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Abstract: Depth-based plethysmography (DPG) for the measurement of respiratory parameters is a
mobile and cost-effective alternative to spirometry and body plethysmography. In addition, natural
breathing can be measured without a mouthpiece, and breathing mechanics can be visualized. This
paper aims at showing further improvements for DPG by analyzing recent developments regarding
the individual components of a DPG measurement. Starting from the advantages and application
scenarios, measurement scenarios and recording devices, selection algorithms and location of a
region of interest (ROI) on the upper body, signal processing steps, models for error minimization
with a reference measurement device, and final evaluation procedures are presented and discussed.
It is shown that ROI selection has an impact on signal quality. Adaptive methods and dynamic
referencing of body points to select the ROI can allow more accurate placement and thus lead to better
signal quality. Multiple different ROIs can be used to assess breathing mechanics and distinguish
patient groups. Signal acquisition can be performed quickly using arithmetic calculations and is not
inferior to complex 3D reconstruction algorithms. It is shown that linear models provide a good
approximation of the signal. However, further dependencies, such as personal characteristics, may
lead to non-linear models in the future. Finally, it is pointed out to focus developments with respect to
single-camera systems and to focus on independence from an individual calibration in the evaluation.

Keywords: tidal volume; vital capacity; contactless measurement; kinect; structured light; time-of-
flight; respiratory measurement

1. Introduction

Respiration is a fundamental function of the human organism and respiratory disor-
ders, such as chronic obstructive pulmonary disease (COPD) or asthma, are among the
leading causes of death worldwide [1]. For this reason, the functioning of the lungs is
examined in pulmonary function tests. Diseases can thus be diagnosed in time and treated
at an early stage. In everyday clinical practice, spirometers and whole-body plethysmo-
graphs are used to determine respiratory volumes. However, these methods cannot be used
in all application scenarios, for example, because the active cooperation of the patient is
required [2] or facial muscle weaknesses prevent the wearing of a necessary mouthpiece [3].
Due to the fact that they counteract these disadvantages, contactless measurement methods
are in the focus of research in recent years, especially for mobile applications.

Using depth-based plethysmography (DPG), it is possible to use depth information
to infer volume changes in the upper body and thus respiratory parameters. It is possible
to determine respiratory motion as well as respiratory volumes and other respiratory
parameters. While extensive reviews in recent years have focused on camera-based vital
signs monitoring [4], respiration rate measurement [5], non-contact measurement of the
respiration rate [6], contactless measurement of respiration in general [7] and DPG mea-
surement in general [8], the main contributions of this paper are: (1) to provide an overview
of the state of the art in DPG measurement of respiratory volumes and (2) discuss current
developments of DPG with regard to the targeted benefits.
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2. Fundamentals of Respiratory Measurement

This section serves as an introduction to the general measurement of respiratory pa-
rameters. Gold standards are presented and references for further procedures are presented.
Respiratory parameters are explained.

The gold standards in the measurement of respiratory volumes are spirometry and
body plethysmography with a permissible error of ±2.5% after verification with a 3-L
syringe (±0.5% error) [9]. Spirometry measures as a function of time how much volume a
person can inhale or exhale. The respective subject breathes through a mouthpiece into a
spirometer. Lung volumes can be measured via a change in volume in the system, or in
modern devices as an integrated change in flow. The most common techniques involve
a turbine that is moved by the respiratory flow or a pneumotachograph, which uses a
pressure difference at an artificially inserted resistance to infer the respiratory flow [10].
Whole-body plethysmography, unlike spirometry, can provide information about residual
lung volume and total lung capacity. The patient sits in a closed chamber. The opposing
variables during breathing can be determined by means of the volume or pressure con-
stancy of the chamber. The measurement method results in various requirements for the
stiffness of the chamber, heat and moisture transfer, and calibration [11]. Other methods of
measuring respiratory volumes result from computed tomography [12], capnography [13],
acoustic monitoring [14], impedance pneumography [15], doppler radar [16], electrocardio-
graphy [17], and accelerometers [18].

Important parameters in the clinical evaluation of respiration are respiratory volumes.
Figure 1 shows the changes over time in inhaled and exhaled volume. Based on quiet (tidal)
breathing, the tidal volume (TV) can be determined. The inspiratory capacity describes the
maximum volume that can be inhaled after exhalation. Expiratory vital capacity is defined
as the volume between maximum inspiration and maximum expiration. The residual
volume always remains in the lungs and the total lung capacity indicates the maximum
volume that the lungs can hold. Functional residual capacity describes the volume staying
in the lung after tidal breathing [10].

Sensors 2022, 22, 9680 2 of 18 
 

 

measurement in general [8], the main contributions of this paper are: (1) to provide an 

overview of the state of the art in DPG measurement of respiratory volumes and (2) 

discuss current developments of DPG with regard to the targeted benefits. 

2. Fundamentals of Respiratory Measurement 

This section serves as an introduction to the general measurement of respiratory 

parameters. Gold standards are presented and references for further procedures are 

presented. Respiratory parameters are explained. 

The gold standards in the measurement of respiratory volumes are spirometry and 

body plethysmography with a permissible error of ± 2.5% after verification with a 3-L 

syringe (± 0.5% error) [9]. Spirometry measures as a function of time how much volume a 

person can inhale or exhale. The respective subject breathes through a mouthpiece into a 

spirometer. Lung volumes can be measured via a change in volume in the system, or in 

modern devices as an integrated change in flow. The most common techniques involve a 

turbine that is moved by the respiratory flow or a pneumotachograph, which uses a 

pressure difference at an artificially inserted resistance to infer the respiratory flow [10]. 

Whole-body plethysmography, unlike spirometry, can provide information about 

residual lung volume and total lung capacity. The patient sits in a closed chamber. The 

opposing variables during breathing can be determined by means of the volume or 

pressure constancy of the chamber. The measurement method results in various 

requirements for the stiffness of the chamber, heat and moisture transfer, and calibration 

[11]. Other methods of measuring respiratory volumes result from computed tomography 

[12], capnography [13], acoustic monitoring [14], impedance pneumography [15], doppler 

radar [16], electrocardiography [17], and accelerometers [18]. 

Important parameters in the clinical evaluation of respiration are respiratory 

volumes. Figure 1 shows the changes over time in inhaled and exhaled volume. Based on 

quiet (tidal) breathing, the tidal volume (TV) can be determined. The inspiratory capacity 

describes the maximum volume that can be inhaled after exhalation. Expiratory vital 

capacity is defined as the volume between maximum inspiration and maximum 

expiration. The residual volume always remains in the lungs and the total lung capacity 

indicates the maximum volume that the lungs can hold. Functional residual capacity 

describes the volume staying in the lung after tidal breathing [10]. 

 

Figure 1. Schematic representation of the change in volumes over time. 

3. Review on Depth-Based Respiratory Measurement 

This section describes the current published developments of DPG. It is first 

explained (Section 3.1) how the relevant papers were chosen. Then, the basic methods of 

DPG are presented (Section 3.2) and the advantages for practical use are derived (Section 

3.3). Subsequently, the crucial questions for a real application of DPG are answered: In 

which measurement scenarios are DPG used (Section 3.4)? Which systems are used for 

recording (Section 3.5)? Which image area is selected and by which method (Section 3.6)? 

Figure 1. Schematic representation of the change in volumes over time.

3. Review on Depth-Based Respiratory Measurement

This section describes the current published developments of DPG. It is first explained
(Section 3.1) how the relevant papers were chosen. Then, the basic methods of DPG
are presented (Section 3.2) and the advantages for practical use are derived (Section 3.3).
Subsequently, the crucial questions for a real application of DPG are answered: In which
measurement scenarios are DPG used (Section 3.4)? Which systems are used for recording
(Section 3.5)? Which image area is selected and by which method (Section 3.6)? How is the
signal reconstruction performed (Section 3.7)? How accurate are the DPG measurements in
the literature and how are they evaluated (Section 3.8)?



Sensors 2022, 22, 9680 3 of 17

3.1. Literature Research

Eligible studies were identified through searches of the Scopus and PubMed database,
with the corresponding search term: ((depth OR camera OR rgbd OR rgb-d OR kinect OR
3d OR 3-d OR orbecc) AND (lung OR pulmonary OR respiratory OR respiration) AND
(volumes OR volume OR tidal AND volume OR vital AND capacity OR volumina)).

Based on the 366 hits on Scopus and 187 hits on Pubmed, 153 duplicates were removed,
remaining N = 400. With the inclusion criteria that (1) depth images are evaluated and
(2) respiratory parameters are determined; and the exclusion criteria for studies with CT,
MRI, or on animals, the found papers were checked for their suitability after reading the
title (N = 39) and abstract (N = 20) and based on the results further papers (N = 7) were
added manually. A total of 26 papers remained for further evaluation.

3.2. Methods of Depth Measurement

Depth information can be provided by stereoscopic camera sensors (SC), structured
light sensors (SL), time-of-flight sensors (TOF), or a combination [19]. For DPG, depth
information is used to infer respiratory volumes and other respiratory parameters. Based
on the sources of this depth information, DPG can be divided as follows:

• marker-based methods
This involves placing clearly visible markers on the patient’s upper body, which are
then automatically registered by software. The structure of the chest can be calculated
via reconstruction procedures after extensive calibration. This marker-based method
is also referred to in the literature as opto-electronic plethysmography (OEP) [20] and
is shown in Figure 2a. The number of markers is not fixed and can vary from 5 [21] to
89 [22] markers. Marker positioning depends on the area of the thorax being observed
and is not limited to one side [23]. Another example of the application is the motion
capture system in movies.

• direct methods
Using TOF or SL methods, depth information can be inferred without applying mark-
ers. TOF measures distance by emitting laser pulses. These pulses are reflected by
objects and then picked up again by a detector. Based on the required travel time,
the distance can be determined via the speed of light. [24] In the structured light
method, on the other hand, a known light pattern is projected onto the scene in the
near-infrared range. The distance can be inferred from the deformations of the pattern
on surfaces. [25] Stereoscopy is based on the use of multiple, offset cameras. The depth
of information can be derived from this offset. The result of direct methods is a point
cloud of depth information. The principle of these methods can be seen in Figure 2b.
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Figure 2. Marker-based and direct methods for measuring depth: (a) Use of markers and multiple
cameras for depth determination by opto-electronic plethysmography; (b) Direct measurement
methods to measure the depth values. Use of two offset cameras for active stereoscopy. Measurement
of the path length of the reflected light in time-of-flight measurements. Measurement of the distortion
of a projection pattern in structured light methods.
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A further distinction is considered in terms of the number of sensors used, so DPG
can be divided into:

• single camera systems
A single camera is used to record the subject from one side, mostly frontal.

• multi-camera systems
Multiple cameras are used to create a slightly offset stereoscopic effect or to directly
view multiple sides of the patient. In particular, an effort is made to create an additional
backsight of the patient.

3.3. Advantages and Application Scenarios

In contrast to traditional spirometry, DPG has several advantages:

• The mechanics and contribution of respiratory motion are made visible
The contributions to respiratory movement by the individual regions of the thorax can
be specifically visualized and evaluated. This includes, for example, different respi-
ratory mechanics in persons such as swimmers [26], dancers [27], or infants [28]. In
addition, it is conceivable that asynchronous muscle weaknesses can be visualized, or
even the failure of a lung lobe. This is not possible with traditional spirometry [29,30].
With respiration rate, respiratory volumes, and chest movements, DPG enables the
measurement of three of the four classes of respiratory assessment. Only the concen-
tration of gases cannot be measured with DPG [7].

• DPG corresponds to natural breathing
No mouthpiece is needed for non-contact measurement. Such a mouthpiece cannot be
used by all patient groups. Especially in the case of facial muscle weakness, deviations
in the measurements may occur [31]. Other patient groups, such as with tracheostomy,
cannot use such a mouthpiece in the first place [32]. DPG can be performed without
active patient participation for tidal volumes, as no mouthpiece is required. A non-
contact measurement at rest can be performed straight forward, especially for children,
hearing-impaired, learning-impaired, or with language barriers. Thus, breathing is
not influenced by further boundary conditions.

• DPG is a potential mobile, lightweight, and low-cost method
Apart from the level of development and the technology used, DPG processes offer
the possibility to be used easily and everywhere, without the need for trained persons.
This is not the case for multi-camera systems that require further calibration or the use
of markers that need to be applied for volume extraction. Single camera systems with
depth sensors, such as described in [33], which can determine respiratory volumes
without calibration, offer the advantages described above. With the proliferation of
depth sensors in mobile smartphone cameras [34], such technologies can potentially
and in the future enable easy measurement of respiratory parameters in the everyday
life of patients. Compared to the whole-body plethysmograph, with potential prob-
lems due to claustrophobia [35], DPG is not constrained by spatial constraints and can
be used in a mobile manner. Used depth sensors [see Section 3.5] are cheap compared
to gold standard technology, furthermore, no further consumables are needed.

The areas of application for DPG are derived from these advantages. In the clinical
field, a diagnosis of respiratory diseases such as COPD or asthma is of particular importance.
Application scenarios, therefore, extend to the clinical area, as a substitute when other
devices cannot be used; for example, due to claustrophobia, or facial muscle weakness; as a
mobile application in the home and care sector for spontaneous and mobile monitoring
of respiratory parameters without trained personnel; for the evaluation of respiratory
mechanics; in areas difficult to access or for non-contact monitoring in, for example, nursing
homes, hospitals, or prisons.

While DPG has some advantages, it is not possible to determine all parameters that
could be obtained via body plethysmography. This includes for example residual volume
and thus total lung capacity, as well as airways resistance.
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3.4. Settings

Respiratory volumes are assessed via DPG in the standing [36], lying [28], or sitting
position [37]. A fixed positioning of at least a part of the body offers the advantage of
suppressing arbitrary movements. Especially during strong breathing maneuvers, the
upper body may actively support the breathing movement. In this case, the entire upper
body moves forward during inhalation and backward during exhalation [38]. These
movements are suppressed when sitting or lying, which simultaneously raises the signal-
to-noise ratio (SNR) [7]. In addition, it can be distinguished whether backrests [39] or
armrests [26] are used or not. An example of such a measurement setup is shown in Figure 3.

Clothing is another parameter influencing SNR [8]. Wrinkling can result in the actual
chest movement not being visible [40]. However, strongly reflecting surfaces can likewise
weaken the signal in these areas [41]. For this reason, the clothing worn is sometimes
limited to tight-fitting clothing [36], while in other systems an unclothed upper body is
measured [42]. The latter applies in particular to the placement of markers.
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Figure 3. Measurement setup with two Kinect v2 cameras facing each other. The subject sits on a
chair without a backrest and breathes through a reference spirometer. The image is taken from [43],
licensed via Creative Commons License, and not changed for this work.

A parameterization study by John et al., in 2016 examines various influences on the
determination of respiratory rate with a depth camera. It is shown that generally better
results are achieved in a sitting position compared to a lying position. This is due to body
movements that are superposed on respiratory movements. A (partial) covering leads
to the highest errors. A distance of 1–2 m is determined as the optimum distance. A
higher distance reduces the signal quality with a lower SNR. For coverage, on the other
hand, a higher distance can offer advantages, which is explained by lower shadowing and
reflection effects [41].

The respiratory parameter measurement procedure should follow the American Tho-
racic Society and European Respiratory Society guidelines for clinical evaluation [9,10].

3.5. Recording Systems

The sensors used for DPG recording are standard RGB cameras, or even smartphone
cameras, TOF, or SL sensors. A large comparison of conventional depth cameras from
the fields of TOF, SL, and SC was performed in Giancola et al. 2018 [44]. Among other
cameras, the state-of-the-art 3D cameras Kinect v2 (TOF), Orbbec Astra (SL), and Intel D435
(SC) were compared. The uncertainty of TOF cameras increases linearly with depth, while
the triangulation principle of SL and SC leads to a quadratic increase of uncertainty with
higher distance. For this reason, SL cameras may be preferred for close-range applications,
especially without further outdoor environmental influences such as sunlight.

Complete recording systems are available for purchase exclusively for OEP, for ex-
ample, OEP System (BTS Bioengineering) or Motion Analysis (Santa Rosa, CA, USA). For
Kinect cameras, Soleimani et al. 2016 [45] provide an automatic, open-source data acquisi-
tion approach. For this purpose, two opposing Kinect v2 cameras are calibrated and the
transformation parameters are estimated. These are then used to align the point clouds and
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register them on a common plane. This method was created specifically for recording and
evaluating respiratory volumes.

3.6. ROI-Selection

Based on the recorded depth data, an ROI can be selected for further signal processing.
The ROI contains relevant areas, such as the upper and lower thorax, that contribute signif-
icantly to respiration. The selection of an ROI thus reduces the computational capacity and
increases the SNR. In principle, an ROI can be selected automatically, semi-automatically,
or manually, remain statically fixed for the whole measurement, or can be changed dynami-
cally. The selected regions will also be discussed in the following.

By applying markers, marker-based methods make a manual selection of an ROI
obsolete. The markers and thus elevation and depression of the chest are recorded dy-
namically [21,22,26,27,32,46,47]. In contrast, an automatic selection of an ROI based on key
points is done by skeletonization in Soleimani et al. 2015. A rectangular ROI is placed on the
subjects’ chest, depending on the skeletal joints ShoulderRight, ShoulderLeft, SpineShoul-
der, and SpineMid, derived from the Kinect v2 camera model [37,48]. The manual setting
of such a region is used by Harte et al. 2016 [42] or Wiegandt et al. 2021 [28]. The selected
ROI is subsequently tracked over the entire time period. Such a procedure allows accurate
positioning of the desired ROI, but is not reproducibly repeatable for confirming accurate
measurements. The procedure according to Oh et al. 2019 [49] uses spatial and temporal
information to define the ROI. The shape of the human chest is used as spatial, a priori
information [50], and the segmentation of adjacent time windows as temporal informa-
tion. A weighting of both pieces of information is used to select regions contributing to
respiration, which are defined as outwardly bulging boxes. Another automatic method
introduced by Ostadabbas et al. 2016 [40] is based on the mean value image of the entire
measurement. Thresholding background pixels and foreground pixels such as the knees
with a minimum distance results in an initial reduction of pixels of interest. Contiguous
areas are then selected row and column-wise. In the last step, cropping ensures anatomical
correctness. A semi-automatic algorithm, the flood fill method, for selecting the ROI is
used in [51].

ROIs are used to select regions that contribute to respiration. For this reason, the
upper body up to the head is considered. Subregions (SROI) can be a finer subdivision and
measure the contribution of different chest regions. SROIs are particularly in use in OEP,
where the markers are placed at the boundaries, making it easier to distinguish the regions
under consideration. Three SROIs are distinguished in general in OEP measurement [46]:
pulmonary rib cage, abdominal rib cage, and the abdomen, as in Figure 4a. Another
subdivision is made by Ripka et al. 2014 [21] in the observation of the thorax from a lateral
view. Four SROIs are defined via markers: Upper Thorax, Lower Thorax, Upper Abdomen,
and Lower Abdomen, see Figure 4b.

The same SROIs, however, from a full-page view are used in Silvatti et al. 2012 [26].
Seppanen et al. 2015 [52] state to use two SROIs, defined as horizontal stripes at the
xiphoid process near the umbilicus. With the help of a principal component analysis (PCA),
many evenly distributed SROIs are combined into one respiratory signal in Soleimani et al.
2018 [38] to reduce the influence of body movements. Yu et al. 2012 [53] use three SROIs
after manually applying a chest model. A distinction is made between the abdomen and
the left and right sides of the thorax. After an automatic upper body detection via OpenCV
haar cascade classifier [54], a preliminary ROI was set first by Imano et al. 2020 [55]. To
determine the final ROI, SROIS are integrated line by line from top to bottom until 90% of
the amplitude value of the total ROI amplitude is reached. An example of this algorithm is
shown in Figure 5.
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3.7. Signal Reconstruction

Time signals are derived from the acquired images and the selected regions, respec-
tively. Such a corresponding time signal SMethod (with a unit of distance or volume) already
correlates strongly with a spirometer signal VGround Truth (in liter), mostly used as ground
truth. However, it is necessary to use further processing steps. Finally, the measure-
ment signal must be transformed into the target format VTarget (in liter) via a model or a
transformation function f , shown in Equation (1).

VTarget = f (SMethod) (1)

The goal is to minimize the error between this target function and VGround Truth by a
suitable model and extraction method. Therefore, linear scaling factors are often used. In
the following, the individual signal processing steps up to the final measurement signal are
considered. Figure 6 shows a flowchart of a whole measurement and training set-up.
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Figure 6. Flow chart for non-contact determination of respiratory parameters. On the left, a depth
image with a region of interest (ROI, red) on the chest and subROI on the neck (green). The acquired
data is preprocessed and then transformed into a model. Optionally, patient data can be added to the
model. In a training session, the error is minimized with ground truth.

Boudarham et al. 2013 [30] determine the measuring signal by using a motion analysis
system (Motion Analysis, Santa Rosa, CA, USA). A linear regression function with slope
and intercept is used to transform the vital capacities into the target signal. The parameters
are collected on the basis of all measurement signals. Another OEP System is used by
Feitosa et al. 2019 [22], with BTS Bioengineering (Milanese, Italy) without any further
scaling, or with OptiTrack Prime 17W (NaturalPoint, Inc., Corvallis, OR, USA) [27].

Harte et al. 2016 [42] calibrated four cameras for synchronous image recording. Geo-
magic Studio 2012 software is used to extract a mesh, and afterwards, volumes from the
point clouds. The measurement signal is then further processed with cubic interpolation,
a Butterworth zero-phase fourth-order bandpass filter, and further down-sampling to
5 Hz. The slope and intercept of a transformation function are determined via total least
squares. In the work by Oh et al. 2019 [49], the target signal results from the summation
of the differences of successive images. Coefficients describe the relationship between
distance and actual pixel length. Ostadabass et al. 2016 [40] use linear scaling between the
measurement signal and the target as well. The coefficients result from a reference mea-
surement with ground truth volumes. It is assumed that the scaling coefficients for a given
subject are constant. Linear regression, using estimated tidal volume as a regressor and
ground truth tidal volume from spirometry as regressand is used by Imano et al. 2020 [55].
Another method for calibrating a linear transformation is used by Reyes et al. 2017 [36].
Indeed, 50% of the test points of each measurement are used for calibration randomly.

The approach of Soleimani and Sharp [37,48,57] is based on two scaling factors, which
are applied for the tidal volume on the one hand, but also separately for the vital capacity
determination on the other hand. A mesh is generated from the 3D point cloud of the
upper body and the enclosed volume is determined with respect to a planar reference
surface. Due to the scaling factors, the position of the reference surface is not important.
A fourth-order Butterworth filter is used to reduce the over-smooth of a moving average
filter. Further filtering with a cutoff frequency of 1 Hz for tidal volume and 3 Hz for
vital capacity is applied. Keypoints are extracted from the measurement signal, which
is aligned to the local minima and maxima of the measurement signal. In a training
phase, the ideal scaling factors are determined using a spirometer signal. In the test phase,
the scaling factors are chosen, so that the best-matching scaling factors with the least
error are selected from the training data. Training and testing of the scaling factors are
performed intra-subject-wise. With the use of a second camera, the measurement signal
is calculated as the difference between the measurement signal of the front camera and
the measurement signal of the rear camera. Thus, the entire upper body is viewed and
artifacts caused by movements are reduced [43]. Later, the authors use PCA for motion
artifact reduction. Hereby, a planar surface is projected onto the curved model of the thorax
and the volumes of equal-width compartments form the input vectors of the PCA. The
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principal component then corresponds to a motion-adjusted signal [38]. Empirical Mode
Decomposition (EMD) [58] can be used for detrending data [43].

Via a multiple regression test, Ripka et al. 2014 [21] found additional parameters to
transform the target variables. For measuring vital capacity, the height of the patient is
also given a linear scaling factor. Takamoto et al. 2020 [33] used multiple linear regression
as well and included somatotype data in addition to height and BMI. Machine learning
is used to infer scaling factors or directly to respiratory parameters based on extracted
time, frequency, and subject-specific features (age, height, weight, gender). After feature
selection, neural networks are used for regression [59].

3.8. Accuracy of the Measuring Methods

The accuracy of DPG methods is compared using gold-standard reference devices.
For this purpose, a spirometer is operated in addition to the non-contact measurement,
through which the patients breathe. If calibration of the model is needed, it can be realized
in several ways, for example, intra-individually with reference measurement of the same
subject or from a generalization of all subjects. When evaluating the results, a distinction
can be made between:

• None: no transformation of the measured data was performed,
• Whole: the model was created with the whole data set,
• Subject: the model uses recordings of the same subject or
• Measurement: the model uses test points of the same measurement.

Papers without a reference measurement device are not presented in this section. Only
papers that report their deviations for tidal volume and vital capacity are shown in Table 1.
For comparability, the results are given in mean ± standard deviation as far as possible.

Table 1. Comparison of results for measuring tidal volume (TV) and vital capacity (VC).

Paper Marker/
Direct Cameras Model Calibration Results for

Respiration Parameters
#Subjects
(Healthy)

[32] marker multiple linear whole VC:
mean: −20 ± 93 mL 20 (0)

[49] direct single linear none TV:
mean: 8.41% 10 (10)

[40] direct single linear none TV:
mean: 70 ± 60 mL 14 (14)

[36] direct single linear subject TV:
RMSE 182 ± 107 mL 15 (15)

[21] marker single linear whole VC:
mean: −30 ± 352 mL 50 (50)

[37] direct single linear whole VC:
mean: 16 ± 51 mL 100 (21)

[43] direct multiple linear subject
VC:
mean: −300 ± 561 mL
TV:
mean: 0 ± 204 mL

35 (35)

[57] direct single linear subject
VC:
mean: −150 ± 842 mL
TV:
mean: 100 ± 255 mL

35 (35)

[48] direct single linear meas.
VC:
mean: 9 ± 39 mL
TV:
mean: 74 ± 88 mL

40 (0)
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Table 1. Cont.

Paper Marker/
Direct Cameras Model Calibration Results for

Respiration Parameters
#Subjects
(Healthy)

[33] direct single linear none VC:
mean: 57 ± 716 mL 53 (21)

[51] direct single linear subject TV:
mean: −213 ± 85 mL 1 (1)

[52] direct single non-linear subject TV:
mean: 9.4 ± 8.4% 8 (8)

[60] direct single non-linear subject TV:
max: 7.8%, min: 5.81% 4 (4)

[55] direct single linear whole TV:
mean: 10.7% up to 15.5% 39 (39)

Boudarham et al. 2013 [32] studied 20 subjects, including myotonic dystrophy type I
(6 patients), diaphragmatic dysfunction (6), Pompe disease (5), spinal muscular atrophy (1),
mitochondrial myopathy (1), and Duchennne muscular dystrophy (1). The determination
of vital capacity with the OEP system shows a strong correlation (r2 = 0.99, p < 0.001).
The mean deviation is −20 mL, with limits of agreement at 163 mL and −203 mL. For all
subjects, the deviation of the mean is <15%. The linear regression line is fitted with all data.

In Harte et al. 2016 [42], the quantification of the system with four Kinect cameras is
carried out using a static evaluation and a dynamic evaluation. For a mannequin with a
reference volume of 22.75 L, an RMS error of 0.100 L is determined. There is a significant
correlation between the measurement signal with a spirometer signal (r2 = 0.99, p < 0.001)
for 22 patients. A comparison of respiratory parameters is not performed.

Oh et al. 2019 [49] present a system that does not require their own adaptation to the
ten healthy subjects. The level set method produces a mean error of 8.41 ± 2.16% of the
tidal volume, adjusted for two subjects with stronger outliers due to ventilation leak or
body movements. The patients received the air volume through a ventilator during the
measurements.

The determination of airway resistance by Ostadabass et al. 2016 [40] is performed us-
ing a Kincet camera to determine tidal volumes. There is a mean deviation of 0.07 ± 0.06 L
of tidal volume. The 14 subjects were asked not to move during breathing.

The use of a smartphone by Reyes et al. 2017 [36] allows a root mean square error
(RMSE) for the tidal volume of 0.182 ± 0.107 L. To calibrate the linear system, the data were
trained using a training dataset of the same subject.

The evaluation according to Ripka et al. 2014 [21] shows a mean error of −30 mL in
the lateral observation of the upper body by a camera. For this purpose, 50 healthy subjects
were tested and a linear model was set up based on all data.

Sharp et al. 2017 [37] report the mean error as well as the percentage of measure-
ments outside a range of ±150 mL on their system for forced vital capacity (19 mL, 0%
outside ± 150 mL) forced expiratory volume in one second (82 mL, 61.9%), vital capacity
(16 mL, 4.8%), and inspiratory capacity (23 mL, 6.0%). For this purpose, 100 subjects
including COPD and asthma were tested with the single camera system. Using distinctive
features from the signal, the volume-time signal is linearly regressively approximated.
Such signal features include the extreme points of the measurement signal. Patients are
encouraged not to move.

Soleimani et al. 2018 [43] compare a multiple-camera approach with a single-camera
method. Mean and standard deviation are reported for forced vital capacity measurements
and slow vital capacity measurements. Mean ± standard deviation is thus reported for
vital capacity (−300 ± 561 mL), and tidal volume (0 ± 204 mL), among others, with the
addition of one more camera, significantly reducing the error in each case. As in other
measurements of Soleimani, the calibration of the system is done via leave-one-out cross-
validation (LOOCV) using measurements of the same subject. Adding suppression of
active body movements during breathing can further reduce the error [38]. However, the
error values given are normalized and thus not directly comparable with other methods.
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The other datasets [48,57] of this working group restricted the active movement of the
patient during the respiratory recordings, so that fewer errors occur [43].

The respiratory volume determination system by Takamoto et al. 2020 [33] requires
patient height and BMI in real-world use. The goal of detecting COPD via VC and FEV1 is
achieved with 81% sensitivity and 90% specificity. The errors in the determination of VC
and FEV1 were repeated in a further measurement to check reproducibility.

Due to the sudden COVID-19 outbreak and subsequent restrictions, a study by Ad-
dison et al. 2021 [51] had to be stopped prematurely. Results with only one subject show
a mean deviation of −213 ± 85 mL. Parallel results of respiration rate determination are
significantly below with an RMSD of 0.5 breaths/min.

Two SROIs are combined with each other in Seppanen et al. 2015 [52]. Via least-squares
FIR filter coefficients are determined in a test measurement, which processes the measure-
ment signal of the SROIs non-linearly to the target signal. An absolute measurement error
of 9.4 ± 8.4% is specified.

Transue et al. 2016 [60] propose a model based on iso-surface reconstruction. The
chest motion is considered omni-directional and a 3D-model is created via surface-hole
filling. Using a Bayesian neural network and the volume change of the 3D-model as input,
the respiration volume is approximated. The deviations from the spirometer signal are
given with a maximum of 7.8%. The accuracy is derived from a separate test data set. The
training data set contains data from all four subjects.

A non-contact system, proposed by Imano et al. 2020 [55] was tested on 39 elderly
people. A comparison was made between clothed and unclothed subjects, and men
and women, with mean absolute relative errors ranging from 10.7% to 15.5%. After an
individual, automatic ROI selection, tidal volume is determined via linear regression.

4. Discussion
4.1. ROI-Selection

When considering ROI, breathing mechanics play a critical role. The expansion of the
thorax occurs in the vertical, transverse and sagital directions [61]. Thereby, the expansion
in the anteroposterior direction is the largest and the contribution to the total change of the
thoracic volume is the strongest.

In addition to thoracic movement, abdominal movement may be of greater impor-
tance, particularly in abdominal breathing. However, Kempfle et al. 2021 [41] show that
the chest is the best region to extract respiratory signals and the abdominal region has the
lowest signal quality for respiration rate determination with a depth camera. Differences
in the interaction of the compartments may be due to different conditions. For example,
differences were found in swimmers [26] and dancers [27] compared to untrained compar-
ison subjects. Furthermore, there are different data on significant respiratory mechanics
between the sexes. Some studies [62–64] found significant differences in thoracoabdominal
movements, while other studies found no such differences [27,65]. Pathologic changes may
also lead to changes in respiratory mechanics, as in spinal abnormalities [37] or partial lung
defects [20], which may affect symmetry and patterns of breathing. A difference in lung
function between the diseased and contralateral sides of the thorax after thoracotomy can
be visualized by DPG as shown by Yu et al. 2012 [53].

Thus, it is shown that the subdivision of the chest into different subregions has
diagnostic utility for respiratory assessment. Such subdivisions are obtained by marker
positions or chest models that are manually placed in the image. However, for ease
and speed of DPG-measurement, there is a need to perform automated selection and
discrimination of subregions. This can be done using methods that are already used to
determine the ROI itself. A subdivision into SROIs based on anatomy is possible, for
example, by results of a skeletonization or body contour, as a first approach shown by [55].
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4.2. Signal Reconstruction

Artifacts and disturbances that can couple into the measurement signal are caused by
wrinkled clothing, additive overlapping movements, and uncovered areas that contribute
to breathing. Wrinkled clothing creates additional volumes. For this reason, subjects
are asked to completely avoid clothing on the upper body [28,42] or to use tight-fitting
clothing [40]. Other wrinkles that may occur and lead to irregularities are eliminated by
signal filtering, such as Butterworth filtering [66].

Trunk movements result from (1) a backward movement at the onset of deep inhalation,
(2) a forward movement in the middle and after strong expiration [66]. The effects of motion
artifacts are reported in [36,38,40,42,43,48,49,55]. The reduction of upper body motion can
be counteracted by using multiple cameras, as shown by [38]. Thus, it is possible to view
the upper body completely. A differentiation into involuntary movements is not necessary,
the volume calculation is done with the entire upper body. Otherwise, measurements
with strong motion artifacts can be removed manually [21] or via PCA [38]. Under the
assumption that the shoulders do not interfere with the movement process of the upper
body, a plane reference surface, through shoulders and hips, could be another method
to reduce the disturbances due to movement. Such a surface could be determined, for
example, by skeletal joints and greatly improve the signal quality in systems with only
one camera.

As described in the previous section, different regions are also shown to have dif-
ferent contributions to respiratory mechanics. However, this is not addressed by using a
single depth average over an ROI. Including additional SROIs can thus potentially further
improve the measurement signal, especially if the concatenation of contributions from
these compartments is non-linear–as indicated by the success of a PCA [38]. However, the
assumption of almost all reviewed papers is a linear relationship between measured signal
(volume of the upper body) with ground truth signal (volume of the lungs).

It can be seen that other personal characteristics correlate strongly with respiratory
volumes, such as age [67], height [68] and weight [69], while a direct influence of gender
is controversial and can be attributed to the before mentioned parameters [70]. Such
demographic details seem to describe 50% of the variance factor of the scaling factor for
linear regression [37]. These influencing factors can thus potentially also improve a DPG
measurement [21,33,59].

Modeling the chest as mesh and total volume is contrasted with methods that use
depth averages in the ROI as the measurement signal. Methods for 3D-model generation
are much more computationally intensive, for example, the calculation of a respiratory cycle
in Oh et al. 2019 takes about 10 minutes [49]. The averaging method is less computationally
intensive and thus more suitable for potential real-world use [33]. It was shown that chest
averaging is not inferior to 3D chest modelling [57]. To determine respiratory rate, different
models were compared in Kempfle et al. 2021 [41]: a PCA-based model of uniformly
distributed points in the ROI, mean and median from the ROI (raw), and mean and median
from the ROI minus a reference area on the neck to suppress motion (diff), and a model [71]
for detection and recovery of occluded regions (model). These different methods are shown
in Figure 7. Their own model showed the best results regarding signal quality, but needs
more computational time. In a sitting scenario without motion, non-diff-based methods
show similar results as diff-based methods. For extracting the breathing signal, the median
has been shown to be superior to using the mean. The examinations refer to normal
breathing without deep breathing for the determination of vital capacity.
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Figure 7. Comparison of six different methods for determining respiration rate. Principal component
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It turns out that the arbitrary movement of the upper body acts as the largest source
of interference. While prohibiting movement is one approach, allowing free breathing and
algorithmically eliminating movement interference would be beneficial for the real-world
use of DPG. Especially when using only one camera, such filtering is made more difficult.
Reference surfaces can take on a more apparent role in the future. At the same time, the use
of non-linear models and multiple SROIs may also lead to a general improvement in the
determination of respiration parameters. As shown, patient characteristics are related to
the measured values.

4.3. Measurement Evaluation

To determine whether a system is applicable in practice or not, an error to a reference
gauge is calculated. In the investigated studies, a spirometer always represented the
ground truth signal, which can be adjusted for its time delay via cross-correlation with
the measurement signal. Subsequently, an error value determination can be made via
differences in the signal, or, as analysed in this review, via the respiratory parameters
calculated from the signals. Spirometers themselves may have a maximum error of ± 2.5%
according to the guidelines of the American Thoracic Society and European Respiratory
Society [9]. However, such accuracy cannot be expected for a contactless system, as shown
in the following.

The results of the methods in Section 3.8 already show acceptable results. However,
the measurement situation and the recording conditions must be considered. Multiple
camera systems and measurement methods, which must first be calibrated by a spirometer,
do not correspond to the desired advantages of an uncomplicated, compact measurement.
The same applies if the patient has to consciously suppress his movement, this no longer
corresponds to the advantage of free breathing. There have been few satisfactory results in
this area up to date.

In particular, calibration of a subject is necessary for most works. A linear model
is mostly used for transforming the measured signal. This review was related to the
measurement of respiratory volumes such as tidal volume and vital capacity, whereas other
parameters such as FEV1 are equally of clinical interest. It can be seen that the simultaneous
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measurement of several such respiratory parameters is more challenging for a measurement
system and yielding to greater errors. For an evaluation of a real application scenario, the
model should not be created on the same data as it is being evaluated. Thus, the separation
into training and test data is suitable, whereby at least the measurements of one person are
separated from each other. If you want to test whether a calibration with a spirometer is
necessary, Leave-One-Out-Cross-Validation should be used [72]. In this case, one subject
corresponds to the test data set, while the model is created with the other subjects. The test
subject alternates.

The goal of the DPG measurement method should be that it can be used calibration-
free and without restriction in movement. When a system is used with new, unknown
subjects, the same measurement results cannot be expected if the model was evaluated in
advance using only known data. For this reason, future developments should consider
withholding single subjects or performing LOOCV to evaluate their model and verify that
the model can be applied calibration-free to new subjects.

5. Conclusions

Depth-based plethysmography (DPG) is a relatively new method, for determining
respiratory parameters. As a potential mobile and low-cost system, DPG is suitable to
measure respiratory parameters such as respiratory rate, tidal volume, and vital capacity
without contact. Natural respiration is not affected and respiratory mechanics on the upper
body can be visualized by DPG.

DPG can be divided into marker-based methods and direct depth estimation methods.
Furthermore, it can be distinguished whether a single-camera system or a multiple-camera
system is used. A common application scenario is in a standing, sitting, or lying position
1–2 m from the camera. In sitting and lying positions, upper body movements are sup-
pressed, which superimposes the breathing movements. A restriction to tight-fitting
clothing to reduce wrinkle impact is suggested. Depending on the procedure, a TOF or SL
camera system should be selected.

The first step in measuring respiratory parameters is to select a region of interest.
The selection of multiple regions is important in representing the contribution to the total
volume and in evaluating diseases. The selection of an ROI can be based on skeletal joints or
on body models, spatial or temporal information. Further processing of the measurement
signals can be done using computationally intensive models, but in practical use, these
are not superior to simple mean or median calculations. Especially for the filtering of
superposed motion data, further signal processing steps are necessary. Possibilities are
to use reference areas that are not affected by these movements or principle component
decomposition and general monitoring with multiple cameras. In order to finally deduce
the respiratory volume from the measured signal, a transformation of the measured signal
is required. This is usually done using linear scaling functions. It has been shown that
somatotype factors also have an influence. In the future, nonlinear models and machine
learning can be used to approximate respiratory parameters using measurement signals
from several regions and other patient-specific features. An evaluation of such models
should be done using leave-one-subject-out cross-validation, so that the independence of
the calibration of the model for the individual subject can be shown. Today’s systems show
that they already achieve acceptable results with such a calibration or multiple cameras.
However, to fully exploit the capabilities and advantages of DPG, future models must be
designed as calibration-free, single-camera systems.
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