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Abstract: Coronavirus disease 2019 (COVID-19) has led to countless deaths and widespread global
disruptions. Acoustic-based artificial intelligence (AI) tools could provide a simple, scalable, and
prompt method to screen for COVID-19 using easily acquirable physiological sounds. These systems
have been demonstrated previously and have shown promise but lack robust analysis of their
deployment in real-world settings when faced with diverse recording equipment, noise environments,
and test subjects. The primary aim of this work is to begin to understand the impacts of these real-
world deployment challenges on the system performance. Using Mel-Frequency Cepstral Coefficients
(MFCC) and RelAtive SpecTrAl-Perceptual Linear Prediction (RASTA-PLP) features extracted from
cough, speech, and breathing sounds in a crowdsourced dataset, we present a baseline classification
system that obtains an average receiver operating characteristic area under the curve (AUC-ROC) of
0.77 when discriminating between COVID-19 and non-COVID subjects. The classifier performance is
then evaluated on four additional datasets, resulting in performance variations between 0.64 and 0.87
AUC-ROC, depending on the sound type. By analyzing subsets of the available recordings, it is noted
that the system performance degrades with certain recording devices, noise contamination, and with
symptom status. Furthermore, performance degrades when a uniform classification threshold from
the training data is subsequently used across all datasets. However, the system performance is robust
to confounding factors, such as gender, age group, and the presence of other respiratory conditions.
Finally, when analyzing multiple speech recordings from the same subjects, the system achieves
promising performance with an AUC-ROC of 0.78, though the classification does appear to be
impacted by natural speech variations. Overall, the proposed system, and by extension other acoustic-
based diagnostic aids in the literature, could provide comparable accuracy to rapid antigen testing
but significant deployment challenges need to be understood and addressed prior to clinical use.

Keywords: COVID-19; acoustics; machine learning; respiratory diagnosis; healthcare; telemedicine;
digital forensics

1. Introduction

Coronavirus SARS-CoV-2 and its associated disease (COVID-19) has led to unprece-
dented global disruptions. The rapid and uncontrolled spread of COVID-19 across the
world can be largely attributed to lack of test access. A prompt, positive test allows indi-
viduals to isolate and seek treatment earlier, reducing transmission risks, disease severity,
and deaths. While billions of vaccines were deployed in 2021 and 2022, experts agree
that testing is critical to regulate the spread of COVID-19 [1,2] and the development of
effective testing modalities that can be rapidly mobilized is crucial to ensuring pandemic
preparedness in the future [3,4].

Reverse transcription polymerase chain reaction (RT-PCR) and rapid antigen testing
are most often used to reduce transmissions, with rapid antigen tests offering a quicker
and lower cost solution compared to RT-PCR [5]. However, rapid antigen tests (BinaxNOW
by Abbott; BD Veritor by Becton Dickinson; Flowflex by ACON Laboratories; to name
a few) demonstrate wide variability and significantly lower sensitivity than the gold
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standard RT-PCR tests; sensitivities have been reported from 44% to 79% in university
screening programs [6,7]. Severe shortages of supplies and logistical challenges related
to deployment have also limited testing at critical points throughout the pandemic [8]. A
reliable AI-based screening tool based on easily acquirable physiological sounds (cough,
speech, and breathing) would provide a simple, scalable, low-cost, and expeditious method
to detect COVID-19.

The previous literature has shown that classification of COVID-19 using acoustic
signatures is indeed possible: Laguarta et al. [9] achieved a 93.8% accuracy on forced-
cough recordings with parallel ResNet50 deep learning architectures; Imran et al. [10]
used three parallel classifier systems with a mediator to achieve a final accuracy of 92.64%
(though the app predicted an inconclusive test result 38.7% of the time, which was not
accounted for in the accuracy); Pahar et al. [11] applied transfer learning on a pre-trained
ResNet50 architecture to achieve accuracies above 92% for cough, speech, and breathing
sounds; and Pinkas et al. [12] used a three stage deep learning architecture to correctly
identify 71% of positive patients. The release of public datasets, such as Coswara/DiCOVA
Challenge [13,14], University of Cambridge/NeurIPS 2021 [15], and COUGHVID [16] has
dramatically accelerated the development and release of new classification approaches
with reported area-under-the-curve of the receiver operating curve (AUC-ROC) ranging
from 0.60 to 0.95 [17–20]. Previously, the authors have also presented early work on the
Coswara Dataset [21] that was the top performer in the breathing and cough tracks of the
Second DiCOVA Challenge, achieving an AUC-ROC of 0.87 and 0.82, respectively [22].

Motivated by these preliminary studies, several systems have been deployed by re-
searchers and corporate entities for public or clinical use, and a handful have applied for
regulatory approval. The COVID Voice Detector by Carnegie Mellon was built on founda-
tions of earlier voice-profiling work for vocal fold pathologies [23,24]. The system briefly
went live on 30 March 2020 to offer COVID classifications, but was quickly withdrawn
by the researchers due to concerns regarding data quality, clinical validity, and risk [25].
ResApp announced promising preliminary results from COVID-19 detection with cough
sounds in a pilot clinical trial, based originally on pneumonia work, reportedly achieving
92% sensitivity and 80% specificity. However, an independent study of ResApp’s algorithm
when deployed revealed significantly lower sensitivity (84%) and specificity of (58%), citing
challenges in generalizability and training datasets [26].

Regrettably, these systems failed to address several key considerations and compound-
ing challenges related to mass deployment, including but not limited to: (1) variability
between recording equipment (computer, iPhone, Android phone, etc.), (2) model gen-
eralizability, (3) analysis of training dataset biases and statistics, (4) performance when
presented with other respiratory diseases and conditions, (5) performance in the presence
of additive noise, and (6) accuracy for repeated testing of a single individual. This non-
exhaustive list of challenges is only partially addressed in the existing literature related
to acoustic-based COVID-19 classification. Khanzada et al. [27,28] acknowledge these
shortcomings, but do not provide analyses to address them. Only [29] offers an analysis
regarding dataset preparation ((3) above), model overfitting ((2) above), and comparison
with other respiratory diseases like asthma and bronchitis ((4) above). To the best of our
knowledge, no researchers have robustly quantified system performance with environmen-
tal noise corruption, the same speaker with different classes, the same speaker with the
same class, and variability between recording equipment.

To successfully deploy an acoustic-based COVID-19 classifier, it is critical to under-
stand how these challenges will impact the detection accuracy, necessary training data,
and system limitations. Therefore, this study is not centered around comparing model
architectures or maximizing accuracy; instead, a specific detection system is presented as a
baseline and the effects of the aforementioned challenges are quantified to understand the
robustness considerations needed to deploy such a system at-large. The aim of this work is
to provide a preliminary framework and understanding to other researchers on techniques
to measure system robustness. While this study primarily focuses on acoustically detecting
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COVID-19, the concepts and principles presented can be applied to detect other respiratory
diseases and serve as a useful guide for developing robust acoustic-based systems.

2. Methods

The COVID-19 classification system, which is visually summarized in Figure 1, is
developed and tested by processing cough, speech, and breathing recordings gathered from
a single, large dataset. The baseline classification schema follows traditional and standard
audio machine learning systems [30] and is tested on multiple datasets and conditions to
understand its overall performance.

Figure 1. The proposed COVID-19 detection system pipeline, consisting of (1) data collection, (2) pre-
processing, (3) feature extraction, (4) classification, and (5) performance evaluation stages.

2.1. Datasets

Four data sources were used to train and test the COVID-19 classification system.
The model is trained using the development subset of the Second DiCOVA Challenge
Dataset [22] and then tested across four additional datasets. A summary of the datasets
and the included physiological sound types is presented in Figure 2.
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Figure 2. The number of recordings included in each of the five datasets that were used to train and
test the COVID-19 detection system. The DiCOVA Blind and NeurIPS 2021 Datasets include subjects
with other self-reported respiratory conditions. All recordings were from unique subjects, except for
the Repeatability Dataset which included ten replicate recordings from each subject.
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2.1.1. DiCOVA Validation and Blind Datasets

The Second DiCOVA Challenge Dataset includes crowdsourced sound recordings
derived from the Coswara Dataset [22]. The challenge consisted of two data cohorts: a
‘validation’ set used for model training and cross validation, and a ‘blind’ set for blind
testing and evaluation. Both datasets include ‘heavy cough’, ‘deep breathing’, and ‘normal
counting’ recordings for each subject, which were voluntarily submitted via web application
along with qualitative information on age, gender, health status, symptoms, pre-existing
respiratory ailments, and comorbidities. The validation dataset consists of 965 subjects,
of which 172 (17.8%) self-reported as being COVID-positive. The blind test set consists
of 471 subjects, of which 71 (15.1%) self-reported as being COVID-positive. The DiCOVA
datasets were used for initial training and baseline performance characterization across the
three sound types.

2.1.2. NeurIPS 2021 Dataset

The NeurIPS 2021 Dataset includes crowdsourced cough and breathing sound record-
ings collected by the University of Cambridge and released for scientific exploration [31].
The recordings were voluntarily submitted via a web- or Android-based application with
information on symptoms, asthma diagnosis, and COVID status. The cough subset con-
tains 106 subjects; 31 (29.3%) self-reported with COVID-19, 11 (10.4%) self-reported with
asthma, and the remaining 64 (60.4%) self-reported as healthy. The breathing subset con-
tains 99 subjects; 68 (68.7%) self-reported with COVID-19, 11 (11.1%) self-reported with
asthma, and the remaining 31 (31.3%) self-reported as healthy. This dataset was used to
evaluate the generalizability of the COVID-19 classification system to unseen data.

2.1.3. Social Media Dataset

The Social Media Dataset was compiled by gathering speech recordings from indi-
viduals available online through television, video sharing platforms, and social media.
The standard procedure to collect recordings was as follows: several news (e.g., New York
Times, CNN, Fox News) and social media sites (e.g., Twitter, TikTok, Facebook, Instagram,
YouTube) were searched with standard strings for recordings of subjects who had self-
reported as testing positive for COVID-19 within the last seven days. Recordings of the
same subject were then gathered that were taken at least one month prior to the positive
COVID-19 report to ensure no overlap with incubation or asymptomatic periods. Media
were included or excluded following precise criteria related to length, noise, and informa-
tion available; the inclusion and exclusion criteria can be found in the collection protocol at
the link below. The final dataset includes 36 subjects, each with a negative and positive
COVID-19 recording. The data, along with detailed descriptions of the media, including the
subjects, COVID-19 status, site used, link to media, search strings used, and quality assess-
ment can be found at https://github.com/drewgrant/COVIDAudioSocialMediaDataset
(accessed on 11 July 2022).

The dataset was gathered to understand the system’s generalizability and ability to
detect changes in a single individual’s COVID-19 status. The limitation of this dataset
is that subjects speak in an unstructured, unscripted, and natural manner. This poses
challenges compared to the structured speech of the DiCOVA Validation Dataset, in which
participants count to twenty normally. Nonetheless, the dataset is included as a meaningful
contribution to analyze the robustness of the system.

2.1.4. Repeatability Dataset

The Repeatability Dataset was compiled by gathering speech recordings of partici-
pants in a similar fashion to the Coswara/DiCOVA Dataset process. Eleven participants
(6 COVID-negative participants, 5 COVID-positive participants) followed the standard
DiCOVA Dataset process for speech, counting normally from one to ten, and voluntarily
submitted recordings via web application. The participants repeated this process ten times,
moving locations within their home between each recording. The subjects also provided

https://github.com/drewgrant/COVIDAudioSocialMediaDataset
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qualitative information (age, gender, health status, symptoms, pre-existing respiratory
ailments, and comorbidities) following the standard set of questions from the Coswara
Dataset. This dataset was used to evaluate the generalizability of the COVID-19 classi-
fication to unseen data and the replicability of the system when used repeatedly by a
single speaker.

2.2. Classification Schema

The baseline classification system extracts RelAtive SpecTrAl-Perceptual Linear Predic-
tion (RASTA-PLP) and Mel Frequency Cepstral Coefficient (MFCC) features and performs
classification via multilayer perceptron [21]. This schema was the highest performing
system in the Second DiCOVA Challenge [22]. The system reported here has been slightly
modified for standardization across sound events; multilayer perceptron and 25 MFCC and
MFCC-∆ features are used across all sound events, but RASTA-PLPs of model order 25, 20,
and 22 were used for speech, breathing, and cough analysis, respectively, determined by
empirically from the previous work. The classification method involves three main stages:
preprocessing, feature extraction, and classification.

2.2.1. Pre-Processing

All audio recordings had a sampling rate of 44.1 kHz. Recordings were normalized
to an amplitude range within ±1, and segmented into 40 ms windows with 50% overlap.
Long time windows were used here to emphasize harmonics, which have been previously
analyzed to detect hoarseness [32], a common symptom of respiratory illnesses. The short
term energy of the windows was thresholded to perform sound activity detection (SAD)
and remove silent segments from each recording [30,33]. Windows with energy below
the threshold of 0.0001 were considered to be silence and removed. This threshold was
determined empirically to balance system performance across all three sound types in
recordings without added noise. Due to the nature of the recordings and the sound activity
detection thresholding, the total number of windows for each subject varied with the
recording and voiced audio lengths.

2.2.2. Feature Extraction

The system uses MFCC and RASTA-PLP acoustic features, which are widely found in
speech and sound analysis. MFCCs logarithmically warp audio signals in Mel-scale filter
banks to emulate human perception [34]. MFCCs are extracted by applying a Mel-filter bank
to the short-time power spectrum of a signal, taking the logarithm, applying the Discrete
Cosine Transform, and ‘liftering’ (or, multiplying the whole cepstrum by a rectangular
window centred on lower quefrencies) to discard the higher cepstral coefficients and retain
the number of desired coefficients [30,35]. MFCCs encode high-level spectral content: the
lower-order coefficients describe the overall spectral shape of the signal, while the higher-
order coefficients represent finer spectral details, such as pitch and tonal information [36].
MFCCs have been used in countless state-of-the-art acoustic systems [37–40]. The changes
and trajectories of the MFCCs (commonly referred to as ‘MFCC-∆s’) capture spectral
variations and dynamics. MFCC-∆ coefficients are computed by taking the first derivative
of the MFCCs with respect to frames. The COVID-19 classification system extracts 25 MFCC
and 25 MFCC-∆ features.

RASTA-PLP features bandpass filter and nonlinearly compress audio signals to reduce
the effects of additive noise and channel effects [41]. RASTA filtering applies a band-
pass filter to each frequency sub-band to smooth over short-term noise variations and
remove channel distortions in the signal [30]. PLP is a feature representation acquired via
psychoacoustic transformations in critical band analysis, equal loudness, pre-emphasis,
and intensity-loudness prior to employing the linear prediction algorithm [42] on win-
dowed speech [30]. Combining the RASTA and PLP algorithms generates a more robust
feature representation that reduces the effects of diverse recording equipment, speaker-
dependent information, and the wide range of acoustic environments that one might find
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in crowdsourced datasets. To the best of the authors’ knowledge, this was the first sys-
tem to pair MFCC and RASTA-PLP features for COVID detection when it was originally
presented [21]. RASTA-PLPs of model order 25, 20, and 22 were determined empirically to
optimize system performance and used for speech, breathing, and cough analysis, respectively.

Figure 3 shows the average and standard deviation of the feature vectors extracted
from a single subject (subject nine from the Social Media Dataset) saying ‘bye’ in two
recordings: (1) without and (2) with COVID. These frames were chosen because the
classifier correctly identified the presence or absence of COVID across all frames. The figure
demonstrates the subtle differences that occur between features in the two COVID cases,
even for a single speaker saying the same syllable. These subtle differences in the feature
vectors are what drive the need for advanced machine learning techniques for classification.
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Figure 3. Average and standard deviation of the feature values extracted from three frames of a single
subject saying ‘bye’ both with and without COVID.

2.2.3. Classifier Description

The MFCC, MFCC-∆, and RASTA-PLP features for each signal frame are concatenated
to create a single feature vector for each frame of a subject’s recording. The classifica-
tion model processes the feature vectors and returns a probability score for each frame.
The probability scores are averaged across all frames of the recording and an optimal
classification threshold derived from receiver operating characteristic (ROC) analysis is
applied to determine a probable class: COVID positive or COVID negative.

A multilayer perceptron classifier was used due to its ability to effectively model
complex and nonlinear relationships and its ease of implementation [43]. The multilayer
perceptron classifier was implemented using scikit-learn 1.1.3 toolkit [44] with the following
empirically selected parameters: Limited-memory Broyden-Fletcher-Goldfarb-Shanno
(lbfgs) solver, 0.000001 alpha, 1000 maximum iterations, 3 hidden layers with [100, 300, 100]
neurons, and all other parameters set to the default. The previous work [21] explored
classification model comparison primarily between multilayer perceptron and random
forest, a popular ensemble-based classification algorithm. Other deep learning algorithms
were not considered because of their black-box nature; challenges with repeatability and
replicability from hyperparameter selection, initialization states, random seeding, and data
selection; and limited training data [45].

2.2.4. Performance Evaluation

To measure the performance of the classifier in various discrimination and robustness
tasks, the sensitivity, specificity, and AUC-ROC were computed [46,47]. These metrics are
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commonly used for evaluating binary classification tasks [48]; traditional performance met-
rics, such as overall accuracy or error rate, are severely limited when handling imbalanced
data [49]. Sensitivity and specificity describe the accuracy of binary diagnostic tests for
both classes at a specific decision threshold by indicating the rate of true positives and false
positives, respectively.

ROC curves relate the sensitivity and specificity across all possible decision thresholds.
As the classifier improves, the ROC curve becomes steeper and increases the AUC-ROC,
a metric that provides a generalized, threshold-independent understanding of the classi-
fier’s performance. While other metrics could be used (i.e., precision, recall, F1 score, etc.),
AUC-ROC is common for diagnostic tests and data science applications [50,51], including
COVID detection tasks [9,10,22], and allows for performance standardization and model
comparisons across datasets and studies.

The ROC curve informs the selection of a decision threshold value for deploying the
classification system; average probability scores above the threshold classify the subject
as having COVID. The threshold value is typically selected to balance the sensitivity and
specificity for the use-case of the classifier, since it can be difficult to agree at which threshold
it is acceptable to risk missing disease. In this work, the decision threshold is selected as the
point that maximizes Youden’s J Statistic [52]. For the DiCOVA Validation Dataset, a single
development threshold is used throughout the paper, referred to as the ‘development
threshold’. The remaining datasets are evaluated both with this development threshold
and with an ‘optimal threshold’ that optimizes Youden’s J Statistic for that specific dataset.

Five-fold cross validation was used for model training and validation within the
DiCOVA Validation Dataset, as specified in the Second DiCOVA Challenge [22]. The Di-
COVA Validation Dataset results are the average AUC-ROC across all folds, as well as the
average sensitivity and specificity for an optimal decision threshold across all five folds.
The performance metrics obtained using an earlier version of the proposed system with the
DiCOVA Blind Dataset were validated externally by the DiCOVA team (presented in [22]
as T-14), making these results highly credible and objective.

2.3. Real-World Deployability Testing

To evaluate the robustness of the system for challenges faced in real-world deployment,
the baseline performance is reported as a benchmark to understand how varied recording
equipment, subject groups, and background noise will impact the system performance via
statistical testing and comparison of AUC-ROC, sensitivity, and specificity values.

2.3.1. Recording Device

Of the datasets analyzed, only NeurIPS provided information on the device, either
web- (36%) or Android-based (64%), used to capture the recordings. The AUC-ROC of the
system with recordings solely from web-based or Android-based devices are compared to
understand if the recording device impacts the system performance.

2.3.2. Model Generalizability

The AUC-ROC, sensitivity, and specificity are obtained from testing the system on
the DiCOVA Validation, DiCOVA Blind, NeurIPS 2021, Social Media, and Repeatability
Datasets to understand the (1) generalizability of the model, (2) if any overfitting occurred
in the initial training, and (3) how widely applicable the model and the development
threshold is when applied to unseen, uncorrelated data. ROC curves, AUC-ROC val-
ues, and sensitivity and specificity values at the development and optimal thresholds
are compared.

The NeurIPS and Repeatability Datasets are used to test on data that is ostensibly
collected in a similar fashion but could diverge in the latent distribution from the initial
DiCOVA Validation Dataset due to population, instructions, or recording equipment.
The Social Media Dataset is also used to further challenge the model by using unstructured
audio with natural, conversational speech.
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2.3.3. Model Complexity

To rapidly scale a classification system for wide-scale deployment and assess record-
ings in an efficient manner, a model that balances high classification performance and low
complexity is preferred. The feature dimensions, classification models, and AUC-ROC
for the system proposed here and for others found in the literature for cough sounds
are compared.

2.3.4. Confounding Factors

The demographic diversity of subjects that provided recordings for the datasets used
in this study could impact their sound production and the system performance. The
percentages of recordings from subjects with different genders, age groups, symptoms,
and other respiratory conditions are shown in Table 1. The majority of subjects were male
and 15 to 45 years old. Only a small percentage of subjects (∼29%) reported whether they
were asymptomatic or symptomatic and a small percentage (∼30%) reported whether or
not they had other respiratory conditions.

To understand how the system performance changes due to these confounding fac-
tors, statistical analyses were performed using the average probability scores from all
subjects and datasets. Due to the non-normal distribution of the average probability scores
(p-value < 0.001 via Shapiro–Wilk test), non-parameteric analyses of variance (Wilcoxon
or Kruskal–Wallis tests) were used to determine if gender, age group, symptoms, or other
respiratory conditions had a significant effect on the probability score distributions when
grouped by the sound type and COVID status. Recordings without a gender or age label
were removed from the analysis and the significance level was set to 0.05.

In addition to the statistical analyses, the baseline AUC-ROC was compared to the
AUC-ROC on data subsets by gender (all male or all female), age (15–29, 30–45, 46–59,
or over 59), other respiratory diseases (yes or no), or symptom status (asymptomatic or
symptomatic). Though these are not exhaustive analyses of model bias, the testing provides
valuable insight into potential performance differences based on the confounding factors
that would need to be considered prior to deploying acoustic-based systems more widely.

Table 1. The percentages of recordings submitted with various confounding factors, including gender,
age group, COVID symptoms, and other respiratory conditions.

COVID Gender Age Group COVID Symptoms Other Respiratory
Condition

Positive Female Male N/A 15–29 30–45 46–59 >60 N/A Asymptomatic Symptomatic N/A Yes No N/A

Breathing 17.0 23.4 69.5 7.1 14.7 11.3 3.8 0.7 69.5 4.2 24.3 71.5 2.2 28.9 68.8

Cough 17.1 23.4 69.7 6.9 14.7 11.3 3.8 0.7 69.5 4.2 24.3 71.5 2.2 29.1 68.7

Speech 19.7 27.5 72.5 0 15.9 12.7 4.2 1.9 65.3 3.5 15.4 81.1 1.4 27.3 71.3

2.3.5. Additive Noise Injection

To test the robustness of the system against the presence of ambient noise, the baseline
classification system was tested on varying levels of both stationary and nonstationary
noise. Recordings from the DiCOVA Validation and Blind Datasets were artificially cor-
rupted with ambient noise and other artifacts. Noise segments were randomly chosen
from a noise database and added to the clean signals at prescribed signal-to-noise (SNR)
levels. This technique ensures the ability to directly compare performance of the various
loudness conditions, but also allows for some randomization in the type of ambient sounds
being added.

The fourteen noise types originally used in [53] are included here: air conditioner,
announcements, appliances (washer/dryer), car noise, copy machine, door shutting, eating
(munching), multi-talker babble, neighbor speaking, squeaky chair, traffic, road, typing,
vacuum cleaner, speakers reading from passages. White, pink and Brownian noise were
also included. Sounds were sorted following the technique outlined in [54]: the average
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Power Spectral Entropy value for each recording was used as a stationarity index such that
minimum entropy occurs for highly variable sounds (nonstationary noises) and maximum
entropy occurs when the spectral distribution is uniform (stationary noises).

Ambient noises and recordings were mixed at seven different equally spaced SNR
levels from 0 dB (extremely noisy) to 60 dB (quiet). All the final mixed files are normalized
to −25 dBFS (decibels relative to full scale of the digital waveform). A combination of three
training conditions and three testing conditions were created for each SNR level. The sys-
tem was trained on one of three training sets: clean (unprocessed) dataset, the dataset with
added stationary noise, or the dataset with added nonstationary noise. Each of these sys-
tems was then tested on one of three testing sets, which were generated following a similar
process: clean (unprocessed) dataset, added stationary noise, and added nonstationary
noise. This process was repeated for each of the sound types (speech, breathing, cough).
The AUC-ROC of the classifier for each of the noise levels (0 to 60 dB) and nine train-test
pairs is then calculated for comparison.

2.3.6. Single Speaker Repeatability and Discrimination

A longstanding fundamental challenge in speech processing is repeatability [34]; intra-
speaker variability and natural variations in speaking rate are unavoidable and that cause
no two utterances to be the exact same [55,56]. Two cases are considered to measure the
performance of the classifier when used repeatedly by participants: whether the model
(1) performs consistently when presented with many recordings from a single participant
with the same status, and (2) correctly identifies when a single participant’ status changes.

For the first test, the baseline model is tested on ten recordings from each participant in
the Repeatability Dataset. The number of correct and consistent classifications when using
the development and optimal thresholds are compared. Probability scores for each frame
of speech across the ten recordings of a subject are also analyzed using the Kruskal–Wallis
non-paramateric test to assess intra-speaker differences.

For the second test, the baseline model is tested on paired recordings of a single
speaker with and without COVID from the Social Media Dataset. The number of subjects
with correct classifications for both COVID states are determined. Subjects that were
misclassified for one or both COVID states are grouped by whether the misclassification
occurred due to the chosen detection threshold or if the system reversed the actual COVID
states for the subject. The probability scores from each frame for all subjects with and
without COVID are also assessed with the Wilcoxon test to determine if a significant
difference exists for a single subject with and without COVID.

3. Results and Discussion

The acoustic detection system classified subjects with and without COVID-19 via
breathing, cough, and speech sounds with an average AUC-ROC of 0.77. The real-world
deployability testing procedures highlight several challenges, including diverse recording
devices, training and testing data mismatches, noise corruption, and natural variations
in speaking, that could cause the system performance to decrease in real-world settings,
but also highlight the system’s robustness to confounding factors.

3.1. Recording Device

As shown in Figure 4, the classifier shows significantly decreased performance with
web-based recordings (AUC-ROC 0.48 for breathing and 0.42 for cough) compared to
Android recordings (AUC-ROC 0.73 for breathing and 0.75 for cough). Possible expla-
nations for this performance degradation could include that the subject is less likely to
speak directly into the microphone using a web-based device or there is greater variability
in the soundcard pre-processing for web-based devices, but additional testing data with
varied recording devices is required to determine why specific devices would degrade
classifier performance. Due to the decreased performance of the classifier with web-based
recordings, only Android-based recordings from the NeurIPS Dataset were included for
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subsequent analyses when the NeurIPS data is used. It is important to note that only the
NeurIPS Dataset provided information on the recording devices used, so it is unclear how
varying recording devices impacted the performance across all datasets.
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Figure 4. ROC curves comparing the system’s performance using recordings from Android and web-
based devices. The system displays decreased performance with recordings from web-based devices.

3.2. Model Generalizability

Figure 5 shows the AUC-ROC, sensitivity, and specificity values along with the ROC
curves for each dataset classified individually. The average, minimum, and maximum AUC-
ROC values across all datasets and sound types is 0.77, 0.64, and 0.87, which indicates that
the system accurately identifies subjects with COVID using breathing, cough, and speech
sounds from various datasets that differed from the initial system development set. Across
the AUC-ROC values of breathing, cough, and speech sounds, the classifier performed best
with the DiCOVA Blind Dataset, which was expected as this dataset is the most similar
to the DiCOVA Validation Dataset used for system development. The lowest AUC-ROC
(0.64) was obtained using the Social Media Dataset. The performance degradation for
this specific dataset was also expected as the recordings contained spontaneous speech,
rather than the structured speech contained in the DiCOVA Validation Dataset used for the
system development. To the best of the authors’ knowledge, no other acoustic respiratory
disease system has been tested on spontaneous conversational speech, yet the performance
is not considerably worse than the system presented here with structured speech datasets
(DiCOVA, Repeatability) or other systems that are trained and tested with fixed speech
phrases [57,58].

In Figure 5, the sensitivity and specificity values were calculated using both the
development and optimal thresholds. Using the optimal threshold, which differs across
each dataset and sound type, the system demonstrated an average sensitivity and specificity
of 79.5% and 62.1%, respectively. However, when the system is deployed in a real-world
setting, the correct classification of a subject is unknown, such that an optimal threshold
cannot be calculated. Instead, the threshold must be determined from the available system
training data. Using the development threshold, the system was less accurate at identifying
subjects with COVID, as indicated by a decreased average sensitivity of 50.3%.

The changes in performance with the set development threshold can be understood by
considering the distributions of probability scores across each dataset, shown in Figure 6.
For breathing sounds, the average probability score distributions across the DiCOVA Blind,
DiCOVA Validation, and NeurIPS Datasets are comparable. As such, the sensitivity and
specificity values for the optimal and development thresholds are typically comparable.
However, for cough and speech sounds from the NeurIPS, Repeatability, and Social Media
Datasets, the average probability score distributions are considerably different than the
DiCOVA Datasets. This leads to considerable variation in the measured sensitivities and
specificities across these datasets when using the development and optimal thresholds.
To overcome this performance degradation when a specific classification threshold must be
chosen, the training dataset must include more recordings that are representative of those
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found across all datasets or a strict protocol should be implemented to guarantee that the
training and testing recordings are collected in a similar manner.
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Figure 5. System (a) AUC-ROC, sensitivity, and specificity values and (b) ROC curves for breathing,
cough, and speech sounds from all datasets classified individually.
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Stowell et al. noted similar difficulties with mismatches between training and testing
conditions when using deep learning methods to acoustically detect bird calls with various
noise levels, low SNRs, and wide variations in bird call types [59]. Stowell et al. emphasized
that automatic detection results should be treated with caution because true generalization
remains difficult given the mismatch in training and testing conditions. The best solution is
to obtain training data that closely match the conditions of the testing data.

3.3. Model Complexity

Table 2 shows a comparison of model complexity (low, moderate, high) and fea-
ture dimensionality from other systems in the literature, demonstrating the proposed
system’s competitive diagnostic performance with lower dimensionality. Systems with
high model complexity are more susceptible to overfitting and require devices with ex-
tensive computational resources. The proposed system’s low model complexity allows
for model optimization, scaling, rapid testing of new unseen data, and deployment on
low-resource devices.

Table 2. Feature dimensionality, classification model, and classification performance comparison to
other proposed systems in the literature. All AUC-ROC scores reported for the systems compared
were obtained when testing on the DiCOVA Blind Test set.

Reference Sound Event Classification Model Complexity AUC-ROC

Sharma et al. [22] Cough bidirectional Long Short-Term Memory Moderate 0.75
Hoang et al. [60] Cough TRIpLet Loss Network based Light Gradient Boosting Machine High 0.81
Ragolta et al. [61] Cough Contextual Attention based Convolutional Neural Network High 0.68
Kamble et al. [62] Cough bidirectional Long Short-Term Memory Moderate 0.77
Proposed System Cough Multilayer Perceptron Low 0.79

3.4. Confounding Factors

To assess the system robustness to possible confounding factors, such as (1) gender,
(2) age, (3) the presence of symptoms, or (4) other respiratory diseases, statistical analyses
were performed using Wilcoxon and Kruskal–Wallis tests on the average probability scores
returned by the classifier for each recording. Significant differences (p < 0.0001) between
the average probability scores of subjects with and without COVID across sound types
were identified, confirming separability between groups. Due to this difference, subsequent
analyses were grouped by COVID status and sound type. This resulted in six different
groupings for each confounding factor analyzed: COVID positive and negative within
each sound class of breathing, cough, or speech. Significant differences were identified
for the average probability scores of males and females without COVID for breathing
(p = 0.02), cough (p < 0.0001), and speech (p = 0.002); however, no significant differences
were identified between males and females with COVID across sound types. A significant
difference (p = 0.015) was also identified between cough recordings from subjects without
COVID with other respiratory conditions and from subjects without COVID with no
condition listed. No other significant differences (p > 0.05) between age groups, symptom
presence, or other respiratory conditions were identified across subjects with and without
COVID for cough, speech, and breathing.

These results indicate that the probability score from the classifier for COVID-positive
patients is not being influenced by confounding factors, including gender, age, and the
presence of other respiratory conditions or symptoms. However, these factors seem to
influence the probability score for COVID negative patients under certain conditions,
as indicated in the analysis above.

To support these statistical analyses, Figure 7 shows the system AUC-ROC when
the trained models are only tested on specific subsets of the data to identify performance
gaps due to gender, other respiratory diseases, and symptoms. While the analysis is
limited due to the the small percentage of subjects who reported symptoms or other
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respiratory conditions, as shown in Table 1, the results do point out areas the require further
consideration and additional data. When comparing system performance with gender,
the system shows a greater than 5% decrease in performance with females. Since the
DiCOVA Validation Dataset used for model training is overwhelmingly male (72.5% male
vs. 27.5% female), one would expect biasing towards male subjects and that more females
in the training data might increase the performance with female subjects. All datasets
except the NeurIPS 2021 contained gender labels.
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Figure 7. The AUC-ROC of the system when tested on various subsets of data according to gender,
age, symptom reporting, or other respiratory disease and compared to the system performance with
all datasets of a specific sound type combined (baseline). Green or red bars indicate an increase or
decrease above the average performance, respectively.

The largest changes in system performance (up to 25%) occur when assessing subjects
based on age. It is important to note that only the DiCOVA Blind and Repeatability Datasets
contained age labels. The results suggest that the system is more likely to accurately detect
whether subjects over the age of 59 are COVID positive or negative. This may imply that
elderly subjects undergo significant vocal changes when infected with COVID, which may
be expected considering older adults have a greater risk of becoming severely ill from
COVID and requiring hospitalization.

The second largest changes in system performance (up to 22%) occur when assessing
subjects with other respiratory conditions or asymptomatic COVID. The difference in per-
formance when a subject reports ‘yes’ to other respiratory disease suggests that the system
is more likely to accurately detect whether or not subjects with other respiratory diseases
are COVID positive or negative. This may suggest that subjects with other respiratory
diseases have acoustic features that overlap with features that the system uses for COVID
detection. However, it should be noted that majority of the subjects with ‘other respiratory
diseases’ were from DiCOVA Blind Dataset, which the system performed the best on. This
is important to note because the DiCOVA Blind Dataset most closely matches the conditions
of the DiCOVA Validation Dataset that was used to train the system, so it is not surprising
that the system performs well on this subset. Nonetheless, the system’s impressive perfor-
mance on subjects with other respiratory diseases is particularly noteworthy as a study by
Mouliou et al. reports that clinical diagnostics and laboratory test are affected not only by
pre-existing diseases but also the total health status of the subject [63]. Specifically, diseases
ranging from asthma, COPD, and pneumonia have been shown to impact the performance
of PCR tests and cause false negatives.
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For symptom reporting, the results indicate that the system performs better using
speech to detect asymptomatic COVID-positive subjects compared to breathing and cough.
This may suggest the system is able to detect subtle nuances of asymptomatic COVID-
positive subjects that are only perceptible through the dynamic variations of phonemes
produced in speech. Conversely, fewer asymptomatic subjects are accurately classified
using cough sounds, which is particularly interesting considering many of the acoustic
COVID detection systems proposed by researchers use cough sounds.

3.5. Additive Noise Injection

Figure 8a shows the AUC-ROC of the system when trained and tested with stationary
and nonstationary noise at sound levels from 0 dB to 60 dB. Added noise of any level
or type decreases the performance of the system, with an overall linear trend between
added noise level and system performance. Cough, speech, and breathing sounds typically
exhibit similar trends between system performance and added noise level, except for cough
sounds, which are particularly susceptible to training on recordings with nonstationary
or stationary noise and testing on recordings with nonstationary noise. It is clear that the
presence of noise in real-world deployment would significantly decrease the performance
of the system when trained on clean, well-controlled recordings. Overall, when noisy
conditions are expected, the results indicate that breathing and speech are less susceptible
to added noise, likely due to their more consistent spectral profile compared to speech.
Inclusion of noisy and non-ideal recordings in the training process has the potential to
increase robustness of the system, especially in very noisy conditions. However, as noise in
the training set increases, the classifier seems to incorrectly attribute certain features to the
detection task, as shown in the case when tested on only clean data after being trained on
noisy data. A balance is needed between inclusion of noise in the training dataset and the
control of noise in the end-use.

To improve the system performance with added noise, a different SAD threshold,
which determines what frames are considered sound or noise, could also be used, as shown
in Figure 8b. A SAD threshold of 0.0001 was used throughout the paper to measure system
performance, which was found to optimize the average performance across breathing,
cough, and speech sounds in the no-noise condition. When classifying recordings with
40 dB of added stationary noise, a higher SAD threshold is found to increase the system
AUC-ROC since a lower threshold introduces more noise frames in the analysis. Meanwhile,
in the quiet cases, SAD algorithms with thresholds set too low fail to remove any silence
or noise while SAD algorithms with thresholds set too high can be overly aggressive and
remove key information. Advanced SAD algorithms that dynamically adjust the threshold
or calculate optimal thresholds based on calibration recordings may be deployed in the real-
world scenarios. However, if noise is sufficiently controlled in the end-use, SAD algorithms
with reasonable fixed thresholds would work sufficiently, and are in-fact preferable when
the levels of noise and speech are not known in advance [64].
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Figure 8. (a) System performance when injecting stationary and nonstationary noise of varying
SNR levels into the train-test data for breathing, cough, and speech recordings. (b) The measured
AUC-ROC at various SAD thresholds for the baseline classification system using recordings that are
clean and with added stationary noise at a signal-to-noise (SNR) level of 40 dB. The chosen sound
activity detection threshold (indicated by the dashed line) optimized the average performance across
breathing, cough, and speech sounds for clean recordings.

3.6. Single Speaker Repeatability and Discrimination

Figure 9 shows the average probability scores across each of the ten recordings for
subjects included in the Repeatability Dataset. The blue dotted line indicates the optimal
threshold for this specific dataset (0.03) which was computed using Youden J’s Statistic
for all the recordings, while the yellow dashed line indicates the development threshold
(0.22). A recording with an average probability score above the threshold is classified as a
subject with COVID. The results suggest that a single subject would not have a consistent
COVID classification based on the chosen probability threshold. The average probability
score determined by the system from the same speaker can be variable across different
times or locations or with variations in the speech production.

Visually, it may appear that the optimal threshold results in poorer classification results
than the development threshold in Figure 9; however, the optimal threshold results in only
four false negative recordings compared to 27 false negative recordings using the develop-
ment threshold. Additionally, when the optimal threshold is used, 64% of the recordings are
correctly classified. Six subjects are correctly classified across all recordings, four subjects
are misclassified across all recordings, and one subject has varying classifications across
the ten recordings. In comparison, the development threshold correctly classifies 61%
of recordings. Five subjects are correctly classified across all recordings, one subject is
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misclassified across all recordings, and five subjects have varying classifications across
the ten recordings. Statistical testing revealed that all subjects had significant differences
(p < 0.002) between the average probability scores measured from each frame across their
ten recordings. This indicates that natural variations in speaking patterns or slight changes
in the recording environment leads to significant differences in the measured probability
score distributions.
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Figure 9. Average probability scores measured from eleven subjects counting in ten separate record-
ings. The blue dotted line indicates the optimal classification threshold and yellow dashed line
indicates the development threshold.

In the Social Media Dataset, similar or greater variability is likely to be present as the
recordings had greater variations in time and speech type. Figure 10 shows the average
probability scores of the 36 subjects included in the Social Media Dataset. The optimal
threshold for this specific dataset (0.04) was used to determine a classification; 64% of
recordings were correctly classified. The development threshold correctly classified only
49% of recordings in this case, likely due to the mismatch in spontaneous and structured
speech. In Figure 10, the subjects are ordered based on (1) whether the system correctly
classified the recording before and while the subject had COVID (‘correct’), the probability
score when the subject did not have COVID was greater than when the subject did have
COVID (‘reversed’), or if a different threshold would have correctly identified both states
of COVID (‘threshold’), and (2) the difference between the average probability score.
Eleven subjects were correctly classified, thirteen subjects had reversed probability scores,
and twelve subjects had incorrect classifications due to the chosen threshold.

Of the thirteen subjects that had reversed probability scores, nine had average proba-
bility scores that differed by less than 0.04. Of the twelve subjects that were misclassified
due to the threshold, eight had average probability scores that differed by less than 0.04.
This indicates that a large number of subjects were not correctly classified for both states of
COVID as there was not an easily detectable change in the average probability score with
and without COVID, possibly because any changes were confounded with varying speech
or no changes occurred. Although the difference between average probability scores with
and without COVID were frequently small, the majority of subjects did show a significant
difference between the average probability scores with and without COVID, except for
six subjects (13, 14, 25, 27, and 30). For subjects with average probability score differences
greater than 0.04, 13 out of 18 were correctly classified, which does show promise that
an individual can be correctly classified during both states of COVID when the relative
changes in the average probability scores are considered.

However, it seems that separating out the changes in the average probability scores
that occur due to either the variations in speaking or the COVID status remain ambiguous
with the chosen system. Interestingly, taking the natural variation of physiological sounds
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into account (in the form of the distribution of scores in single recording) could provide
additional information for classifying COVID; the system has an AUC-ROC of 0.79, 0.72,
and 0.75 for breathing, cough, and speech sounds when using the standard deviation of the
probability scores across frames rather than the mean probability scores.

A similar trend was reported in [65] where the authors reported the effects of different
respiratory diseases on speech production. Lee at al. found that the best predictors for
differentiating between speech of healthy subjects and subjects with asthma, sarcoidosis,
or emphysema were the mean and standard deviations of time-related variables, which
highlighted the key differences in how long healthy subjects speak uninterrupted by long
pauses to breathe compared to subjects with a disease. The findings here have clear
similarities that warrant further investigation in the future.
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Figure 10. The predicted probability scores for subjects in the Social Media Dataset whose non-
COVID and COVID recordings were tested on the system. The predicted probability scores illustrate
that the system is able to detect differences in the subject’s non-COVID and COVID recordings;
however, the threshold value limits the system’s ability to make accurate classifications.

3.7. Summary and Limitations

The proposed acoustic-based detection system offers promising strides towards cost-
effective and low-resource, rapid testing of COVID-19. Across the four data sources and
three sound types included in the study, the system demonstrated an average AUC-ROC of
0.77. In general, COVID-19 positive classifications were not informed by other confounding
factors, such as gender, age, and the presence of symptoms or other respiratory conditions.
The simulated testing for real-world deployability highlighted several weaknesses of this
system that are likely applicable to other acoustic-based COVID-19 detection systems and
could degrade the system performance when moved out of a research setting, including
performance variations with the recording equipment used, presence of background noise,
and the natural variation of physiological sounds. It is important to note that the presented
work is not intended to be a comprehensive analysis of all the issues concerning deployment
of acoustic-based COVID screening systems, but rather propose framework and provide
preliminary results to understand deployment challenges that need to be addressed to
allow for reliable acoustic-based COVID-19 screening.

While the results of this study demonstrate the proposed system’s high classification
accuracy and outline robustness considerations, the system is limited by the inherent flaws
of crowdsourced databases. While some of these limitations were considered in this study
with noise, recording device, and confounding factor analyses, some of the largest flaws
in crowdsourced databases stems from issues of data reliability with subjects voluntarily
reporting unverified information. This introduces the possibility of training models on
incorrect labels. Furthermore, [66] suggests that using volunteer data for COVID detection
causes limitations due to the different variants of COVID, which may cause symptoms to
vary from subject to subject. Additional data with well-annotated and verified labels is
required to fully understand the systems’ biases and address them.
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The system performance was also found to degrade with simulated background noise,
but added artificial noise is not a substitute for the dynamic interactions that real-world
noise sources produce. Ideally, to address these concerns, training data would be collected
that best matches the planned target deployment conditions. However, such an approach
could limit the broad use of the system. Noise suppression techniques on the recordings
(such as spectral subtraction, least means squared, etc.) or self-adaptation techniques to
process the testing data to be more similar to the training data could achieve greater system
performance and broad applicability.

Similar to other classification systems using neural networks, the predictions generated
in this study lack interpretability and it is unclear what features contribute to the model’s
classification decisions. Future work will include feature importance ranking to understand
informative acoustic characteristics for COVID-19. Additionally, future work will include
exploring the use of ensemble-based classification algorithms and adding training time as
a performance metric to indicate the system’s low model complexity.

4. Conclusions

The global disruptions caused by COVID-19 have prompted research on improved
test methods that can quickly and accurately identify the disease to prevent transmission.
Acoustic-based detection systems offer the promise of scalable, rapid, and high-throughput
screening tools. The proposed system demonstrates promising results as indicated by
the performance in the Second DiCOVA Challenge where it obtained the highest average
AUC-ROC of 0.83 when detecting COVID-19 subjects using breathing, cough, and speech
sounds from the DiCOVA Blind Dataset. Additionally, the proposed system offers the
promise of acoustic-based detection on spontaneous speech, which has the potential to
allow for unobtrusive and continuous monitoring. However, it is clear that further work
is needed in the field to offer clinical decision support and highly reliable diagnostics for
at-home use.

This study highlights that considerations need to be made for noise contamination,
variations in recording equipment, and the inherent variability of physiological sounds
when deploying systems in real-world environments, challenges that have not been thor-
oughly examined to date. A framework for testing the robustness of a system is provided
and preliminary results demonstrate pathways the authors plan to use to improve the
system’s robustness. Importantly, results from acoustic-based COVID-19 classification can
be further applied to acoustic classifications systems that have been proposed for other
diseases such as asthma, tuberculosis, and pneumonia.
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