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Abstract: Bolts, as the basic units of tunnel linings, are crucial to safe tunnel service. Caused by
the moist and complex environment in the tunnel, corrosion becomes a significant defect of bolts.
Computer vision technology is adopted because manual patrol inspection is inefficient and often
misses the corroded bolts. However, most current studies are conducted in a laboratory with good
lighting conditions, while their effects in actual practice have yet to be considered, and the accuracy
also needs to be improved. In this paper, we put forward an Ensemble Learning approach combining
our Improved MultiScale Retinex with Color Restoration (IMSRCR) and You Only Look Once (YOLO)
based on truly acquired tunnel image data to detect corroded bolts in the lining. The IMSRCR
sharpens and strengthens the features of the lining pictures, weakening the bad effect of a dim
environment compared with the existing MSRCR. Furthermore, we combine models with different
parameters that show different performance using the ensemble learning method, greatly improving
the accuracy. Sufficient comparisons and ablation experiments based on a dataset collected from the
tunnel in service are conducted to prove the superiority of our proposed algorithm.

Keywords: corroded bolt detection; computer vision; color enhancement; ensemble learning

1. Introduction

Railway transportation has become the main mode of land transport with its remark-
able carrying capacity and fast speed [1,2]. As an important branch, subway systems
have developed rapidly in recent years [3], becoming the preferred traveling way for city
dwellers. The lining, which is fixed and arranged by bolts, supports the tunnel structure
and guarantees the operation of metros. However, the bolts are exposed to the open air,
usually influenced by moisture and air pollutants, and the steel material thus tends to
become corroded [4–6]. When it comes to maintenance and repair, human-based visual
inspection still dominates the tunnel industry, which is also limited by training level. Patrol
inspectors have to check all bolts during non-running times such as night and early morn-
ing. However, commonly, an inspection team composed of 10 to 15 trained maintainers
could check two to three kilometers during a maintenance period of about three hours,
which is costly and inefficient. Besides, quite a few bolts are misdiagnosed as normal or
corroded due to the poor light in tunnels and fatigue caused by night work. Hence, some
researchers have tried many approaches to design an automatic, high-accuracy, and fast
detection speed method for practical engineering projects.

Computer Vision (CV), which overcomes the limitations of visual inspection by trained
human resources and the ability to detect structural damage in images remotely [7,8], has
become a prioritized technique for corroded bolt detection. However, the traditional CV
algorithms require the manual design of filter modules, which has poor robustness and
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low accuracy. Deep learning-based CV bolt corrosion detection becomes available for
engineering as deep learning develops [9–11]. For instance, Cha et al. [12] developed an
autonomous structural visual inspection method via Region-based Convolutional Neural
Networks (RCNNs) for real-time damage detection covering concrete cracks, steel and bolt
corrosion, and steel delamination. Ta et al. [13] monitored and identified the corrosion
levels of corroded bolts in a lab-scale steel structure with good illumination using a Mask-
RCNN. Suh et al. [14] adopted a Faster RCNN-based model to detect and locate damage
types, including bolt corrosion. These RCNNs search the target area with selective search
and generate nearly 2000 eigenvectors for each figure. They are mostly applied in the
precise pixel-level detection task. However, it is not easy to deploy RCNN models in
practical applications compared to end-to-end models. Plus, it is not necessary to precisely
distinguish the target pixels on the corrosion bolt in practice at the expense of speed
and cost. Another branch of deep learning target detection algorithms, You Only Look
Once (YOLO), reinterprets the principle of object detection tasks from classifications to
regressions, speeding up the training and detecting processes [15–17]. We select YOLOv5
nano (YOLOv5n) as the basis of our proposed model caused of its speed, end-to-end
characteristics, and high precision compared with the two-stage detectors.

Although the YOLOv5n shows its superior performance in computing speed and re-
source consumption, the complex corrosion targets still require improvements in accuracy.
Using multiple models with different preferences, ensemble learning makes a better and
more comprehensive decision to avoid the wrong prediction created by weak classifiers.
For example, Xu et al. [18] applied ensemble deep learning technology to learn and ex-
tract features of forest fires. Mohammad et al. [19] presented an ensemble deep-learning
approach to recognize structural corrosion in drone images. Seijo-Pardo et al. [20] con-
cluded ensemble learning of homogeneous and heterogeneous approaches, showing the
availability of integrating models with different parameters. Inspired by these works, we
put forward ensemble learning with YOLOv5n (YOLOv5n-EL) to raise accuracy without
slowing down the computing speed too much.

In addition to the corroded bolt detector, tunnels are usually damp and dim, weak-
ening the tunnel scan image to low definition, poor contrast, and color distortion. These
problems bring big troubles to the task of corroded bolt detection in such tunnels, which re-
quire figures to be pre-processed to make the features of the image more apparent for better
corroded bolt detection. It has been proved that the Retinex theory (a color-invariance-based
principle) is effective for low-light image enhancement like night and underwater [21–23].
Retinex mainly consists of three basic algorithms—Single Scale Retinex (SSR), MultiScale
Retinex (MSR), and MultiScale Retinex with Color Restoration (MSRCR). Compared with
SSR and MSR, MSRCR shows better image quality improvement and the ability to avoid the
color distortion caused by the imbalance of each color channel proportion after convolution
computation. However, the performance still degrades in the dim tunnel environment
caused by its Gaussian Blur, which reduces the sharpness of edges while brightening the
dark areas. Thus, we proposed the Improved-MSRCR (IMSRCR) algorithm to solve the
problem of fuzzy bolt edges in low-illumination tunnel images using auto-matched dy-
namic filters and L0 regularization. Through a combination scheme of the IMSRCR and the
YOLOv5n-EL, our model appears to have excellent performance at bolt corrosion detection.
Our main contributions can be summarized as follows.

1. We optimized the MSRCR color enhancement algorithm based on auto-matched
dynamic filters and L0 regularization to avoid blurring the image when brightening
the dark areas.

2. We put forward ensemble learning with its fusion strategy combining models with
different parameters to improve precision accuracy.

3. The experiments are conducted on actual data collected from a practical railway
tunnel. We disclosed our labeled dataset, the first public corroded lining bolt dataset
using a professional tunnel scanner.
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The rest of this paper is organized as follows. Section 2 exhaustively describes the
proposed approach covering the improved color-enhanced module and ensemble learning
algorithm for bolt corrosion detection. Section 3 thoroughly exhibits the details of the
experiments, including the dataset, experiment settings, comparison schemes, performance
evaluations, and the analysis of the results. Section 4 gives a discussion about the method.
Section 5 outlines our main results.

2. Methodology

Figure 1 depicts the flow chart of the corroded bolt detection scheme in a dim tunnel,
including two main modules, i.e., the image color enhancement algorithm and the object
detection module. Considering the difficulty of distinguishing corroded and normal bolts
in a dim environment, an improved MSRCR (IMSRCR) is proposed to sharpen the contrast
between the rust-infected area and the background, enhancing the appearance of image
features. Then, for essential prediction speed and training efficiency in the object detection
module, YOLOv5n is introduced to finish the object detection and location of corroded bolts
on the color enhancement image, which is an end-to-end train and predict structure. For a
further step up in accuracy, we propose YOLOv5n-EL based on YOLOv5n. Specifically, we
train a series of models with different parameters and adopt ensemble learning to integrate
all model outputs.

 Improved 

IMSRCR Color 

Enhancement 

Algor ithm

Images

(640 × 640)

Input

Ensemble 

Learning-based 

Corroded Bolts 

Detection

Output
Images

(640 × 640)

Enhanced 
Image

GT

Target 0.7

Figure 1. Flow chart of corroded bolt detection scheme in a dim tunnel.

2.1. The Improved IMSRCR Color Enhancement Algorithm

As is well-known, the illumination is poor, so the tunnel images gathered are dim
and unclear. Thus, we need to enhance the contrast between the bolts and the background.
MSRCR is developed on MSR and SSR based on Retinex theory, which has been approved
as an effective color enhancement method. However, MSRCR has a limited effect in dark
areas and the edges of the dark areas. In our work, we propose IMSRCR to enhance the bolts
features in dark areas. According to Retinex, the observed image I(x, y) can be divided into
the reflection component R(x, y) carrying target information and the irradiation component
L(x, y) of ambient light is

I(x, y) = L(x, y)× R(x, y). (1)

Therefore, image enhancement aims to get rid of the irradiated component and ex-
tract a reflective part that carries information about the object. By simple mathematical
transformation, we can get the expression of R(x, y) with

log R(x, y) = log I(x, y)− log L(x, y). (2)

L(x, y) can be estimated through low-pass Gaussian center function F(x, y) and the
observed image I(x, y) as

log L(x, y) = log[F(x, y)⊗ I(x, y)], (3)

where F(x, y) is defined by

F(x, y) = λe−
x2+y2

2c2 . (4)
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Meanwhile, F(x, y) should satisfies∫∫
F(x, y)dxdy = 1. (5)

As a result, the expression of SSR can be obtained from (2)–(4) to

rssr(x, y) = log R(x, y) = log I(x, y)− log[F(x, y)⊗ I(x, y)]. (6)

The parameter c in (4) is strongly related to the scale of image enhancement. However,
the enhancements of SSR are not always satisfactory because the parameter c is not suitable
for all kinds of images. In response to the above question, MSR imports Gaussian center
function at different scales as

rmsr(x, y) =
K

∑
k

ωklog I(x, y)− log[Fk(x, y)⊗ I(x, y)], (7)

where ωk and Fk(x, y) meets the Equations (8)–(10).

K

∑
k

ωk = 1, (8)

Fk(x, y) = λke
− x2+y2

2ck
2 , (9)∫∫

Fk(x, y)dxdy = 1. (10)

Although MSR enhances image features at both low and high scales, color distortion
will occur as the parameters are different for each color channel. Thus, the color recover
factor C is added in MSRCR to keep the appearance true through

rmsrcr(x, y) = Ci

K

∑
k

ωklog Ii(x, y)− log[Fk(x, y)⊗ Ii(x, y)], (11)

where i represents the ith color channel and Ci can be expressed by

Ci = f [I′i (x, y)]

= β log[αI′i (x, y)]

= β log[α
Ii(x, y)

∑N
j=1 IJ(x, y)

]

= βlog[αIi(x, y)]− β log[
N

∑
j=1

IJ(x, y)],

(12)

in which α denotes controlled nonlinear treatment strength and β is the gain constant.
Although MSRCR performs better in image enhancement comparing MSR and SSR,

the edge of the enhanced image is still inconspicuous, which makes the performance of
MSRCR degrade in a dim environment. Accordingly, we propose an IMSRCR algorithm to
solve the problem of fuzzy bolt edges in low-illumination tunnel images. Our algorithm
uses Automatic Guide Filtering (AGF) to estimate the illumination image first and then
calculate the reflected image according to the Retinex theory mentioned above. Residual
image is extracted by the norm. Finally, the color restoration is carried out on the fused
image. The flow path of our algorithm is shown in Figure 2.
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Figure 2. Flow path of IMSRCR.

2.1.1. Illumination Estimation

In order to reduce the edge blur problem of the Gaussian filter, the Illumination
Estimation is powered by AGF, which is different from traditional MSRCR using a Gaussian
filter. The illuminance images estimated by AGF and Gaussian filter are shown in Figure 3.

(a) (b) (c)

Figure 3. Original and illumination images. (a) Original image; (b) Illumination image estimated by
Gaussian filter; (c) Illumination image estimated by AGF.

Guided filter is a local linear model with smooth edge preserving characteristics [24,25]
which is defined as

gt = ak Gt + bk , ∀tεΩk, (13)

where g is the output image after guided filtering and G is the guided image, ak and bk are
the linear coefficients at the sub-windows Ωk, Ωk represents the sub-window with scale r,
and t is the index of pixels in Ωk. We specify to input image I as the guided image Q. ak
and bk could be defined according to Guiding filtering-related theory as

ak =
σ2

k
σ2

k + ε
,

bk = µk(1− ak).

(14)
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The scale r of the guided filter is set to three values referring to the process of the
MSRCR algorithm. The range of three values of scale r is [1, rmin], [rmin, rmid] and [rmid, rmax]
respectively [26]. rmin, rmid and rmax could be determined as

rmin =

⌊
min(m, n)

2N

⌋
,

rmax =

⌊
min(m, n)

2
− 1
⌋

,

rmid =

⌊
rmin + rmax

2

⌋
,

(15)

where m and n are the width and height of the image, and N is the number of selected
scales. To balance the smoothing and edge-preserving effects of guided filtering, an Auto
multi-scale selection algorithm is expressed by

r1 =

⌊
1 + rmin

2N

⌋
,

r2 =

⌊
rmin + rmid

2

⌋
,

r3 =

⌊
rmid + rmax

2

⌋
.

(16)

The illumination estimation result applies AGF to each channel of the input image.
The reflection component in the logarithmic domain could be defined according to the
Retinex theory

FAGF =
3

∑
j=1

ωj[logIi(x, y)− loggi(x, y)], (17)

where FAGF is the reflected image channel corresponding to the AGF.

2.1.2. Residual Fusion

In order to overcome the problem of FAGF detail loss, we used L0 norm in IMSRCR [27].
Residual results extracted by L0 norm is shown in Figure 4.

(a) (b) (c)

Figure 4. Original and residual images. (a) Original image; (b) Base layer extracted by L0 norm;
(c) Residual image.

L0 norm can be expressed as the number of non-zero elements in a vector. The L0
norm of image gradient can be expressed as

C( f ) := #
{

p|| fp − fp+1 |6= 0
}

, (18)
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where p and p + 1 are adjacent elements in the image.
∣∣ fp − fp+1

∣∣ is the image gradient
which is the forward difference of the image. # represents the number of pixels in the image
that satisfied

∣∣ fp − fp+1
∣∣ 6= 0. C( f ) is the L0 norm of the image gradient.

Taking one-dimensional signal as an example, the objective function can be defined as

min
f

∑
p

(
fp − gp

)2 s.t. C( f ) = k. (19)

It must be converted into unconstrained problems for two-dimensional images. We
set smoothing parameter λ to 0.01 in combination with our use scene

min
f

∑
p

(
fp − gp

)2
+ λ · C( f ). (20)

The number of gradients in the horizontal and vertical directions of the image needs
to be constrained in the two-dimensional images. The objective function and its constraints
are expressed as

min
f

∑
(

fp − gp
)2

+ λ · C
(
∂x f , ∂y f

)
,

C
(
∂x f , ∂y f

)
= #

{
p‖∂x fp|+ |∂y fp |6= 0

}
.

(21)

Since the L0 norm is non-differentiable, the variable splitting method is used here to
relax it into two quadratic programming problems. Finally, the iterative method is used to
find the global optimum. We rewrite the objective function as

min
f

∑
p

(
fp − gp

)2
+ λ · C

(
∂x f , ∂y f

)
+ β ·

p

∑
((

∂x fp − hp
)2

+
(
∂y fp − vp

)2
)

. (22)

The iterative solution result of the objective function is expressed as

hp, vp =

{
(0, 0)

(
∂x fp

)2
+
(
∂y fp

)2 ≤ λ
β(

∂x fp, ∂y fp
)

otherwise
(23)

As presented in Figure 5, the image processed by IMSRCR is more apparent and has
higher color contrast based on subjective visual judgment. And the edge of the bolts is more
clear compared with the enhanced image processed by SSR, MSR, and MSRCR. Hence,
IMSRCR is developed for the detection module to ensure that the pictures inputted to
YOLOv5n have distinct visual features.

(a) Original image (b) SSR processed (c) MSR processed

Figure 5. Cont.
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(d) MSRCR processed (e) IMSRCR processed

Figure 5. Effect comparison of different image enhancement algorithm.

2.2. Ensemble Learning-Based Corroded Bolts Detection

CV modules with different stages, mainly one and two, are used for object detection
tasks. One-stage end-to-end algorithms give the prediction results (type and location)
directly through the backbone, while two-stage methods form a series of sample boxes
first, then classify and locate the object inside the boxes. So the non-end-to-end structure
requires much more time than the one-stage method to train and detect separately, slowing
the speed in real corroded bolt detection work. YOLOv5n, a fast and accurate one-stage CV
model, is chosen as the baseline of our ensemble learning.

2.2.1. Ensemble Learning Method

Usually, a target detection task is based on one given model to train and learn for a
good performance in detection results. As far as we know, there are some excellent models
to resolve the detection task, such as YOLO and FCNN. However, the performance of the
models mentioned above can still be improved. Adjusting HyperParameters of training
is a common technique to improve the model performance. However, it has a limited
effect as the structure of the model restricts a better performance. Ensemble learning is a
machine learning method that integrates the prediction of multiple deep learning models
to improve robustness and detection performance. It processes the multiple model outputs
as a decision question. If a mistake occurs on one of the multiple models and the others
are right, the final output of ensemble learning will correct the error considering the whole
model’s outputs. Compared with the single model, ensemble learning combining multiple
models will improve the accuracy heavily.

Ensemble learning can be divided into two categories according to training methods:
Boosting and Bagging. Boosting constructs a series of object detectors through serial
learning, which means the new detector is improved based on the adjustment to the
mistake detection data weight in the last detector. In contrast, Bagging is a parallel learning
method that utilizes the independence of different detectors to improve performance,
while a single detector cannot extract whole features. In our work, Bagging is adopted
as the ensemble learning method while we integrate different kinds of models which
are independent of each other. The structure of ensemble learning is shown in Figure 6.
It is worth noticing that our proposed integrated learning model is a parallel structure,
corresponding to the use of multi-threaded parallel learning operations to avoid bringing
excessive consumption of model training and inference time.

Bagging draws training data from the whole dataset at random and the drawn training
data will be put back before the next round of extraction. This process will be continued for
k rounds, so we can get k independent sub-datasets. Every sub-dataset is adopted to train a
basic model. As a result, we can get k independent basic models.
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Figure 6. Structure of Ensemble Learning.

2.2.2. Fusion Strategy in Ensemble Learning

Fusion strategy is fundamental in ensemble learning. With an excellent fusion strategy,
ensemble learning can combine the strengths of each model and get a better result com-
paring any single model without ensemble learning. We adopt a probabilistic ensemble
method to combine the independent basic models in our work. Assume that we have an
object with a label y and two outputs of the basic models x1 and x2 ( it can easily be ex-
panded to more outputs ). As Bagging mentioned above, the basic models are independent,
so the measurements are also conditionally independent, which can be formulated as

p(x1, x2|y) = p(x1|y)p(x2|y). (24)

This is also can be expressed as p(x1|y) = p(x1|x2, y) as the independence between x1
and x2 exists, which means that the x2 will not be changed if we give the value of y. Our
purpose is to get the value of y, which can be expressed as

p(x1, x2 | y) =
p(x1 | x2, y)p(y)

p(x1, x2)
∝ p(x1 | x2, y)p(y). (25)

As the independence mentioned above, the probabilistic relation can be written as

p(y | x1, x2) ∝ p(x1 | y)p(x2 | y)p(y) ∝
p(x1 | y)p(y)p(x2 | y)p(y)

p(y)
∝

p(y | x1)p(y | x2)

p(y)
. (26)

Utilizing the probabilistic relation, we can calculate the score of y. Given the existence
of conditional independence, it can be considered the optimal fusion scheme. The calcula-
tion can be formulated as

p(y | {xi}M
i=1) ∝

∏M
i=1 p(y|xi)

p(y)M−1 . (27)

The class prior p(y) can be easily obtained by taking the statistics for y from the dataset.
Then, according to (27), the results of all basic models can be fused.

3. Experiment
3.1. Data Acquisition System and Dataset

Figure 7 shows the data acquisition system named MS100 produced by South Sur-
veying & Mapping Technology Co., Ltd. (Guangzhou, China). It can automatically move
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and scan with a motor at a speed of 1 km/h in disease-scanning mode. The experiments
are performed on the corroded bolt dataset collected from a certain Beijing metro tunnel
in service. The dataset consists of 1441 pictures in the size 640× 640. All the targets are
labeled with a 100× 100 ground truth box. We split the dataset into the training set and the
test set in a ratio of 8:2, with the test set also serving as the validation set.

Figure 7. MS100 3D scanner.

3.2. Experiment Settings

Experiments in the study have been implemented on an Intelr CoreTM i7-11700K CPU
(3.6 GHz, 32 GB RAM) and an NVIDIA GeForce RTX 3060 (CUDA version 11.6) with Python
3.9.12 (PyTorch 1.11.0) in 64 Bit Ubuntu 18.04.1 Long Term Support operating system.

To train the module properly, we set the input resolution to 640× 640 and use Stochas-
tic Gradient Descent (SGD) with 0.9 momenta as the optimizer. The learning rate is
initialized to 0.001 and the cosine decay with warm-up is selected as the learning rate
schedule. All models have been trained completely in the experiments.

As for data augmentation, we set the image rotation rate to 0.5 and the image transla-
tion rate to 0.1. Both the image scale rate and image shear rate are set to 0.5. We mainly
used Mosaic to further enhance the performance of the detector, and the Mosaic rate is set
to 1.0.

3.3. Evaluation Metrics

Taking the popular assessment in the CV detection field as a reference, the perfor-
mance is evaluated by the average precision, recall rate, precision rate, and F1 score. We
determined the predicted box as positive based on a common metric where the Intersection
over Union (IoU) between the predicted box and the ground truth box is greater than 0.5.
The definition of the targets are

Recall =
XTP

XTP + XFN
, (28)

Precision =
XTP

XTP + XFP
, (29)

F1 score =
2× Recall × Precision
(Recall + Precision)

, (30)

where Recall and Precision represent the recall and precision rate, respectively. XTP denotes
the number of objects correctly identified as true. XFP denotes the number of misidentifica-
tions of false targets. XFN represents the number of objects that fail to be correctly detected.
F1 score can be regarded as a weighted average of recall rate and precision rate to evaluate
the model comprehensively. The engineering problem pays more attention to the F1 score.
From the perspective of recall rate and precision rate, the experiments utilize AP to test the
detection accuracy of our method.
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3.4. Performance Comparisons

Table 1 shows the comparative results on the test set between our method and some
state-of-the-art detection approaches. Faster-RCNN is a two-stage CNN-based object
detector, which is a widely used non-end-to-end detection method [28]. YOLOv5n is a
fast and powerful end-to-end detector and YOLOv5s denotes a larger size of YOLOv5n.
YOLOv5n6 adds a detection head to YOLOv5n, which can have a larger focus scale on
targets. Experiments of different color enhancement algorithms, detection structures,
and YOLOs are fully taken into consideration in performance comparison.

Table 1. The experimental results.

Method Precision Recall F1 Score AP@0.5 AP@0.5:0.95

Faster-RCNN 0.690 0.917 0.790 0.832 0.316
YOLOv5s 0.876 0.950 0.912 0.957 0.509

YOLOv5n6 0.883 0.927 0.904 0.945 0.506
YOLOv5n 0.889 0.974 0.930 0.970 0.525

YOLOv5n-EL (baseline) 0.895 0.974 0.938 0.970 0.530
MSR + YOLOv5s 0.886 0.924 0.905 0.959 0.510

MSR + YOLOv5n6 0.858 0.948 0.901 0.952 0.495
MSR + YOLOv5n 0.864 0.969 0.913 0.961 0.506

MSR + YOLOv5n-EL 0.880 0.970 0.922 0.965 0.515
MSRCR + YOLOv5s 0.877 0.933 0.904 0.961 0.509

MSRCR + YOLOv5n6 0.889 0.962 0.924 0.970 0.514
MSRCR + YOLOv5n 0.912 0.970 0.940 0.966 0.533

MSRCR + YOLOv5n-EL 0.917 0.970 0.943 0.972 0.534
IMSRCR + YOLOv5s 0.881 0.933 0.906 0.965 0.512

IMSRCR + YOLOv5n6 0.915 0.972 0.943 0.972 0.520
IMSRCR + YOLOv5n 0.914 0.970 0.941 0.971 0.535

IMSRCR + YOLOv5n-EL 0.921 0.975 0.947 0.975 0.537

As shown in Table 1, compared with Faster-RCNN, YOLOv5s, and YOLOv5n, the F1
score of YOLOv5n-EL has been enhanced by 0.148, 0.026, and 0.008, respectively. From the
perspective of AP, YOLOv5n-EL achieves 0.970 AP@0.5 and 0.530 AP@0.5:0.95, which is the
best of Faster-RCNN (0.832 AP@0.5 and 0.316 AP@0.5:0.95), YOLOv5s (0.957 AP@0.5 and
0.509 AP@0.5:0.95) and YOLOv5n (0.969 AP@0.5 and 0.525 AP@0.5:0.95). This illustrates the
advantage of YOLOv5n-EL as a corrosion bolt detector. In this problem, the corroded bolt
is the target of fixed scale, and the detection head on a larger scale may cause redundancy
of features.Therefore, YOLOv5n6 failed to improve the detection performance. Meanwhile,
YOLOv5n6 (0.945 AP@0.5 and 0.506 AP@0.5:0.95), which own a larger size of parameters,
get a lower AP than YOLOv5n-EL. The detection time consumption of contrastive models
is shown in Table 2. It is clear that the Faster-RCNN costs nearly 10 times longer than the
YOLOs in experiments caused by the non-end-to-end structure. Because the features of
corroded bolts in the dataset are relatively simple, the model with large parameters may
be more prone to overfitting in training. In this detection task, YOLOv5n-EL not only can
avoid overfitting but also achieves better performance without wasting too much time
(only 7 ms more than YOLOv5n, far less than the consumption of color enhancement).
Besides, the FLOPs cost of YOLOv5n-EL is still lower than YOLOv5s, while the results are
significantly better. The above analysis shows the correctness of choosing YOLOv5n-EL as
the detector.



Sensors 2022, 22, 9715 12 of 15

Table 2. The Time and FLOPs Consumption of Detectors.

Faster-RCNN YOLOv5s YOLOv5n YOLOv5n-EL

FLOPs (G) \ 15.8 4.1 12.3
Pre-process Time (ms) \ 0.677 0.614 0.643
Inference Time (ms) \ 9.571 5.041 12.716

NMS Time (ms) \ 1.475 1.405 1.008

Total Time (ms) 83.990 11.723 7.060 14.367

With the color feature enhancement module, Table 1 also shows that MSR makes the
detection performance of YOLOv5s and YOLOv5n-EL even worse instead of the enhance-
ment. That is due to MSR causing some color distortion, which makes the data processed
deviate from real data distribution. However, we notice that MSR lightly improves the
detection performance of YOLOv5n6 and YOLOv5n, which illustrates that, with MSR,
the overfitting caused by more parameters is somewhat relieved.

We also compare the results of MSRCR and IMSRCR to evaluate the performance
further. It can be seen from Table 1 that, compared with MSRCR, IMRCR enhances the
performance of detectors. YOLOv5n-EL achieves 0.975 mAP@0.5 and 0.537 mAP@0.5:0.95
with IMSRCR. IMSRCR effectively enhances the darker areas in the image and improves
the intensity of the target edge, which offers more help to the detector. This illustrates the
effectiveness of the IMSRCR method. We show the effects of different color enhancement
algorithms in Figure 8. In contrast, although MSR and MSRCR can also enhance the color
features of the corroded parts, color distortion may occur on other occasions, and the
edge is not clear in a dim environment. The IMSRCR can not only strengthen the features
significantly but also avoid obscurity in a dim environment, which leads to an improvement
in comprehensive detection effectiveness.

Original MSR MSRCR IMSRCR

Figure 8. Examples of results from different color enhancement algorithm.

Furthermore, Table 3 shows the time consumption of different color enhancement
methods. Since MSRCR uses Gaussian blur, the enhancement speed is significantly slowed
down to undertake many numerical calculations. IMSRCR, however, avoids the shortcom-
ings, and the speed increases by about a quarter.

Table 3. The Time Consumption of Color Enhancement.

MSR MSRCR IMSRCR

Time Cost (ms) 47.576 93.308 69.870
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Figures 9–12 show the visualization of some representative detection results in the
test set. Compared to other YOLO detectors and the baseline YOLOv5n, YOLOv5n-EL
offers better performance in detection like Figure 9b,c. Comparison between Figures 9–11
shows that different color enhancement algorithms can heighten the significance of features,
changing the effect of the total model.

In summary, the experimental results indicate that YOLOv5n-EL is an efficient cor-
roded bolt target detector. In addition, the ablation study demonstrates that the IMSRCR is
helpful for the enhancement of the color features and improves the detection performance
for corroded bolts both in speed and accuracy.
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Figure 9. Examples of detection results without color enhancement.
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Figure 10. Examples of detection results with MSR color enhancement.
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Figure 11. Examples of detection results with MSRCR color enhancement.
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Figure 12. Examples of detection results with IMSRCR color enhancement.

4. Discussion

The method composed in this paper is a corroded bolt detection model, which com-
bines the IMSRCR module and YOLOv5n-EL into one algorithm. The experimental results
on the test set demonstrate that our method has good detection performance for corroded
bolts. The parameter size of the YOLOv5n-EL basic model (YOLOv5n) is only about 14 MB,
which is suitable for project deployment and real-time detection. Our method outperforms
other comparative methods in both accuracy and speed. The color feature enhancement
made by IMSRCR is helpful for the detector to detect corroded bolts with inconspicuous
corrosion features.

5. Conclusions

In this paper, a method was put forward for tunnel corroded bolt detection. For this
purpose, an efficient CV module with color enhancement and ensemble learning is pro-
posed. Considering the low definition, poor contrast, and color distortion in the tunnel,
IMSRCR enhances the color and edge appearance based on auto-matched dynamic filters
and L0 regularization. Moreover, YOLOv5n-EL also directly improves the accuracy of
detection. To examine the effectiveness of our model, we collect corroded bolts with a
professional tunnel scanner from a practical railway tunnel. It achieves a precision of
0.921 and a recall of 0.975 within 84.237 ms (14.367 + 69.870), which confirms that the
IMSRCR + YOLOv5n-EL is the most suitable structure for the task.
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