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Abstract: Recently, the automotive industry has used simulation programs much more often than
experimental research. Computer simulations are more and more often used due to the repeatability of
simulation conditions and the possibility of making modifications in simulation objects. Experimental
and simulation studies carried out are aimed at developing a model of a simulation dummy adapted
to both frontal and rear crash tests, taking into account changes in the moment of resistance in
individual joints. The main purpose of the article is to reproduce a real crash test at a low speed of
20 km/h in a simulation program. For this purpose, a series of experimental crash tests with the
participation of volunteers was carried out, and then a crash test with a dummy was simulated in the
MSC ADAMS program. The experimental studies involved 100 volunteers who were divided into
three percentile groups (C5, C50, C95). With the help of force sensors and a high-speed camera, crash
tests of volunteers were recorded. The collected data from the force sensors made it possible to map
the force in the seat belts. For low-speed crash tests, the displacement and acceleration of individual
body parts of the dummy and volunteers can be measured using vision systems. The article identified
head displacements of volunteers in the TEMA program based on a video analysis of a crash test
film with a frequency of up to 2500 frames per second. The displacement of the simulation dummy’s
head in the MSC ADAMS program in the considered crash time interval from 0.0 to 0.4 s for all three
percentile groups coincided with the head displacement of the volunteers during the experimental
crash test.

Keywords: computer simulation; crash test; dummy

1. Introduction

Globalization and the development of technology, in particular graphic programs,
have permanently changed the approach to the design of new products, elements, security
systems and complex car models [1–3].

The mathematical models being developed have become much cheaper than building a
prototype. In addition, the current computer software allows for simulation in the assumed
conditions and accurate measurement of the simulated element. It should be taken into
account that in the case of the construction of a prototype, apart from the production costs,
its development time was also extended [4–6].

Nowadays, even initial failures in model design do not incur high costs [4,7,8]. Com-
puter programs make it possible to introduce corrections at every design stage, which
is impossible when building a prototype [1,9,10]. The current computer technology has
made mathematical models replace prototypes in most design and research works [11–13].
Mathematical models of products have become a fundamental manufacturing element in
the 21st century. This does not mean that prototypes are no longer being built. Usually,
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after the completion of preliminary and simulation tests, as well as after careful selection
of structural elements, its construction takes place. They are built to check computer
simulations and for presentation purposes [14–16].

Without anthropometric dummies, the number of fatalities in road accidents would
be much higher. It is to them that we owe a large contribution to the increase in the safety
of motor vehicles [17–19]. There are currently about 3500 crash test dummies around the
world [20–23]. Their design range includes genders, age groups and postures, from new-
borns through pregnant women to overweight old men [24–26]. They are specially adapted
for different situations, for example, THOR for frontal impacts, SID for side impacts, BioRID
II for rear impacts, CRABI for child seat tests and Hybrid III for pedestrian accidents. Each
of them is designed for a specific crash test at a specific crash velocity [27–29]. None of
the available models is used for low-speed crash tests and is not used in all types of crash
tests [30–32].

The models of dummies used in crash tests consist of assemblies and elements resem-
bling the human body. An ideal crash test dummy should have a simple design that does
not require frequent calibration and, at the same time, be characterized by high durability
and repeatability of results [33,34]. Currently, in the case of frontal collisions, the most
advanced hybrid III and THOR dummy. Dummies from the Hybrid III family have a high
compatibility index with the human body Research on the behavior of dummies during
crash tests has led to the assessment of the head, face, chest, abdomen, lower and upper
limb injuries, which are used by all countries around the world [34–36]. It should be noted
that anthropometric dummies are dedicated to a specific type of test at a specific speed.
None of the above dummies are dedicated to crash tests at low speeds, up to 20 km/h.

The crash test dummies are test objects equipped with a number of sensors. In the
case of the Hybrid III dummy, its head is made of aluminum, and inside its head, there are
sensors measuring the impact force and the acceleration of the head during the collision.
There are force sensors in the cervical region that measure the forces that occur when
bending and stretching the head and neck. The steel ribs of the Hybrid III dummy are
equipped with sensors that measure the deviation of the chest during a collision. They
show how great the risks of her injuries are as a result of the operation of the seat belts. In
addition, the dummy’s abdomen and pelvis are equipped with force sensors to accurately
diagnose the forces at which abdominal or pelvic injuries occur [37–41]. Sensors installed
in the legs measure the deflection, pressure, and stresses that cause injuries to the tibia
and fibula. There may be up to 200 sensors in the crash test dummies, depending on
the type of dummy and the crash test. Moreover, the sensors are not only located in the
anthropometric dummy but also in the vehicle intended for the crash test. Anthropometric
crash test dummies are an invaluable object contributing to the improvement of vehicle
safety. It should be noted that this is largely due to sensors that collect information about the
forces, accelerations, and displacements of individual parts of the dummy’s body [42–46].

The authors of the paper [47–49] conducted experimental studies with the participation
of volunteers. Volunteers participated in a series of low-speed rear crash tests of 6 to 8 km/h
to determine the biomechanical and kinetic responses of the human body, taking into account
various car seat headrest configurations. The authors showed differences in the displacement
of the volunteers’ heads during the rear impact. The differences were caused by the dimensions
of the human body, which are directly related to the sex of the volunteers. In the article [50,51],
volunteers were used for low-speed head-on tests and low-speed side tests. The authors
observed minimal differences in the displacement of individual parts of the human body in
relation to male and female volunteers.

While reviewing, the authors of this paper noted that despite the differences in the
displacement of individual parts of the human body due to the sex of the volunteers during
low-speed crash tests. An anthropometric dummy dedicated exclusively to low-speed
crash tests has not yet been developed.
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2. Research Methodology

The article contains part of the work carried out in the laboratory of motor vehicles and
tractors of the Kielce University of Technology. The purpose of the experimental crash tests
with volunteers is to develop a new low-speed crash test physical dummy and to develop
a low-speed simulation dummy. Research issues related to the protection of car passengers
against the consequences of road collisions are classified as impact biomechanics. Therefore,
in the methodology of my own research, two types of model analyzes are distinguished:

• Experimental “crash-test” research conducted with the participation of volunteers;
• Simulation studies performed in the MSC ADAMS program.

Simulation studies have many advantages over experimental crash-test studies. The
main advantage is the low cost of building simulation models and the ease of conducting
parametric research on virtual models.

3. The Course of Experimental Research

Experimental tests with the use of volunteers were carried out on a test bench designed
for crash tests at low speeds and measurements of force in the seat belts during a collision.
The experimental crash test was carried out in the laboratory of Motor Vehicles and Tractors
at the Kielce University of Technology. The crash test stand consists of a 10 m-long measuring
track on which a platform with a car seat moves. At the end of the measuring track, there are
two shock absorbers in a transverse position. The accelerated platform, together with the
car seat to the assumed speed at the end of the measuring track, hits the shock absorbers
simulating a collision with a solid obstacle. The platform with the car seat is pulled to the
appropriate height of the measuring track with a winch located in the upper part of the
measuring track. The platform, after being pulled to the appropriate height, is held by an
electromagnet. Releasing the electromagnet initiates the measurement test. During this time,
the platform, together with the car seat, moves down the test stand. Low-speed frontal crash
tests involving volunteers were recorded using a high-speed Digital Phantom 310v camera
that recorded the measurement at 2500 frames per second. The low-speed crash test bench is
shown in Figure 1.
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Figure 1. Test bench for low-speed crash tests.

The crash test stand enables the measurement of the force in the seat belts during the
event test. There are two force sensors on the truck’s platform to which the seat belts are
attached. The EMS 150 force sensors used to measure the force in seat belts are shown in
Figure 2.
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Figure 2. Force sensors in seat belts EMS 150.

Figure 3 shows a diagram of the test stand, which consists of two independent circuits.
The first one enables the recording of a crash test with the use of a high-speed Digital Phan-
tom V310 camera. The image recorded by the camera is sent to the measuring computer
and then displayed in the TEMA CLASSIC program.
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Figure 3. Diagram of the measuring station.

The experimental studies involved 100 volunteers who were assigned to the corresponding
population percentile, and then the results were averaged. There were 20 volunteers in the
C5 percentile group, 45 volunteers in the C50 group, and 35 volunteers in the C95 group.
Examples of the dimensions of the person participating in the experiment are shown in Table 1.
Each person participating in the crash test was measured and weighed. On the basis
of 16 anthropometric parameters, volunteers were assigned to the appropriate percentile
group. The anthropometric division of the subjects did not take into account gender because,
with the low-speed crash test, the differences in the displacement of individual parts of the
body were within 2%. The anthropometric data of the volunteers were compared with the
current national standard PN-90/N-08000, which determines the dimensions of both men
and women.
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Table 1. Anthropometric dimensions of the volunteer.

Parameters Values Assignment to the
Population Percentile

Mass [kg] 65 C50
Height [cm] 175 C50

Head circumference [cm] 59 C95
Torso length [cm] 60 C95

Chest circumference [cm] 95 C50
Arm circumference [cm] 37 C50

Arm length [cm] 33 C50
Forearm circumference [cm] 31 C50

Wrist circumference [cm] 20 C50
Wrist width [cm] 10 C50
Hand width [cm] 22 C50

Thigh circumference [cm] 57 C50
Circumference of the lower Leg [cm] 40 C50

Ankle circumference [cm] 26 C50
Foot length [cm] 24 C50

Volunteer qualified for C50 population

4. The Course of Simulation Tests

The model of a physical-point crash test dummy is a set of interconnected bodies that
are characterized by appropriate damping and stiffness. Each element has the appropriate
shape and mass. All elements of the dummy’s structure are connected with each other by
means of joints that reflect the range of human body movement. The simulation dummy
model was made in the MSC Adams program. This program studies the dynamics of
movement of individual parts of the body of a dummy. At the same time, it allows you to
transform a rigid body into a flexible model using the finite element method. The program
environment allows you to modify and change the parameters of individual elements of
the dummy. In addition, it allows you to obtain information about the exact movement of
all parts of the body of the dummy and then present them in a graphical way. The manikin
was designed in the pattern of a hybrid III dummy representing a 50th-percentile male. It
consists of 17 elements connected by joints. The manikin representing the C50 male was
compared with the Hybrid III dummy during a crash test at 20 km/h.

The program environment makes it possible to modify and change the parameters of
individual elements of the dummy. Therefore, the constructed simulation dummy may
have any parameters (masses and dimensions) of individual elements of its body. The
advantage of building an anthropometric manikin in the MSC Adams program is obtaining
information on the exact movements of all parts of the manikin’s body immediately after
computer simulation and the possibility of presenting this information in a graphical
manner. An anthropometric dummy (representing a 50th centile male) designed for crash
tests made in the ADAMS program is shown in Figure 4. During the construction of the
anthropometric dummy, the following assumptions were made:

• system of rigid bodies;
• known dimensions, masses, and moments of inertia;
• a model in which the movement takes place on a three-dimensional plane;
• connection of solids by means of joints;
• the only input affecting the system is the initial speed vx (chair speed);
• belts and seats modeled on the basis of experimental research.

Table 2 lists the masses of individual body parts of the designed physical dummy
representing a 50-cent man. Table 3 shows the lengths of individual sections of the designed
dummy. The values of the joint angles in the joints of the designed dummy are presented
in Table 4. The moments of inertia of the individual body parts of the simulation dummy
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were calculated using the Zatziorsky regression equations. Table 5 presents the moments
of inertia of the simulation dummy representing the 50th percentile of the male population.
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Table 2. Masses of individual body parts of the simulation dummy.

LP
Simulation Dummy

Block Name Mass, kg

1 forearm 4.04
2 arm 4.00
3 hand 0.54
4 shank 10.08
5 foot 0.80
6 thigh 11.98
7 neck 1.54
8 head 4.54
9 hips 11.35
10 chest 17.64
11 belly 12.19
(Σ) 78.70 kg

Table 3. Lengths of individual sections of the designed dummy.

LP Episode
Simulation Dummy

Length, mm

1 head (GZ) 161
2 neck (ZW) 124
3 chest + belly (WV) 443
4 hip (VH) 110
5 thigh (HK) 310
6 drumstick with foot (KS) 445
7 arm (BL) 255
8 forearm with hand (LN) 243
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Table 4. Values of articular angles in the joints of the designed dummy.

Joint ∆ϕ ∆ϕmin, Deg ∆ϕmax, Deg

Z ϕ1 − ϕ2 −10 55
W ϕ2 − ϕ3 −35 5
V ϕ3 − ϕ4 −85 30
H ϕ4 − ϕ5 55 195
K ϕ6 − ϕ5 −130 0
B ϕ7 − ϕ3 −230 0
L ϕ8 − ϕ7 0 150

Table 5. Moments of inertia of a simulation dummy representing the 50th percentile of the male
population.

Body Parts Unit Simulation Dummy M50

moment of inertia of the neck kg·m2 0.003
moment of inertia of the head kg·m2 0.024

moment of inertia of the upper torso kg·m2 0.248
moment of inertia of the middle part of the torso kg·m2 0.198

moment of inertia of the lower torso kg·m2 0.062
moment of inertia of the arm kg·m2 0.023

moment of inertia of the forearm kg·m2 0.007
moment of inertia of the hand kg·m2 0.001
moment of inertia of the thigh kg·m2 0.183

moment of inertia of the leg kg·m2 0.093
moment of inertia of the foot kg·m2 0.004

5. Initial Conditions of Computer Simulation

In the MSC ADAMS program, the local XYZ coordinate system located at the base
of the seat of the simulation dummy was introduced. This program made it possible in
this adopted system to determine the displacements of individual body elements of the
simulation dummy. The MSC ADAMS program allows you to enter the range of motion
for individual joints located in the dummy or to introduce one movement for the entire
object. Defining the movement for the entire facility is possible thanks to the built-in “step
(time)” function. It was used to develop a crash test for low speed (20 km/h). This function
forces the vehicle seat with the dummy to move in the direction of the X-axis until the
speed of 20 km/h is reached, after which the speed drops sharply to 0 km/h, simulating
a collision with an obstacle. Figure 5 shows the motion function panel for the simulation
dummy, along with the equation used for the frontal impact at 20 km/h.

Of great importance from the point of view of the correctness of simulation, tests are
the repeatability of the acceleration pulse of the platform with the vehicle seat for the set
crash speed. The acceleration of the platform, together with the vehicle seat for volunteers,
was determined for each volunteer ride. In the case of crash tests in the MSC Adams
program, the acceleration of the platform with a vehicle seat was mapped on the basis of
real measurements with the participation of volunteers. The acceleration of the platform,
together with the vehicle seat for the collision test with volunteers and the simulation
dummy in the ADAMS program, is shown in Figure 6. The obtained results of mapping
the acceleration of the volunteer platform with a vehicle seat in the ADAMS program
were so satisfactory that it was possible to verify the model of the simulation dummy with
volunteers. Then, by integrating, the speed waveform of the platform with the vehicle seat
expressed in m/s was determined. The comparison of the speed course of the volunteer
platform with the simulation dummy platform is shown in Figure 7.
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Figure 6. The course of acceleration of the stroller together with the vehicle seat during experimental
studies.

The second important parameter affecting the correctness of experimental and simula-
tion tests is the use of identical seat belts. During the research, with the participation of
volunteers, the force in the belts during the collision was measured. Then, the measured
force in the belts during the collision was averaged on the basis of 10 crash tests with the
participation of volunteers. The average value of the force in the belts during a low-speed
collision was simulated in the MSC Adams program. Figure 8 shows a comparison of the
force in the crash belts for the simulation dummy and the volunteers (average of 10 at-
tempts). The obtained results of the force mapping in the belts during the collision in the
ADAMS program were so satisfactory that it was possible to verify the simulation dummy
model with volunteers.
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Figure 8. Comparison of the force characteristics in the seat belts during the volunteer crash test and
the simulation dummy.

6. Results

Figure 9 presents examples of low-speed crash test frames with the participation of a
volunteer representing the 50th percentile of the male population and the superimposed
course of the crash test of a simulation dummy in the MSC ADAMS program. On its basis,
comparable displacements of individual body parts of the volunteer with parts of the dummy
can be observed. If the head, hands, and torso are displaced during the crash test at a speed
of 20 km/h, the compliance of individual body parts with the simulation dummy is visible.
In the case of the lower limbs, their greater displacement in 0.14 s of the crash test is due to
the fact that the volunteers had support under their feet, which was not present during the
crash test simulation.
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Figure 9. Frames at different times of the low-speed crash test with the participation of a volunteer
representing the 50th percentile of the male population and the course of the simulation dummy
crash test superimposed in the MSC ADAMS program.

In order to perform a computer simulation for the C5 and C95 percentile groups. The
masses and dimensions of individual solids of the simulation dummy have been changed.
The anthropometric dimensions of individual body parts of the C5 and C95 simulation
dummies were selected in accordance with the human anthropometric atlas for the male
population.

Figure 10 shows a comparison of the volunteers’ head displacement with the simu-
lation dummy made in the ADAMS program. The course of displacement of the head of
volunteers and the simulation dummy was divided into three parts. The first part lasts from
the moment of impact 0.0 s to 0.14 s. During this time, the head of the volunteers and the
simulation dummy moves forward as much as possible. The second part of the crash test
lasts from 0.14 s to 0.26 s. During this time, the heads of the volunteers and the simulation
dummy move backwards as much as possible (the second phase of the head displacement
of the volunteers contains negative values). The third phase lasts from 0.26 until it comes
to a complete stop. The displacement of the volunteers’ heads and the simulation dummy
was considered in the time from 0.0 s to 0.4 s.
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Figure 10. Volunteer head displacement, (a) C5, (b) C50, (c) C95.
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Undoubtedly, it should be noted that in the case of volunteers representing the C5 and
C95 populations, the results obtained during the crash test in comparison with the results
of the computer simulation are consistent at the level of 82%. In contrast, for volunteers
representing the C50 population, the agreement was 88%. This difference was calculated
based on the standard deviation determined for each pair of data over a specified period
of time. The displacement of the head in the first phase of the collision is conditioned by
the forces in the belts and in the second phase by the stiffness of the car seat. The car seat
in the MSC ADAMS program consisted of a single block, while the car seat used in the
experimental crash tests consisted of a seat, backrest, and headrest.

Making further comparisons between the simulation dummy and the volunteers,
graphs were made showing the trajectories of the head movement. For volunteers, their
head displacement range of motion corridors were averaged across each percentile group.
Figure 11 shows the head movement trajectory of the C50 simulation dummy and C50
volunteers, while Figure 12 shows the head movement trajectory of the C5 simulation
dummy and C5 volunteers. Figure 13 shows the head movement trajectory of the C95
simulation dummy and C95 volunteers. Differences in the values of the head movement
trajectory during the crash test between the C50 simulation dummy and the C50 volunteers
are insignificant and do not exceed 20%. This difference was calculated based on the
standard deviation determined for each pair of data over a specific time period (0.00 s to
0.40 s). Differences in the head movement trajectory values during the crash test between
the C5 simulation dummy and the C5 volunteers are insignificant and do not exceed 15%.
Differences in the values of the head movement trajectory during the crash test between
the C95 simulation dummy and the C95 volunteers do not exceed 18%. This difference was
calculated based on the standard deviation determined for each pair of data over a specific
time period (0.00 s to 0.40 s).
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Figure 11. Comparison of head movement trajectories of a simulation dummy and volunteers
representing the 5th percentile of the male population.
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Figure 12. Comparison of head movement trajectories of a simulation dummy and volunteers
representing the 50th percentile of the male population.
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Figure 13. Comparison of head movement trajectories of a simulation dummy and volunteers
representing the 95th percentile of the male population.

7. Discussion

Initial differences in the position of both the legs and upper limbs affect the movement
of the head and, above all, changes in its position in relation to the seat. Determination of
the head displacement is based on the identification of the position of the markers stuck
in this case on the volunteer’s head. In all low-velocity crash tests, the displacement of
the head of the volunteers is very large, ranging from 0.31 m to 0.49 m depending on the
population percentile.

The head displacement in relation to the X axis in the case of volunteers representing
the 5th percentile of the population in the first phase of the collision (0.14 s) ranges from
0.35 m to 0.38 m, and in the second phase of the collision (0.26 s) from 0.14 m to 0.17 m.
In the case of people representing the 50 percentile of the population, in the first phase of
the impact (0.14 s), the movement of the head in the direction of the X-axis ranges from
0.42 m to 0.49 m, and in the second phase of the impact (0.26 s) from 0.15 m to 0.23 m.
Movement of the head in the direction of the X axis in the case of people representing the
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95th percentile of the population in the first phase of the impact (0.14 s) ranges from 0.47 m
to 0.55 m, and in the second phase of the collision (0.26 s) from 0.17 m to 0.21 m.

The head displacement in relation to the Z axis in the case of volunteers representing
the 5th percentile of the population in the first phase of the impact (0.14 s) ranges from
0.12 m to 0.15 m. The displacement of the head in the direction of the Z axis, in the case of
people representing 50th percentile of the population (14 s) ranges from 0.20 m to 0.24 m.
The displacement of the head in the direction of the Z axis, in the case of people representing
the 95th percentile of the population in the first phase of the impact (0.14 s) in the range
from 0.22 m to 0.25 m. Movement of the head in the direction of the Z axis for all volunteers
participating in the crash test in the second phase of the impact (0.26 s) ranged from 0.01 m
to 0. 04 m.

The head displacements of the simulation dummy were superimposed on the desig-
nated corridors of the volunteers’ head space in the direction of the X and Z axes. Head
displacement in the X and Z directions of the simulation dummy representing the 50th per-
centile of the population coincides 100% with the displacement of the head of the volunteers
in the first phase of the impact. However, during 0.24 s of the crash test, the displacement of
the simulation dummy’s head slightly exceeds the corridor of the volunteers’ head displace-
ment. In the case of the simulation dummy representing the 5th percentile of the population,
the head in both the first and the second phase of the impact in the direction of the X-axis
coincides 100% with the head displacement of the volunteers.

8. Conclusions

Simulation programs play a major role in crash tests to increase the passive safety of
passenger cars. In its simplest form, computer simulation is designed to reproduce phenomena
that occur in the real world using mathematical models. They are defined and operated with
the help of computer programs. In crash tests, experimental tests are associated with high costs.
In contrast, simulation studies are much cheaper than experimental studies because they do not
require a state of research. Modern simulation programs such as Dytran, Madymo or ADAMS
are geared toward crash test simulations and data validation through experimental tests.

In the case of crash tests at low speeds up to 20 km/h, the most sensitive element is
the head and neck. Therefore, the authors of the article focused on the displacement of the
volunteers’ heads and the simulation dummy during the low-speed crash test. Undoubtedly,
it should be noted that the safest form of data recording during a low-speed crash test is the
use of a high-speed camera. Crash tests involving volunteers were recorded at a frequency
of 2.5 thousand frames per second. The measurement frequency used made it possible to
compare the recorded crash tests with a computer simulation, which was also recorded at a
frequency of 2.5 thousand frames per second.

The selected MSC ADAMS simulation program enabled the construction of a simu-
lation dummy consisting of solids connected by joints that are available in the program.
The program allows you to modify the entered parameters, such as mass, dimensions
of individual body parts and the moment of resistance in the joints. Thanks to this, the
simulation dummy model can be adapted to the dimensions of the appropriate percentile
group. The simulation dummy made in the MSC ADAMS program was modeled in such a
way as to reproduce the movements of volunteers during the crash test at a low speed of
20 km/h. Depending on the percentile group, the displacement of the head of the simulation
dummy in relation to the volunteers in the considered period of time achieved compliance
at the level of 80%. On the basis of simulation studies and experimental studies with the
participation of volunteers, it should be noted that anthropometric dimensions affect the
trajectories of head movement. The smallest displacement of the head in the direction of
the X and Z axes occurred in the case of volunteers representing the 5th percentile of the
population and the largest in the case of volunteers representing the 95th percentile of the
population.

The next stage of work related to low-speed crash tests will be the construction of a
physical anthropometric dummy. Satisfactory results of the probability of displacement



Sensors 2022, 22, 9720 15 of 17

of individual body parts of the simulation dummy with volunteers allowed for the initial
validation of the dummy. The next step will be to compare the simulation dummy with
the physical dummy in both the frontal crash test and the low-speed rear crash test. The
creation of a physical dummy dedicated to a low-speed crash test will allow for an analysis
of what happens to the frontal body during rear and frontal collision using one dummy.

Work on the physical construction of the simulation dummy involves the use of elements
corresponding to the shape, mass, and dimensions of individual parts of the human body,
as well as the use of special joints reflecting the range of motion of individual human joints.
Crash tests in the automotive world concern the safety of passengers and the behavior of
structures under the influence of dynamic impacts. Crash testing requires specific equipment
and systems. It should be noted that it is not possible to conduct a crash test without an
appropriate anthropometric dummy and data recording system.
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