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Abstract: During acquisition, storage, and transmission, the quality of digital videos degrades
significantly. Low-quality videos lead to the failure of many computer vision applications, such as
object tracking or detection, intelligent surveillance, etc. Over the years, many different features
have been developed to resolve the problem of no-reference video quality assessment (NR-VQA). In
this paper, we propose a novel NR-VQA algorithm that integrates the fusion of temporal statistics
of local and global image features with an ensemble learning framework in a single architecture.
Namely, the temporal statistics of global features reflect all parts of the video frames, while the
temporal statistics of local features reflect the details. Specifically, we apply a broad spectrum of
statistics of local and global features to characterize the variety of possible video distortions. In order
to study the effectiveness of the method introduced in this paper, we conducted experiments on two
large benchmark databases, i.e., KoNViD-1k and LIVE VQC, which contain authentic distortions,
and we compared it to 14 other well-known NR-VQA algorithms. The experimental results show
that the proposed method is able to achieve greatly improved results on the considered benchmark
datasets. Namely, the proposed method exhibits significant progress in performance over other recent
NR-VQA approaches.

Keywords: no-reference video quality assessment; quality-aware features; multi-feature fusion

1. Introduction

The recent rise in video-driven data consumption has presented manufacturers and
telecommunications service providers with the problem of providing improved video
services [1]. Further, it has also created a compelling necessity to monitor and regulate video
quality [2]. As a consequence, video quality assessment (VQA) has received more and more
attention from both academia [3] and industry [4]. In numerous video processing activities,
including video capture, compression, and transport, VQA—which seeks to anticipate
the perceived quality of a video—is still a challenging task. Similarly to image quality
assessment (IQA), VQA is also divided into two groups, i.e., subjective and objective, in
the literature [5]. Subjective VQA involves laboratory and crowdsourcing experiments [6]
for collecting quality ratings from human observers by presenting them with various
video sequences. Further, objective VQA deals with mathematical and computational
models that are able to predict digital videos’ perceptual quality consistently with human
quality perception. Although subjective VQA is more reliable than objective VQA, since
it collects quality ratings directly from humans, at the same time, it is expensive and
time-consuming [7]. This is why it cannot be applied in real-time systems, and objective
VQA is a hot research topic. Traditionally, objective VQA methods are further divided
in the literature depending on the availability of the reference pristine (distortion-free)
videos [8]. Specifically, no-reference (NR) VQA methods have no access to the reference
methods, while full-reference (FR) VQA methods have complete access to them. Reduced-
reference (RR) VQA methods have partial information about the reference videos. In
practice, NR-VQA is highly demanded, since reference videos are unavailable in many
real-world applications [9].
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Researchers of visual physiology have demonstrated that the human visual system
(HVS) tends to produce an unconscious global impression about a scene [10]. Next, the
HVS focuses on the local details step by step [11–13]. The main contributions of this study
are as follows. Based on the previous point, we extract the temporal statistics of both local
and global image features for NR-VQA. Namely, the temporal statistics of global features
reflect all parts of the video frames, while the temporal statistics of local features reflect
the details. Inspired by our previous work [14], we adapt the statistics of local feature
descriptors extracted from filtered images for NR-VQA to compile video-level local feature
vectors. Namely, several HVS-inspired filters, i.e., Bilaplacian, high-boost, and derivative
filters, were introduced to enhance the statistical regularities of an image that influence
human quality perception. Specifically, these HVS-inspired filters were first applied over
the color channels of a video frame. Next, the statistics of FAST (features from accelerated
segment test) [15] feature descriptors were used to compile frame-level features. Video-
level features were obtained through the temporal pooling of frame-level features. Further,
we propose an ensemble learning framework to integrate the predicted quality scores of
several machine learning techniques for efficient quality estimation. Due to the previously
mentioned innovations, our experimental results demonstrate that the performance of the
proposed method surpasses that of other recently published NR-VQA methods on two
large VQA benchmark databases, i.e., KoNViD-1k [16] and LIVE VQC [17], which contain
authentically distorted video sequences.

The following is the paper’s flow. Section 2 reviews related and previous work.
The proposed method is discussed in Section 3. Subsequently, Section 4 describes our
experimental results and a comparison with the state of the art. Our conclusion is in
Section 5.

2. Literature Review

Recent NR-VQA techniques can be classified into two broad categories: (i) those that
only take into account spatial image-level characteristics and (ii) those that also take into
account the temporal information between a video’s frames [18]. Further, the majority of
many modern NR-VQA methods apply some kind of machine or deep learning technique.

Image-based NR-VQA techniques borrow many ideas from NR-IQA and analyze the
natural scene statistics (NSS) for quality prediction. The assumption behind NSS is that
natural scenes follow certain statistical regularities that are distorted in the presence of
image noise [19]. In the case of video data, many NSS-based algorithms independently
measure frame-by-frame deviations from the “natural” statistics [20–22]. In [23], five
simple perceptual features (blurriness, contrast, colorfulness, spatial information, temporal
information) were determined frame by frame and temporally pooled to construct a video-
level feature vector, which was mapped onto perceptual quality scores with a trained
support vector regressor (SVR) [24]. Other approaches also took temporal information
into consideration in addition to temporal pooling [25]. For instance, the image-based
metric was developed further by V-BLIINDS [26], which incorporated time–frequency and
temporal motion information as well. In contrast, Yan et al. [27] extracted features, i.e.,
moments of feature maps, gradient magnitudes’ joint distributions, filtering responses
of Laplacians of a Gaussian, and motion energy, from multi-directional spatiotemporal
slices and mapped them onto quality scores with either a shallow neural network or an
SVR. Similarly, Lemesle et al. [28] combined frame-level and video-level features for
NR-VQA. After testing a wide combination of features, the authors concluded that the
histogram of oriented gradients [29], edge information, fast Fourier transform [30], blur,
contrast, freeze, and temporal-information-based features were the most informative ones
for predicting video quality without a reference. Instead of perceptual features, Wang and
Li [31] devised a statistical model for the speed perception of the human visual system,
which was utilized for the estimation of motion information and perceptual uncertainty.
Contrarily, Hosu et al. [16] introduced several video-level perceptual features and mapped
them onto perceptual quality scores with the help of an SVR [24].
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Deep learning has recently been utilized for NR-VQA. One of the first methods
utilizing deep learning was SACONVA [32], which extracted feature vectors from video
data via a 3D shearlet transform [33]. Next, these features were mapped onto quality
scores using logistic regression and a convolutional neural network (CNN). In contrast,
Wang et al. [34] combined deep spatial and temporal features for perceptual quality
prediction. Specifically, spatial features were obtained through the pooling of a CNN’s
activations. Further, the standard deviations of motion vectors were considered as temporal
features. Next, two predictions were obtained from these two sets of features, and they were
combined by using a Bayes classifier for video quality prediction. Agarla [35] proposed an
approach in which the image quality attributes, i.e., sharpness, graininess, lightness, and
color saturation, of video frames were estimated first by using the deep features of a CNN.
Based on these attributes, frame-level quality scores were estimated. Finally, a recurrent
neural network was trained for video quality estimation by using the previously predicted
frame-level scores as training data. The two-level video quality model (TVLQM) proposed
by Korhonen [36] first computed low-complexity features from the entire video sequence
before the extraction of high-complexity features. Further, the author fused traditional
hand-crafted temporal features with deep features extracted from a CNN, which was
trained to predict digital images’ perceptual quality. Similarly, Agarla et al. [37] extracted
frame-level quality-aware features by using pretrained CNNs, but they introduced a
temporal modeling block containing a recurrent neural network (RNN) [38] and a temporal
hysteresis pooling for quality prediction. Chen et al. [39] also applied RNNs for NR-VQA.
To be more specific, this method consisted of two steps: (i) learning of quality degradation
and (ii) modeling of motion effects. Similarly to the previously mentioned algorithms, the
authors used CNNs for deep feature extraction. Further, a hierarchical temporal model that
included an RNN was introduced for temporal down-sampling and gathering of motion
information. Li et al. [40] took a similar approach, but they used a gated recurrent unit
(GRU) [41] that was trained on the deep features extracted from a ResNet [42] network for
perceptual quality estimation. This method was further improved by Zhang and Wang [43]
provided texture features aside from deep features. In contrast, Chen et al. [39] extracted
motion information from different temporal frequencies and trained a hierarchical recurrent
network for video quality estimation. Contrary to the previously mentioned approaches,
Li et al. [44] experimented with the idea of a mixed-dataset training strategy to improve
the performance of NR-VQA by increasing the size of the training database and to boost
the generalization capability of the implemented model. Further, this model was trained
by two different loss functions, i.e., monotonicity- and linearity-induced loss. In [45], the
authors first implemented a visual attention module that obtained frame-level perceptual
quality scores. Next, video quality predictions were obtained with the help of a structure
imitating human visual and memory attention.

3. Proposed Method

The training and testing processes of the proposed method are summarized in
Figures 1 and 2. In the training stage, the statistics of local and global image features
were extracted from each frame of a video sequence found in the training database. Subse-
quently, these image statistics were temporally pooled together to compile a quality-aware
feature vector that characterized a given video. Based on the extracted video-level fea-
ture vectors, several different machine learning models, i.e., a generalized additive model
(GAM) [46], an LSBoost algorithm [47], a Gaussian process regressor (GPR) [48] with ratio-
nal quadratic kernel function, a neural network (NN) with one hidden layer containing
10 neurons [49], an SVR with a radial basis function (RBF) [24], a binary decision tree
(BDT) [50], and an extra tree (ET) [51], were trained for perceptual quality estimation. In
the testing stage, these trained models were used to generate quality scores for a previously
unseen video. The final quality score was obtained by taking the arithmetic mean of the
models’ scores. In Sections 3.1 and 3.2, the processes of the extraction of global and local
features are given. Further, in an ablation study (Section 4.2), we provide proof that the pro-
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posed ensemble framework results in improved performance compared to the performance
of the individual regressors.

Figure 1. Training process of the proposed method. Video-level feature vectors are obtained from
labeled training videos through the temporal pooling of local and global image statistics. Next,
several regressors are trained.

Figure 2. Testing of the proposed method. Video-level feature vectors are extracted from a test video
through the temporal pooling of local and global image statistics. The scores of the trained regressors
are fused together via average pooling to get an estimation of the perceptual quality.

3.1. Global Features

Many quality-aware features that characterize an image globally have been proposed
in the literature in recent decades [52]. Due to their low computational complexities,
BRISQUE [21], OG-IQA [53], SSEQ [54], and GM-LOG-BIQA [55] were utilized to compile
video-level features through temporal pooling of their statistics. Specifically, BRISQUE [21]
extracts features in the spatial domain. First of all, the mean subtracted normalized coeffi-
cient of an image is determined. Next, an asymmetric generalized Gaussian distribution
(AGGD) is fitted to these coefficients. The parameters of the AGGD were considered
quality-aware features. In contrast, OG-IQA [53] uses the variances in gradient magnitude,
gradient orientation, and relative gradient magnitude maps as a feature vector. SSEQ [54]
utilizes the spatial and spectral (discrete cosine transform coefficients) entropies of an
image. GM-LOG-BIQA [55] compiles the joint distribution of the gradient magnitude
and Laplacian features for quality-aware feature extraction. To define a global video-level
feature vector, the previously mentioned quality-aware features were first determined
for each video frame. Next, several well-known statistics, i.e., mean, median, standard
deviation, entropy, skewness, and kurtosis, were extracted from a frame-level quality-aware
feature. The arithmetic means of these statistics over time were considered as the video-
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level quality-aware features. As a result, a vector with a length of 24 could be obtained for
a single video sequence.

To boost the performance of the applied global features, the following set of perceptual
features was also incorporated into our model.

1. Blur: This refers to the parts of an image that are out of focus. With too much blur,
edges are no longer distinct. As a consequence, the amount of blur is an important
element of human perceptual judgment. Due to its low computational complexity,
the metric of Crété-Roffet et al. [56] was chosen in our model for the characterization
of the amount of blur in a video frame. A video sequence’s blur was defined as the
average of all video frames’ blur.

2. Colorfulness (CF): This is a characteristic of human visual perception that describes
whether an image or image area seems to be more or less chromatic [57]. In [58], it
was pointed out that humans tend to have a tendency toward more colorful scenes.
In our model, we adopted the definition of colorfulness for a video frame proposed
by Hasler and Suesstrunk [59]:

CF =
√

σ2
rg + σ2

yb +
3

10

√
µ2

rg + µ2
yb, (1)

where rg = R − G and yb = 1
2 (R + G) − B. Further, R, G, and B denote the red,

green, and blue color channels, respectively. The variables of µ and σ stand for the
means and standard deviations of the matrices given in the subscripts, respectively.
A video sequence’s colorfulness was considered as the average of all video frames’
colorfulness.

3. Vividness was suggested as a color attribute by Berns [60], and it describes the degree
of departure of the color from a neutral black color. Berns’ model can be expressed by
the following formula:

VB =
√
(L∗)2 + (a∗)2 + (b∗)2, (2)

where L∗, a∗, and b∗ correspond to the color channels’ values in the CIELAB color
space [60,61]. In this study, the vividness of an image was defined by the average of
all VB values calculated from CIELAB’s channels. As a quality-aware feature for a
video sequence, the average of all video frames’ vividness was taken.

4. The heaviness of a given color is also expressed with the help of the CIELAB space
[62,63]:

H = 3.8− 0.07 · L∗. (3)

In this study, the heaviness of an image was defined by the average of all H values
calculated from CIELAB’s channels. As a quality-aware feature for a video sequence,
the average of all video frames’ heaviness was taken.

5. Depth is also a color attribute, but it characterizes the degree of departure of a given
color from a neutral white color, and in Berns’ model [60], it is formally given as:

DB =
√
(100− L∗)2 + (a∗)2 + (b∗)2. (4)

In this study, the depth of an image was defined by the average of all DB values
calculated from CIELAB’s channels. As a quality-aware feature for a video sequence,
the average of all video frames’ depth was taken.

6. The spatial information (SI) of a video frame is defined with the help of the non-
maximum suppression (NMS) [64,65] algorithm. Namely, a video frame is charac-
terized as the number of detected local extrema using three different T thresholds
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(T = 1, T = 15, and T = 30 were considered in this study). More specifically, the
filtered video frame in which NMS is carried out is defined as follows:

F(x, y, T) =


1, if ∀(x,y) I(x, y) > I(x + i, y + j) + T,
1, else if ∀(x,y) I(x, y) < I(x + i, y + j)− T,
0, otherwise

(5)

where I(x, y) represents the value of pixel intensities at location (x, y). Further,
(i, j) ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)}. In other words, the 3× 3 neighborhood around
(x, y) is considered. The SI of a video frame was defined as the entropy of the de-
tected extremes’ pixel intensities by using the three different previously mentioned
thresholds. As a quality-aware feature for a video sequence, the average of all frames’
SI was utilized.

7. Temporal information was defined by using the difference between two consecutive
video frames. Namely, the standard deviations of all difference maps were determined,
and their arithmetic mean was considered as a video-level quality-aware feature.

8. The color gradient magnitude (CGM) map of an RGB digital image is defined as

CGM(x) = ∑
c∈(R,G,B)

√
(Ic

x(x))2 + (Ic
y(x))2, (6)

where the approximate directional derivatives of I(x) in the horizontal and vertical
directions are denoted by Ix(x) and Iy(x), respectively. A video frame was character-
ized by the mean of its CGM, while the average of all video frames’ CGM means was
considered as a quality-aware feature for a video sequence.

9. In addition to the mean of the CGM, the standard deviation of the CGM is also
considered a quality-aware feature for a single video frame. As in the previous point,
the average of all video frames’ standard deviation was used to characterize the whole
video sequence.

10. Sharpness determines the amount of detail in an image. It is most visible in image
edges, and many approaches measure it with the step response. In our model, we
estimated the sharpness of a video frame by using image gradients. Namely, the
gradient magnitude map (G) was calculated as

G =
√
(Gx ∗ I)2 + (Gy ∗ I)2, (7)

where Gx and Gy are horizontal and vertical Sobel operators, respectively. Further,
I denotes an input grayscale image and ∗ stands for the convolution operator. The
sharpness of image I is defined as the average value of the gradient magnitude map.

11. Michelson contrast: By definition, contrast corresponds to the difference in luminance
that makes an object noticeable in an image [66]. Humans tend to appreciate images
with higher contrast, since they can better distinguish between differences in intensity.
In our model, we incorporated two different quantizations of contrast, i.e., Michelson
and root mean square (RMS) contrast. The Michelson contrast of a still image is
determined as follows:

CMichelson =
Imax − Imin
Imax + Imin

, (8)

where Imax and Imin stand for the highest and lowest luminance, respectively. As
a video perceptual feature, the average of all video frames’ Michelson contrast
was taken.

12. The RMS contrast of image with size M× N corresponds to the standard deviation of
intensities [67]:

CRMS =

√√√√ 1
M · N

N−1

∑
i=0

M−1

∑
j=0

(Ii,j − Ī)2, (9)



Sensors 2022, 22, 9696 7 of 21

where Ii,j denotes the intensity value at pixel position (i, j). Further, Ī stands for the
arithmetic mean of all intensities. As a video perceptual feature, the average of all
video frames’ RMS contrast was taken.

13. The mean of an image gives the contribution sof individual pixel intensities for the
entire image. Further, the mean is inversely proportional to the haze. In our study, the
average of all video frames was considered as a quality-aware feature.

14. Entropy: This can be viewed as a measure of disorder in a digital image, and at
the same time, it is a statistical feature that gives information about the average
information content of an image [54]. Further, entropy tends to increase in an image
as the intensity of noise or degradation levels increase [68]. An 8-bit-depth grayscale
image’s entropy (E) can be given as

E = −
255

∑
n=0

p(n) · log2(p(n)), (10)

where p(·) corresponds to the image’s normalized histogram count. In our model, a video
sequence’s entropy corresponds to the arithmetic mean of all video frames’ entropy.

15. A perception-based image quality evaluator (PIQE) [69] is an opinion-unaware im-
age quality estimator that does not require any training data. Further, it estimates
perceptual quality only from salient image regions. First, an input image is divided
into non-overlapping 16 × 16-sized blocks. The identification of salient blocks is
carried out with the help of mean subtracted contrast normalized (MSCN) coefficients.
Moreover, noise and artifact quantization are also carried out with MSCN coefficients.
In our study, the average of all video frames’ PIQE metrics was considered as a
quality-aware feature.

16. The naturalness image quality evaluator (NIQE) [20] is also an opinion-unaware image
quality estimator that needs no training data. Namely, it quantifies image quality
as the distance between the NSS features of an input image and the NSS features of
a model that was obtained from pristine (distortion-free) images. The applied NSS
features are modeled as multidimensional Gaussian distributions. In our study, the
average of all video frames’ NIQE metrics was considered as a quality-aware feature.

3.2. Local Features

In our previous work, we empirically proved that the statistics of local feature de-
scriptors are quality-aware features [14]. Further, if we apply certain human visual system
(HVS)-inspired filters, dense feature vectors can be obtained. Influenced by our previous
work, the following HVS-inspired image filters were applied: Bilaplacian filters, high-boost
filters, and derivative filters. To be more specific, the Bilaplacian filters were motivated
by the papers of Ghosh et al. [70,71], who demonstrated that the behavior of retinal gan-
glion cells’ extended classical receptive field can be described by a combination of three
zero-mean Gaussians at three different scales, which corresponds to the Bilaplacian of the
Gaussian filter. Similarly to our previous work, the following Laplacian kernels are taken
into consideration:

L1 =

0 1 0
1 −4 1
0 1 0

, L2 =

 1 −2 1
−2 4 −2
1 −2 1

, L3 =

1 0 1
0 −4 0
1 0 1

, (11)

L4 =

−2 1 −2
1 4 1
−2 1 −2

, L5 =

−1 −1 −1
−1 8 −1
−1 −1 −1

. (12)

As the terminology indicates, a Bilaplacian kernel can be obtained through the convo-
lution of two Laplacian kernels:

L2
ij = Li ∗ Lj, (13)
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where the convolution operator is denoted by ∗. As in our previous study, L2
11, L2

22, L2
33, L2

44,
L2

55, L2
13, and L2

24 Bilaplacian kernels were applied.
High-boost filtering was motivated by the property of the HVS that it is sensitive to

the high-frequency regions of a natural scene [72]. In this paper, the following kernel was
used:

H =

−1 −1 −1
−1 9 −1
−1 −1 −1

. (14)

Since image distortions can occur at different scales, this filter was used 4 times in succession.
Derivative filters for visual quality assessment were used first by Li et al. [73], since

statistical regularities of a natural scene could be extracted by them. In our study, the
following convolution of two derivative kernels was applied:

D1 =

−1 1 −1
1 0 1
−1 1 −1

 ∗
 1 −1 1
−1 0 −1
1 −1 1

. (15)

Since image distortions can occur at various scales of an image, D2, D3, D4, and D5 in
sizes of 5× 5, 7× 7, 11× 11, and 13× 13 were also applied.

Using the previously described filters, the following set of kernels can be defined:

S = {L2
11, L2

22, L2
33, L2

44, L2
55, L2

13, L2
24, H, H2, H3, H4, D1, D2, D3, D4, D5}. (16)

All of the elements of the set defined by Equation (16) were applied to the Y, Cb, and
Cr channels of an input RGB frame. The conversion from RGB to YCbCr color space could
be performed by the following matrix equation [74]: Y

Cb
Cr

 =

 0.2568 0.5041 0.0979
−0.1482 −0.2910 0.4392
0.4392 −0.3678 −0.0714

R
G
B

. (17)

As a result, 3× 7 = 21 Bilaplacian, 3× 4 = 12 high-boost, and 3× 5 = 15 derivative
feature maps could be obtained from an input video frame. Next, FAST keypoints [15]
were detected on all feature maps. Further, all keypoints were described by their 5× 5
neighborhood. Each keypoint was described by a feature vector that consisted of the
mean, median, standard deviation, skewness, and kurtosis of the grayscale values found
in the 5× 5 neighborhood. The feature vectors that characterized a feature map were
obtained by concatenating the keypoints’ feature vectors. In our implementation, we set the
number of keypoints to 50, since over this value, we did not experience any improvement
in the performance on the KoNViD-1k [16] VQA benchmark database. As a result, a
3× 7× 50× 5 = 5250 length feature vector from the Bilaplacian maps, 3× 4× 50× 5 = 3000
length feature vector from the high-boost maps, and 3× 5× 50× 5 = 3750 length feature
vector from the derivative maps could be obtained. Similarly to the previously described
global features, several statistics, i.e., mean, median, standard deviation, entropy, skewness,
and kurtosis, were obtained from them to create a frame-level quality-aware feature. The
arithmetic means of these statistics over time were considered as video-level quality-aware
feature vectors. As a results, a vector of length 18 could be obtained for a single video
sequence.

For an overview, we have provided a summary of the features introduced in our
method in Table 1.
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Table 1. Description of features introduced in our method.

Feature Index Description

f1–f6 Temporally pooled BRISQUE [21] statistics
f7–f12 Temporally pooled OG-IQA [53] statistics

f13–f18 Temporally pooled SSEQ [54] statistics
f19–f24 Temporally pooled GM-LOG-BIQA [55] statistics
f25–f40 Perceptual features

f41–f46 Temporally pooled Bilaplacian features’ statistics
f47–f52 Temporally pooled high-boost features’ statistics
f53–f58 Temporally pooled derivative features’ statistics

4. Results

In this section, our experimental results are summarized. First, descriptions of the
applied datasets and the evaluation protocol are given in Section 4.1. Next, a parameter
study is used to justify the design choices of the proposed method in Section 4.2. Finally,
the results of a comparison with the state-of-the-art methods are given in Section 4.3.

4.1. Datasets and Protocol

Experimental results and comparisons are presented on two large VQA databases that
include digital videos with authentic distortions, i.e., KoNViD-1k [16] and LIVE VQC [17].
Hosu et al. [16] collected the 1200 videos found in KoNViD-1k [16] with an average length
of 8 s from the YFCC100M database [75] with respect to several quality attributes, such as
blur, colorfulness, contrast, spatial information, temporal information, and the numerical
results of a natural image quality evaluator [20]. Quality scores for the selected videos were
gathered in a crowdsourcing experiment involving 642 crowd workers from 64 countries.
Further, quality scores were in the range of [1.0, 5.0], where 1.0 denotes the lowest perceptual
quality, while 5.0 is consistent with the highest perceptual quality. Unlike KoNViD-1k [16],
LIVE VQC [17] includes 585 individual video sequences with an average length of 10 s,
and the quality labels are in the range of [0.0, 100.0]. The evaluation of the videos was also
carried out in a crowdsourcing process with 4776 unique observers. Figure 3 depicts the
empirical distributions of quality scores in the databases that were used.

(a) (b)

Figure 3. The empirical distributions of quality scores in the applied benchmark databases:
(a) KoNViD-1k [16], (b) LIVE VQC [17]. The quality scores range from 1.0 to 5.0 in KoNViD-1k [16]
and from 0.0 to 100.0 in LIVE VQC [17].



Sensors 2022, 22, 9696 10 of 21

As recommended in the literature, a learning-based NR-VQA algorithm was trained
on approximately 80% of the videos, and it was tested on the remaining 20% [76]. The
performance of an NR-VQA method is characterized by the correlation strength between
the predicted and ground-truth quality scores measured on the test set. To this end,
Pearson’s linear correlation coefficient (PLCC) and Spearman’s rank order correlation
coefficient (SROCC) are recommended. Following the guidelines of the Video Quality
Expert Group [77], scaling and nonlinearity effects between predicted and ground-truth
scores were adjusted by a nonlinear transform before the calculation of the PLCC. For the
nonlinear regression of scores, the following function was adopted:

f (x) = γ1

(
1
2
− 1

1 + exp(γ2(x− γ3))

)
+ γ4x + γ5, (18)

where γi (i = 1, · · · , 5) are the parameters to be fitted. The equations of the applied
performance metrics are as follows:

PLCC =
∑N

i=1(pi − p̄)(mi − m̄)√
∑N

i=1(pi − p̄)2(mi − m̄)2
, (19)

where mis are raw quality scores obtained from humans and pis are the predictions pro-
vided by an NR-VQA algorithm. Further, p̄ and m̄ are mean values. The SROCC is
defined as:

SROCC = 1−
6 ∑N

i=1 d2
i

N(N2 − 1)
, (20)

where di refers to the difference between the ranks of both measures for observation i and
N is the number of observations.

To ensure the stability of the numerical results, the medians of the PLCC and SROCC
are reported in this study, and they were measured over 1000 random training–testing splits.
Further, the proposed method was implemented in MATLAB R2022a, and the applied
computer configuration is summarized in Table 2.

Table 2. Description of the computer configuration applied in our experiments.

Computer model Z590 D
CPU Intel(R) Core(TM) i7-11700F CPU 2.50 GHz (8 cores)

Memory 31.9 GB
GPU Nvidia GeForce RTX 3090

4.2. Parameter Study

In this subsection, we justify the design choices of the proposed method. In Figure 4, a
comparison of the performance of different regression techniques and strategies is depicted.
The median PLCC and SROCC results were measured over 1000 random training–testing
splits on KoNViD-1k [16]. From this figure, it can be seen that RBF SVR was the best single
regressor, although the difference between RBF SVR and other single regressors was not
too outstanding. More importantly, the mean or median pooling of the regressors’ scores
resulted in a significant performance improvement.

Figures 5 and 6 depict the PLCC and SROCC values of the different regression tech-
niques and strategies in the form of box plots, respectively. On every box, the central mark
represents the median value. Further, the bottom and top edges of the box correspond
to the 25th and 75th percentiles, respectively. The whiskers continue to the most extreme
data points that were not recognized as outliers, which are denoted by red ‘+’ symbols.
Figures 7 and 8 depict scatterplots of the ground truth versus the predicted scores on a
KoNViD-1k [16] test set for each regression technique and strategy. Since the average
pooling of the regressors’ scores provided the best results according to our experiments on
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KoNViD-1k [16], we applied this in our proposed method, which is referred to as FLG-VQA
in the following, and in the comparison with other state-of-the-art methods.

Figure 4. Performance comparison of different regression techniques (GAM, LSBoost, GPR, NN, RBF
SVR, BDT, ET) and strategies (average pooling, median pooling) for the combination of individual
regressors’ results on KoNViD-1k [16]. The median PLCC and SROCC values, which were measured
over 1000 random training–testing splits, are given.

Figure 5. Box plots of PLCC values for different regression techniques and strategies. Measured
over 1000 random training–testing splits on KoNViD-1k [16]. The bottom and top edges of each box
correspond to the 25th and 75th percentiles, respectively. The whiskers continue to the most extreme
data points that were not recognized as outliers, which are denoted by red ‘+’ symbols.
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Figure 6. Box plots of SROCC values for different regression techniques and strategies. Measured
over 1000 random training–testing splits on KoNViD-1k [16]. The bottom and top edges of each box
correspond to the 25th and 75th percentiles, respectively. The whiskers continue to the most extreme
data points that were not recognized as outliers, which are denoted by red ‘+’ symbols.

(a) (b)

(c) (d)
Figure 7. Cont.
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(e) (f)

(g)
Figure 7. Scatterplots of the ground truth versus the predicted quality scores on a KoNViD-1k [16]
test set for different regression techniques: (a) GAM, (b) LSBoost, (c) GPR, (d) NN, (e) RBF SVR,
(f) BTR, and (g) ET.

(a) (b)
Figure 8. Scatterplots of the ground-truth versus the predicted quality scores on a KoNViD-1k [16]
test set when using the pooling of individual regressors’ scores as a regression strategy: (a) average
pooling, (b) median pooling.

To demonstrate that all parts of the applied video-level feature vector in FLG-VQA are
important and relevant, two additional experiments were also devised. First, the individ-
ual performance of each global and local feature was examined by using the evaluation
protocol that was described in the previous subsection. The results of this experiment are
summarized in Figure 9. As can be observed from these results, all global and local features
were able to provide mediocre or rather strong results when considered on their own. It can
be also observed that the temporal statistics of GM-LOG-BIQA [55] and the perceptual fea-
tures provided the strongest individual performances, while the statistics of BRISQUE [21],
SSEQ [54], and the high-boost filtered maps gave the weakest ones. The reason for this
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is that BRISQUE and SSEQ [54] perform better on artificial image distortions, i.e., JPEG
compression noise, than on authentic distortions [14], which are found in KoNViD-1k.
Further, high-boost filtering is rather sensitive to high-frequency regions in a natural scene,
which may restrict its performance on extremely different authentic distortions.

In the second experiment, we made an attempt to prove that all parts of the video-
level feature vector are relevant. Namely, a given part of FLG-VQA’s video-level feature
vector with a length of 58 was eliminated, and then the performance of the remaining
feature vector was examined. The results of the second experiment are summarized in
Figure 10. From these results, it can be seen that the removal of any part of the feature vector
resulted in a rather minor performance drop. Further, the removal of features that had
strong individual performance did not result in a large decrease in the overall performance.
Considering the experimental results in Figures 9 and 10 together, it seems to be justified
that all parts of the proposed video-level feature vector are important and relevant. Further,
it is worth considering global and local image statistics together in VQA.

Figure 9. Performance comparison of the global and local features in FLG-VQA. The median SROCC
values were measured on KoNViD-1k [16] over 1000 random training–testing splits. Table 1 gives
information about the interpretation of the feature indices.

Figure 10. Performance of FLG-VQA in cases in which a part of the video-level feature vector was
eliminated. The performance of the whole feature vector is denoted by ‘X’. The median SROCC
values were measured on KoNViD-1k [16] over 1000 random training–testing splits. Table 1 gives
information about the interpretation of feature indices.
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4.3. Comparison to the State-of-the-Art Methods

To verify the effectiveness of the proposed NR-VQA method, we compared the pro-
posed algorithm with 10 other well-known methods, i.e., NVIE [78], V.BLIINDS [79],
VIIDEO [80], 3D-MSCN [81], ST-Gabor [81], 3D-MSCN + ST-Gabor [81], FC Model [82],
STFC Model [82], STS-SVR [27], STS-MLP [27], and ChipQA [83]. Specifically, the reported
results of NVIE [78], V.BLIINDS [79], VIIDEO [80], 3D-MSCN [81], ST-Gabor [81], and
3D-MSCN + ST-Gabor [81] are based on our own experiments due to the availability of the
original source codes of these methods. These methods were tested under exactly the same
conditions as those of the proposed FLG-VQA. So, the median PLCC and SROCC values
were measured after 1000 random training–testing splits, and approximately 80% of the
videos were used for training, while the remaining ones were only applied in testing. The
results of the other five NR-VQA methods were copied from their original publications.
Further, Tu et al. [84] adapted two recently published deep-learning-based NR-IQA models,
i.e., KonCept512 [85] and PaQ-2-PiQ [86], for NR-VQA. Their results, which were measured
by the authors of [84], were also added to the presented comparison. Similarly to our
evaluation protocol, the authors of [83,87] applied 1000 random training–testing splits and
reported the median PLCC and SROCC values. Contrarily, Tu et al. [84] applied only
100 random splits, while the other papers used lower numbers of repetitions, i.e., 10 or 20.
Moreover, the usual 80–20% split of the benchmark databases was used in all of the pa-
pers, since this choice is the most common and recommended for machine-learning-based
methods in the literature.

The experimental results obtained on KoNViD-1k [16] and LIVE VQC [17] are summa-
rized in Tables 3 and 4, respectively. Further, Table 5 summarizes the results of KoNViD-
1k [16] and LIVE VQC [17] in the direct and weighted averages of the performance metrics.
From the presented and summarized results, it can be observed that the proposed FLG-VQA
was able to outperform the state-of-the-art methods by a large margin. For instance, the
second best, ChipQA [87], was outperformed by approximately 0.02 in terms of both PLCC
and SROCC on KoNViD-1k [16]. Similarly, on LIVE VQC [17], FLG-VQA provided results
that were 0.01 and 0.02 higher than those of ChipQA [87] in terms of the PLCC and SROCC,
respectively.

Table 3. Comparison of FLG-VQA with the state-of-the-art methods on KoNViD-1k [16]. The median
PLCC and SROCC values were measured over 1000 random training–testing splits. The best results
are in bold, while the second-best results are underlined.

Method PLCC SROCC

NVIE [78] 0.404 0.333
V.BLIINDS [79] 0.661 0.694

VIIDEO [80] 0.301 0.299
3D-MSCN [81] 0.401 0.370
ST-Gabor [81] 0.639 0.628

3D-MSCN + ST-Gabor [81] 0.653 0.640

FC Model [82] 0.492 0.472
STFC Model [82] 0.639 0.606

STS-SVR [27] 0.680 0.673
STS-MLP [27] 0.407 0.420
ChipQA-0 [83] 0.697 0.694
ChipQA [87] 0.763 0.763

KonCept512 [84,85] 0.749 0.735
PaQ-2-PiQ [84,86] 0.601 0.613

FLG-VQA 0.787 0.783
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Table 4. Comparison of FLG-VQA with the state-of-the-art methods on LIVE VQC [17]. The median
PLCC and SROCC values were measured over 1000 random training–testing splits. The best results
are in bold, while the second-best results are underlined. We indicate with “-” when the data are not
available.

Method PLCC SROCC

NVIE [78] 0.447 0.459
V.BLIINDS [79] 0.690 0.703

VIIDEO [80] −0.006 −0.034
3D-MSCN [81] 0.502 0.510
ST-Gabor [81] 0.591 0.599

3D-MSCN + ST-Gabor [81] 0.675 0.677

FC Model [82] - -
STFC Model [82] - -

STS-SVR [27] - -
STS-MLP [27] - -
ChipQA-0 [83] 0.669 0.697
ChipQA [87] 0.723 0.719

KonCept512 [84,85] 0.728 0.665
PaQ-2-PiQ [84,86] 0.668 0.644

FLG-VQA 0.733 0.731

Table 5. Comparison of FLG-VQA with the state-of-the-art methods using the direct and weighted
averages of the PLCC and SROCC values measured on the KoNViD-1k [16] and LIVE VQC
databases [17].

Direct Average Weighted Average

Method PLCC SROCC PLCC SROCC

NVIE [78] 0.426 0.396 0.418 0.374
V.BLIINDS [79] 0.676 0.698 0.671 0.697

VIIDEO [80] 0.148 0.133 0.200 0.190
3D-MSCN [81] 0.452 0.440 0.434 0.416
ST-Gabor [81] 0.615 0.613 0.623 0.618

3D-MSCN + ST-Gabor [81] 0.664 0.659 0.660 0.652

FC Model [82] - - - -
STFC Model [82] - - - -

STS-SVR [27] - - - -
STS-MLP [27] - - - -
ChipQA-0 [83] 0.683 0.696 0.688 0.695
ChipQA [87] 0.743 0.741 0.750 0.749

KonCept512 [84,85] 0.739 0.700 0.742 0.712
PaQ-2-PiQ [84,86] 0.635 0.629 0.623 0.623

FLG-VQA 0.760 0.757 0.769 0.766

5. Conclusions

NR-VQA, which has a high accuracy, has tremendous significance in many real-world
applications. Specifically, a diverse set of local and global image features’ statistics was
proposed and applied with an ensemble learning framework to obtain a perceptual quality
estimator. The main consideration behind this framework was that the HVS first produces an
unconscious global impression of a visual scene. Next, the HVS turns its attention to fine local
details. Many quality-aware features that characterize images globally have been proposed
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over recent decades. We chose four of them to compile their statistics over time. Further,
these statistics were boosted with several perceptual features. Moreover, local statistics
were also derived with the help of three HVS-inspired filters (Bilaplacian, high-boost, and
derivative filters) and the FAST keypoint detector to obtain dense frame-level feature vectors.
The statistics of these dense vectors over time were considered as quality-aware features.
After the fusion of the global and local statistics, an ensemble learning framework was used
to map them onto perceptual quality scores. The proposed method was compared with 12
other recently published NR-VQA algorithms on the KoNViD-1k and LIVE VQC benchmark
datasets. Our method’s superiority in performance was demonstrated.
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