ11 = 0, χ12 = 2t + 60, χ13 = 2t− 40, t ≥ 20, χ1j [m], t [s].

(38)

For this plant, a dynamic generator (30) was constructed with the initial values
x1(0) = χ1(0) = (0, 100, 0) T, x2(0) = (0.01, 0.01, 0.01)T and with the parameters, ac-
cepted on the basis of inequalities (32)–(35) with respect to the constraints of this UAV on
velocity and overload in the form:

m1 = 4, k1 = 4 , m2 = 22, k2 = 10. (39)

In Figure 1a, we present the plots of the first component of the reference signal χ11(t)
(38), its processing of the corresponding output variable x11(t) of generator (30), and
tracking error e11(t) = x11(t) − χ11(t). For the rest of the components of vectors χ1(t),
x1(t), e1(t) = x1(t)− χ1(t), the graphical results are similar. We can see from Figure 2a
that |e11(t)| ≤ 0.256 m. In Figure 1b, we show the spatial plots of the reference polyline
χ1(t) = (χ11(t), χ12(t), χ13(t)) and output variable x1(t) = (x11(t), x12(t), x13(t)) of
generator (30). We see the smoothing of sharp corners at singular points.

Figure 1. In (a), plots of the reference signal χ11(t) (38) and its processing of x11(t) (shown below) and
tracking error e11(t) = x11(t)− χ11(t) (shown above). In (b), spatial plots of the reference polyline
χ1(t) and point in phase space x1(t) of dynamic generator (30).
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Figure 2. In (a), plot of x21(t). In (b), plot of
.
x21 = −m2σ(k2e21)− 0.5m1k1Λ11x21 of generator (30).

Figure 2a,b present the plots of x21(t) and
.
x21 = −m2σ(k2e21)− 0.5m1k1Λ11x21, which

describe the processing of the first and second derivative of the first component of the
reference signal

.
χ11(t) and

..
χ11(t) by generator, respectively.

As was noted, the generator variables enter the UAV control system as reference
actions and their first and second derivatives. In the control law (37), we accepted the
following feedback parameters:

Ci = diag{14, 15.5, 14.5}, C2 = diag{167, 166, 165}.

In Figure 3a, we show the reference signal χ11(t) (38), and output variable y11(t) of
closed-loop system (6), (37) with generator (30), tracking error ς11(t) = y11(t)− x11(t),
arising when the plant tracks the smooth output signal of the generator x11(t). It is a
realizable signal. Therefore, asymptotic stabilization of the tracking error is ensured in a
closed-loop system. In Figure 3b, we show plots of control actions u1(t), u2(t), u3(t) (37).
They are bounded, their values correspond to permissible overloads (2).

Figure 3. In (a), plots of the reference signal χ11(t) (38), output variable y11(t) of closed-loop system
(6), (37) with generator (30) (shown below) and tracking error ς11(t) = y11(t)− x11(t) (shown above).
In (b), plots of the control actions uj(t), j = 1, 2, 3 (37).

3.3. Filtering Methods
3.3.1. Research Hypotheses

Consider the case when an unknown noise η(t) = (η1(t), η2(t), η3(t))
T is super-

imposed on the useful signal χ1(t) = (χ11(t), χ12(t), χ13(t))
T. Here, the noisy signal

χ1(t) = χ1(t) + η(t) enters the control system. Let us assume that η(t) is normal random
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variable with zero mean and bounded variance. Next, the basic generator model (30) has
the following form:

.
x1 = x2,
.
x2 = −m2σ(k2(x2 + m1σ(k1(x1 − χ1))))− 0, 5m1k1diag{1− σ2(k1(x1j − χ1j))

}
x2.

(40)

We introduce the following hypotheses based on a comparative analysis of the dy-
namic generator (40) and the dynamic differentiator (12). The differentiator (12) solves the
observation problem. Due to this method, the noisy signal χ1(t) is present in all equations
of the system (12). Generator (40) solves the tracking problem. According to this method, it
is a block integrator of the second order, where the noisy signal acts only on the input in
the form of arguments of sigmoid functions. In such a system, the noise at the input has
little effect on the output due to natural filtering by integrators. The parasitic components
are present in vector signals x1(t), x2(t), which restore the reference signal and its first
derivative, respectively. Thus, it should be expected that these parasitic components will
be small enough without installing additional filters. The closed-loop system (6), (37) is
also a block integrator of the second order, in which the noise together with the signal

.
x2(t)

act only on the input. With respect (40), expressions (37), (10) take the form, respectively:

u = −BT(C1(y1 − x1) + C2(y2 − x2) + ag + m2σ(k2(x2 + m1σ(k1(x1 − χ1))))+

+0.5m1k1diag{1− σ2(k1(x1j − χ1j))
}

x2)/g;
(41)

.
y1 = y2,
.
y2 = −C1y1 − C2y2 + C1x1 + C2x2 −m2σ(k2(x2 + m1σ(k1(x1 − χ1))))−
−0.5m1k1diag{1− σ2(k1(x1j − χ1j))

}
x2.

(42)

The first hypothesis is that, in the closed-loop system (42), it is possible to ensure the
invariance of the output y1(t) to the noise in the reference action without additional filters.

At the input of system (40) and, consequently, system (42), parasitic noises are present
in the form of arguments of sigmoid functions with gain factor k1(x1 − χ1). The sec-
ond hypothesis is that one should also reduce the value of gain factor k1 for better fil-
tering. However, its reduction leads to an increase in the modulus of tracking errors
e1(t) = x1(t)− χ1(t) and, therefore, ξ1 = y1 − χ1 in the steady state. This is an analog
of the well-known Kalman filter problem: “the higher the convergence rate of errors, the
worse the filtering and vice versa.” To solve the problem, a compromise is established
between the convergence rate and filtering properties. It is provided with a solution to the
optimization problem.

Note that, in this paper, we do not consider the dynamics of the actuators in the model
of the control plant (1). In the general UAV control system, in which Equation (1) are a
top-level subsystem, overloads (2) perform a dual function. In Equation (1), they are control
actions, and for UAV actuators, they can be interpreted as reference actions. Therefore, one
cannot ignore the problem of filtering.

To provide filtering
.
x2(t) (40) and hence u(t) (41), it is necessary to introduce additional

low-frequency filters on the reference signal χ1(t). The filter is added on χ1(t) before
entering the generator (40) and/or on the second derivative of generator

.
x2(t) before it

enters the control law (37).
The third hypothesis is that the filtering problem

.
x2(t) and u(t) can be solved naturally

if we increase the dynamic order of generator (40). For this, one should take the extended
system instead of system (6) as a basis for generator construction:

.
y1 = y2,

.
y2 = y3,

.
y3 =

d
dt
(B(θ, Ψ)gu)

or, continuing differentiation, a canonical system consisting of four blocks. The dynamic
generator is constructed as a copy of such an extended model. The procedure for its
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synthesizing will be similar to the procedure outlined in Section 3.2.1. Therefore, the noisy
signal will also enter only to the input of the extended generator. However, in contrast
with the generator (40), the estimated signal of the second derivative of the reference signal
will be formed not from the input, but from the output of the integrating block element.
Additionally, in an extended generator consisting of four blocks, it will be separated
from the noisy input by another block integrator. It will provide natural filtering and
significantly reduce the impact of parasitic noise on the estimation of the second derivative
and, consequently, on control (37).

The verification of this hypothesis requires additional, rather cumbersome calculation.
It is not considered in this paper. For simplicity of presentation, we restrict ourselves to
testing the first two hypotheses using numerical simulation. We also consider various
cases for installing additional low-pass filters to improve the quality of vector signals

.
x2(t)

and u(t).

3.3.2. Simulation Results

In this section, we present the results of simulation the closed-loop system (6), (37),
(40) in the following configurations:

1. Experiment 1: no additional filters;
2. Experiment 2: with additional low-pass filters for the reference signal χ1(t) before it

enters generator (40);
3. Experiment 3: with additional low-pass filters on the second derivative

.
x2(t) of the

generator before it enters control law (37);
4. Experiment 4: with additional low-pass filters for a reference signal χ1(t) and for the

second derivative
.
x2(t) of generator.

In all these experiments, the reference action has the form,

χ1(t) = χ1(t) + η(t),

where the useful signal χ1(t) is determined by (38), η(t) is a normal random variable with
zero mean and variance 0.1. It is generated using the Simulink block “Random Number”.

For all experiments, we present the graphs similar to those on Figures 1–3. Here,
for comparison with the output signals of the generator and the control plant (on graphs
similar to those on Figures 1 and 3a), we show not a noisy signal χ1(t), but its useful
component χ1(t) (38). At the end of the section, we present the results of a comparative
analysis of the conducted experiments.

Figures 4–6 show the graphs of Experiment 1a: the results of simulation the system
(6), (37), (40) without additional filters with generator parameters (39).

Figures 7–9 show the graphs of Experiment 1b: the results of simulation the system
(6), (37), (40) without additional filters with generator parameters,

m1 = 4, k1 = 1.5 , m2 = 8, k2 = 10, (43)

where the value of gain factor k1 is 2.6 times less than in Experiment 1a (39).
As can be seen from Figures 4–9, the first and second hypotheses are confirmed. In the

signals x21(t) ≈
.
χ21(t) (Figures 5a and 8a) and especially in x1(t) ≈ χ1(t) (Figures 4 and 7),

the parasitic component is quite small. The effects of corner smoothing, boundness of all
variables and controls (Figures 6b and 9b) are preserved. The output signals of closed-loop
systems (Figures 6a and 9a) are very similar to the output signals of a closed-loop system
with a noisy reference (Figure 3a). In Experiment 1b (Figures 7–9) the noisy of signal is
less compared to Experiment 1a (Figures 4–6). This is achieved by reducing the value of
gain factor k1 (41) by 2.6 times. However, we see (Figures 4a and 7a) that the values of
tracking errors are increased. In both cases, the signals

.
x21(t) (Figures 5b and 8b) and u(t)

(Figures 6b and 9b) very noisy. Since these signals are directly interfered with noise. The
following experiments are aimed at improving the filtering of vector signals

.
x2(t), u(t). It
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ensures by additional low-pass filters, with which we will use dynamic generator with
parameters (43).

Figure 4. Experiment 1a. In (a), plots of the reference signal χ11(t) (38) and its processing of x11(t)
(shown below) and tracking error e11(t) = x11(t)− χ11(t) (shown above). In (b), spatial plots of the
reference polyline χ1(t) and point in phase space x1(t) of dynamic generator (40).

Figure 5. Experiment 1a. In (a), plot of x21(t). In (b), plot of
.
x21(t) of generator (40).

Figure 6. Experiment 1a. In (a), plots of the reference signal χ11(t) (38) and output variable y11(t) of
closed-loop system (42) (shown below) and tracking error ς11(t) = y11(t)− x11(t) (shown above). In
(b), plots of the control actions uj(t), j = 1, 2, 3 (41).
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Figure 7. Experiment 1b. In (a), plots of the reference signal χ11(t) (38) and its processing of x11(t)
(shown below) and tracking error e11(t) = x11(t)− χ11(t) (shown above). In (b), spatial plots of the
reference polyline χ1(t) and point in phase space x1(t) of dynamic generator (40).

Figure 8. Experiment 1b. In (a), plot of x21(t). In (b), plot of
.
x21(t) of generator (40).

Figure 9. Experiment 1b. In (a), plots of the reference signal χ11(t) (38) and output variable y11(t) of
closed-loop system (42) (shown below) and tracking error ς11(t) = y11(t)− x11(t) (shown above). In
(b), plots of the control actions uj(t), j = 1, 2, 3 (41).

In Experiment 2, we introduce additional block filter on the reference vector signal
χ1(t) before it enters generator (40):

µ1
.
τ1 = −τ1 + χ1 = −τ1 + χ1 + η, τ1 = (τ11, τ12, τ13)

T, τ1(0) =
→
0 , (44)
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where µ1 = const > 0 is filter time constant. It is selected to preserve a useful signal χ1(t)
and simultaneously suppress parasitic high-frequency components η(t). Generator (40)
with pre-filter (44) has the form:

.
x1 = x2,
.
x2 = −m2σ(k2(x2 + m1σ(k1(x1 − τ1))))− 0.5m1k1diag{1− σ2(k1(x1j − τ1j))

}
x2.

(45)

As a rule, for tuning the filter, the following relations are used [34]:

µ1 = 1/ωc, ωc > ω,

where ωc is the desired cutoff frequency (at which the signal power is halved after filtering,
and its amplitude is decreased in

√
2 times), ω is the expected frequency of the signal to

be filtered. The closer the accepted value ωc to ω, the more the useful signal is distorted
in the neighborhood ω. However, parasitic components are suppressed more strongly at
the same time. In contrast, with growth ωc, the useful signal is less distorted. However,
the filtering deteriorates. In practice, a compromise is sought based on a priori knowledge
of the parasitic component η(t). We accepted µ1 = 10 for simulation in the experiments
below. Figures 10–12 show plots of Experiment 2: simulation results of system (6), (37) with
pre-filter (44) and generator (45) with parameters (43).

Figure 10. Experiment 2. In (a), plots of the reference signal χ11(t) (38) and its processing of x11(t)
(shown below) and tracking error e11(t) = x11(t)− χ11(t) (shown above). In (b), spatial plots of the
reference polyline χ1(t) and point in phase space x1(t) of dynamic generator (45).

Figure 11. Experiment 2. In (a), plot of x21(t). In (b), plot of
.
x21(t) of generator (45).
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Figure 12. Experiment 2. In (a), plots of the reference signal χ11(t) (38) and output variable y11(t)
of closed-loop system (6), (37), (44), (45) (shown below) and tracking error ς11(t) = y11(t)− x11(t)
(shown above). In (b), plots of the control actions uj(t), j = 1, 2, 3 (37).

As we can see from Figures 11b and 12b, the parasitic component is decreased sig-
nificantly in input signals

.
x21(t) and u(t) compared to Experiment 1. While the output

signals and tracking errors (Figures 10a and 12a) are not changed practically. The effects of
smoothing corners, boundness of all variables and controls are preserved.

In Experiment 3, the generator (40) still receives a noisy signal χ1(t). Here, we
introduce an additional block filter only on the second derivative

.
x2(t) before it enters

control law (37):

µ2
.
τ2 = −τ2 +

.
x2 = −τ2 −m2σ(k2(x2 + m1σ(k1(x1 − χ1))))−

−0.5m1k1diag{1− σ2(k1(x1j − χ1j))}x2, τ2 = (τ21, τ22, τ23)
T, τ2(0) =

→
0 ,

(46)

where µ2 = const > 0 is the filter time constant. In filter (46), in contrast to filter (44), noisy
signals are in the arguments of sigmoid functions. Therefore, the area of amplitude changes
of the signal to be filtered is obviously bounded. We accepted µ2 = 20 for simulation in the
experiments below.

In a system with a generator (40) and a pre-filter (46), the control law (37) takes
the form:

u = −BT(C1(y1 − x1) + C2(y2 − x2) + ag− τ2)/g. (47)

Figures 13–15 present plots of Experiment 3: simulation results of system (6), (47) with
pre-filter (46) and generator (40) with parameters (43).

As in Experiment 2, the effects of filtering, smoothing and boundness of signals
are preserved. However, the tracking error e11(t) = x11(t)− χ11(t) turned to be less in
Experiment 3 compared to Experiment 2 with the filter on χ1(t). Simultaneously, the filter
quality of u(t) is worsened.

Finally, Figures 16–18 present plots of Experiment 4: simulation results of system (6),
(47) with two filters (44) and (46), generator (45) with parameters (43).

Table 2 shows the values of performance indicators of closed-loop systems and signal
processing in Experiments 1b and 2–4. We calculated the sample mean (Mean), corrected
sample standard deviation (Std) and the maximum value (Max) of the following: absolute
value of error e11(t) = x11(t)− χ11(t), which describes how the generator variable tracks
the reference signal; error ς11(t) = y11(t)− x11(t), which describes how the plant output
variable tracks the generator variable; absolute value of control u1(t) (for the rest of signals
e1(t), ς1(t), u(t), the values of indicators are similar). For the calculation, we used the
values of the samples from the time intervals indicated in Table 2: for ς11(t) and u1(t) are
the first transient response and steady state, for e11(t) are the second one.
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Figure 13. Experiment 3. In (a), plots of the reference signal χ11(t) (38) and its processing of x11(t)
(shown below) and tracking error e11(t) = x11(t)− χ11(t) (shown above). In (b), spatial plots of the
reference polyline χ1(t) and point in phase space x1(t) of dynamic generator (40).

Figure 14. Experiment 3. In (a), plot of x21(t). In (b), plot of
.
x21(t) of generator (40).

Figure 15. Experiment 3. In (a), plots of the reference signal χ11(t) (38) and output variable y11(t) of
closed-loop system (6), (47) (shown below) and tracking error ς11(t) = y11(t)− x11(t) (shown above).
In (b), plots of the control actions uj(t), j = 1, 2, 3 (47).
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Figure 16. Experiment 4. In (a), plots of the reference signal χ11(t) (38) and its processing of x11(t)
(shown below) and tracking error e11(t) = x11(t)− χ11(t) (shown above). In (b), spatial plots of the
reference polyline χ1(t) and point in phase space x1(t) of dynamic generator (45).

Figure 17. Experiment 4. In (a), plot of x21(t). In (b), plot of
.
x21(t) of generator (45).

Figure 18. Experiment 4. In (a), plots of the reference signal χ11(t) (38) and output variable y11(t)
of closed-loop system (6), (47), (shown below) and tracking error ς11(t) = y11(t)− x11(t) (shown
above). In (b), plots of the control actions uj(t), j = 1, 2, 3 (47).



Sensors 2022, 22, 9472 21 of 25

Table 2. The values of performance indicators of closed-loop systems and signal processing.

Variable Time
Interval Indicator

Experiment Number

1b 2 3 4

e11(t), m

t ∈ (7; 10) Mean 0.58 0.81 0.58 0.81

t ∈ (7; 10) Std 0.30 0.31 0.30 0.31

t ∈ (5; 10) Max 1.91 2.11 1.91 2.11

ς11(t), m

t ∈ (2; 5) Mean 1.14 · 10−14 4.04 · 10−16 7.54 · 10−8 3.47 · 10−7

t ∈ (2; 5) Std 8.55 · 10−16 4.68 · 10−17 5.30 · 10−5 3.16 · 10−5

t ∈ (0; 5) Max 4.30 · 10−4 4.30 · 10−4 3.97 · 10−4 4.34 · 10−4

u1(t)

t ∈ (2; 5) Mean 0.71 0.71 0.71 0.71

t ∈ (2; 5) Std 0.99 0.02 0.10 0.02

t ∈ (0; 5) Max 3.12 1.36 1.71 1.35

We can see from Table 2 that the goal of UAV control was achieved in all experiments:
the average value of the error ς11(t) = y11(t)− x11(t) (that show how plant output variable
tracks the generator output) is about 10−16– 10−7 m (which is due to the presence of noise
and numerical integration errors). The use of low-pass filters in Experiments 2–4 reduces
the Std of the control action u1(t) by 9.9–49.5 times compared to Experiment 1b, where
filters are not used. Note that the values of performance indicators for e11(t) and u1(t) are
comparable to those in Experiments 2 and 4. Therefore, additional filtering of the second
derivative

.
x2(t) of the generator is redundant (Experiment 4). It is sufficient to add only

one filter on reference signal χ1(t) (Experiment 2). The results of Experiments 2 and 3 show
that the filtering of the reference signal (Experiment 2) makes it possible to reduce the Std
of the control by a factor of 5 compared with filtering the second derivative of the generator
(Experiment 3). However, the filter on the reference signal distorts the useful component
more. This leads to a larger error e11(t) in Experiment 2 (0.81 m) compared to Experiment 3
(0.58 m). Thus, Experiments 2 and 3 are the most promising for practical implementation.
Note that the selection of a specific implementation option depends on the workspace in
which the plant operates, the requirements for control smoothness, and the capabilities of
computing resources.

We also conducted an additional Experiment 5 to test the performance of the developed
approach under time-varying noise parameters (which is close to the real conditions of the
UAV operation). The conditions of Experiment 2 were taken as the basis for simulation. We
used generator (45) with only one pre-filter (44) for a noisy signal with the same parameters
as in Experiment 2. Here, noise η(t) had a normal distribution with a zero mean and
time-dependent variance:

var(η) =


0.10, 0 ≤ t < 5

0.05, 5 ≤ t < 10
0.02, 10 ≤ t < 15
0.04, 15 ≤ t < 20
0.10, 20 ≤ t < 25

.

We assumed that one knew the maximum admissible value of noise variance, which
is 0.1.

Figure 19 presents a plot of the noise with constant variance used in Experiments
1–4 (on the left side), as well as a plot of the noise with non-constant variance, which we
simulated in this Experiment 5 (on the right side).
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Figure 19. In (a), plot of the noise η(t) with constant variance. In (b), plot of the noise η(t) when
variance is not a constant.

Figures 20–22 show plots of Experiment 5: simulation results of system (6), (37)
with pre-filter (44) and generator (45) with parameters (43) in the case of non-constant
noise variance.

Figure 20. Experiment 5. In (a), plots of the reference signal χ11(t) (38) and its processing of x11(t)
(shown below) and tracking error e11(t) = x11(t)− χ11(t) (shown above). In (b), spatial plots of the
reference polyline χ1(t) and point in phase space x1(t) of dynamic generator (45).

Figure 21. Experiment 5. In (a), plot of x21(t). In (b), plot of
.
x21(t) of generator (45).



Sensors 2022, 22, 9472 23 of 25

Figure 22. Experiment 5. In (a), plots of the reference signal χ11(t) (38) and output variable y11(t)
of closed-loop system (6), (37), (44), (45) (shown below) and tracking error ς11(t) = y11(t)− x11(t)
(shown above). In (b), plots of the control actions uj(t), j = 1, 2, 3 (37).

Thus, we can see from Figures 20–22 that the operability of the generator is maintained
even in the case of noise parameter variation. To implement the developed method, it is
enough to know the limits of their change and the limits of bounded external disturbances,
which are considered when tuning the pre-filter and the generator.

4. Discussion

The paper was aimed to develop a unified method for differentiating, filtering and
smoothing signals for their further use in the UAV control system. This goal was achieved
by constructing a dynamic admissible path generator with sigmoid corrective actions. The
systems of inequalities are obtained for tuning their parameters in the deterministic case
(when there are no noises in the measurements). The ability of a dynamic generator to filter
the reference signal and restore its derivatives is not inferior to many existing differentiators.
However, in contrast with these, the generator allows us to smooth the signals and consider
the constraints on the velocity and acceleration of the UAV. Without loss of generality, the
proposed approach can be used to process the reference action signals of control plants, the
dynamic model of which is reducible to the canonical form.

The rigorous theoretical calculations in the paper are presented for the deterministic
case. The operability of the algorithms in the presence of noise in the measurements has
been demonstrated only through numerical simulations. The development of theoretical
aspects of the filtering properties of a dynamic generator depending on the noise parameters
is the subject for future author’s research.
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