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Abstract: Currently, there is a growing population around the world, and this is particularly true
in developing countries, where food security is becoming a major problem. Therefore, agricultural
land monitoring, land use classification and analysis, and achieving high yields through efficient
land use are important research topics in precision agriculture. Deep learning-based algorithms
for the classification of satellite images provide more reliable and accurate results than traditional
classification algorithms. In this study, we propose a transfer learning based residual UNet archi-
tecture (TL-ResUNet) model, which is a semantic segmentation deep neural network model of land
cover classification and segmentation using satellite images. The proposed model combines the
strengths of residual network, transfer learning, and UNet architecture. We tested the model on
public datasets such as DeepGlobe, and the results showed that our proposed model outperforms the
classic models initiated with random weights and pre-trained ImageNet coefficients. The TL-ResUNet
model outperforms other models on several metrics commonly used as accuracy and performance
measures for semantic segmentation tasks. Particularly, we obtained an IoU score of 0.81 on the
validation subset of the DeepGlobe dataset for the TL-ResUNet model.

Keywords: image segmentation; agriculture; satellite imagery; deep learning; UNet architecture;
transfer learning

1. Introduction

Most countries in the world, particularly European countries, have great agricultural
potential. Some of the most important techniques that use machine and deep learning
algorithms to achieve high productivity in precision agriculture include land cover clas-
sification and effective management of land resources. Numerous classifications of the
physical coverage of the Earth’s surface, such as croplands, forests, grasslands, lakes, and
wetlands are depicted on land cover maps as spatial information. Dynamic land cover maps
incorporate transitions of land cover classes through time, thereby capturing changes in
land cover. Land use maps provide geospatial information on the structures, activities, and
resources that humans use to establish, enhance, or sustain a particular type of land cover.

More objects can now be identified in satellite images because of the rise in spatial
resolution, and studies have switched from spectral image classification, pixel-based image
analysis, and object-based image analysis to pixel-level semantic segmentation. In this
study, we analyze the development of semantic segmentation techniques based on deep
learning and propose a TL-ResUNet segmentation model for land use/cover.

In deep learning, many algorithms for classifying satellite images provide more reliable
and accurate results than traditional classification algorithms, and numerous researchers
are conducting various scientific and practical studies in this field [1–3]. Land use/cover
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maps are generated from different high-resolution satellite images, such as Sentinel [4],
Landsat [5], and Worldview [6] satellite missions. These images can be used to classify
different types of land cover, such as permanent water, built-up areas, residential areas, and
agricultural fields. The Copernicus land monitoring service platform maintains general
statistics on land use and cover across the world.

High-resolution satellite images have complex and deep features that require complex
operations for image recognition. Creating land use maps is one of the most significant
uses of satellite imagery, and this is possible through image segmentation and classification
procedures. In recent years, different tasks and applications, such as producing regional
and global land cover maps, creating advanced supervised and unsupervised classification
algorithms, region-based image analysis, using numerous remote sensing features, and
integrating map data into classification procedures, such as data on soil, roads, farmlands,
crops, and other census data, have all seen significant advancements in the field of image
classification. The main tasks of satellite image analysis are multi-object detection and
classification that analyze numerical features or properties associated with an image,
which can be divided into different classes. Comprehensive monitoring requires a highly
productive evaluation of land cover via image segmentation and classification in different
fields, particularly in agriculture.

Since 2012, CNN-based algorithms have been effectively used to solve classification
tasks [7–10]. A set of convolution filters is used in each layer to identify image characteristics
and features’ structure [11]. The most popular CNN-based architectures, such as GoogleNet,
VGGNet, AlexNet, and ZFNet, have recently been used for image classification. However,
calculating land use from satellite imagery through the classical approach of classification
is difficult. Thus, segmentation-based classification has become significantly efficient and
smart. Deep learning is a group of machine learning methods used in image analysis
to learn and display features, such as edges, curves, and patterns from an input image.
CNN and FCN are well-known deep learning techniques for image analysis. CNN-based
structures include convolution, pooling, dropout, batch normalization, and non-linearity
operation layers.

Therefore, this study presents a CNN-based UNet architecture, residual network, and
transfer learning for land use classification of satellite images through semantic segmenta-
tion. Additionally, we discuss an overview of the recent deep learning-based techniques
for satellite image classification and the available training datasets.

The main contribution of this work is improving model performance and accuracy
using a combination of residual network, transfer learning, and UNet architecture. Gener-
ally, UNet is a robust architecture for segmentation tasks. Since land cover and land use
classification task is complex, UNet coupled with residual networks and transfer learning
yields better results.

The rest of this study is divided as follows: Section 2 analyzes various recent and
relevant research papers; Section 3 studies available common datasets for satellite image
segmentation and classification; Section 4 proposes our encode-decoder-based deep learn-
ing architecture (TL-ResUNet); Section 5 presents the experimental settings as well as the
qualitative and quantitative analysis of the semantic segmentation results; and Section 6
presents the final remarks and conclusion of the study.

2. Related Works

Land cover has been studied in several research papers ranging from machine learning
to deep learning. Using neural networks a decade ago was unpreferable because of their
high computational complexity. Histogram thresholding provided satisfactory results,
but exhibited problems associated with the variations and challenges in satellite images.
Similarly, classical machine learning algorithms, such as support vector machines and
random forest methods, were used for LULC mapping. For example, in [12,13] they have
applied these methods for land cover classification. In the land cover classification study
that uses machine learning, a decision tree and an artificial neural network were applied
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to Landsat ETM+ data to classify land cover. However, the drawback of these methods
is that they require in-depth knowledge of the feature extraction process to improve
model performance.

However, recent studies show that deep learning algorithms are widely used in
classification and segmentation tasks. Especially, due to greater number of features and
complex structure of satellite images, deep learning yields better results in LULC tasks
such as agricultural field monitoring, forest change detection, water resources monitor-
ing, building detection, and urbanization. For example, automatic building recognition
method have been implemented in [14] which collected a dataset using the MapBox API
for OpenStreetMap to create a satellite image with building masks. Furthermore, the pixel-
wise image segmentation methods for classifying different attributes of satellite images
is explained in study [15]. Here the proposed method can achieve a high accuracy using
the UNet model to detect a building in the INRIA dataset, which is composed of very
high-resolution images. However, these studies only focused on segmenting one class.
Developing a model which uses multi-class segmentation of satellite images is a more
complex task. Deep learning architectures, such as UNet and DenseNet, are actively used
for image segmentation, whereas architectures, such as ResNet, VGG, and EfficientNet, are
used for classification tasks in computer vision. According to the results of recent research
works, these deep learning models outperform classical feature extraction algorithms.

However, in terms of satellite image processing, more work must be done to achieve
high performance. For example, results of modern semantic segmentation were not sat-
isfactory [16–19] due to the complex shape of satellite images. Kuo et al. [20] proposed a
method that delivers one of the top results in the DeepGlobe challenge, in which improving
the performance of model depends on a variation of DeepLabV3+. Despite this, their model
accuracy is not good because of the fixed value of the standard deviation gaussian filter.
Renee Su et al. proposed a semantic segmentation model using DeepLab v3+ with an IoU
score of 0.756, and as a dataset they used the DeepGlobe dataset [21]. However, their model
requires a greater number of satellite images to train because the authors did not apply any
augmentation techniques. SegNet is a deep convolutional encoder-decoder architecture
which is a very effective model among the numerous image segmentation models. Lee
et al. applied the SegNet model to an aerial image to categorize the land cover and then
performed research to assess the accuracy of that classification [22].

In [23], authors proposed an architecture using DeepLab and ResNet18 as the back-
bone, accomplishing an IoU score of 0.433 s of the DeepGlobe land cover data. The authors
of the transfer learning approach in this study used two neural network architectures. The
ResNet50 model was used for classification. After classification, a pre-trained ResNet50
model was used as an encoder in the modified UNet model for segmentation [24]. The
accuracy was not so high, and the authors claim that this is mainly because of the quality of
the dataset. Also, the authors conclude that the CORINE dataset is not suitable for training
machine learning algorithms.

One of the main components of LULC is agricultural field monitoring. Several studies
were conducted for farmland segmentation using low resolution images [25,26]. However,
in [27] researchers generated a new benchmark dataset from VHR Worldview-3 images for
twelve distinct LULC classes of two different geographical locations. Segmentation using
low resolution satellite images can be used to classify tasks of global or general changes in
areas, whereas high-resolution images should be used for segmenting specific objects such
as multi-class segmentation and small objects.

3. Datasets

We collected publicly available satellite images for training and testing. However, the
training dataset is constrained using this approach for satellite image classification and
segmentation. To address this, we used image augmentation and various computer vision
techniques to enhance the number of satellite frames. The shortage of labeled training data
in a dataset has been one of the greatest challenges in adopting deep convolutional network
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pipelines in satellite image classification and segmentation. Datasets are created using
middle or low-resolution satellite images. However, low and middle resolution satellite
images may not produce the expected accuracy in satellite image segmentation. Pixel-based
segmentation masks for image segmentation are considerably difficult to create. Applying
a poorly supervised learning strategy, which is used in [28,29], is a method for tackling the
lack of training data. The objective of weakly supervised methods is to reduce the need for
complicated training datasets. Nivaggioli et al. [28] used a previously suggested method by
producing pixel-level annotation from image-level annotation. They performed cropland
segmentation using two types of labels commonly found in remote sensing datasets in [29].
To construct pixel-level maps of land cover, the study investigates weak labels in the form
of a single-pixel label per image and class activation maps.

3.1. Labeled DeepGlobe Data

The DeepGlobe land cover classification challenge is the first publicly available dataset
that focuses on rural regions using high-resolution submeter satellite images, as shown in
Figure 1. The DeepGlobe dataset consists of approximately 1200 satellite images with a
pixel size of 2448 × 2448, divided into training, validation, and test sets with a percentage
of 70%, 15%, and 15%, respectively. Each image had RGB channels from the DigitalGlobe
Vivid+ dataset with pixels at a resolution of 50 cm. Each satellite image was linked to a
mask image to label the land cover. The mask is an RGB picture with seven classes, such as
urban, agriculture, rangeland, forest, water, bare, and unknown (Table 1).
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Figure 1. The land cover original image (left) and class label (right) pairs.

Table 1. Classes in the label data of the DeepGlobe dataset.

Class/Color Pixel Count Proportion
Urban 642.4 M 9.35%
Agriculture 3898.0 M 56.76%
Rangeland 701.1 M 10.21%
Forest 944.4 M 13.75%
Water 256.9 M 3.74%
Barren 421.8 M 6.14%
Unknown 3.0 M 0.04%

3.2. Defence Science and Technology Laboratory (Dstl) Dataset

The Dstl Kaggle dataset [30] is the second dataset, which provides 57 satellite images
in a region of 1 sq. km. in both three-band RGB and 16-band multispectral formats. Here,
we use three-band images with a spatial resolution of 1.24 m. In this dataset, 10 different
classes, such as roads, buildings, vehicles, farms, trees, waterways, and others, have been
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labeled within particular images. The panchromatic waveband ranges from 450 to 800 nm,
whereas 8 multispectral (red, red edge, coastal, blue, green, yellow, near-IR1, and near-
IR2) wavebands are between 400 and 1040 nm. According to the sensor resolution at
Nadir, panchromatic, multispectral, and SWIR bands are equivalent to 0.31, 1.24, and 7.5 m,
respectively [31].

3.3. LandCoverNet

The multispectral satellite imagery from the Sentinel-2 mission in 2018 is labeled using
the worldwide yearly LandCoverNet training dataset, as shown in Table 2. This dataset
contains data across Africa, and each pixel of the image is identified as one of the seven
land cover classes, such as water, woody vegetation, cultivated vegetation, semi-natural
vegetation, permanent snow/ice, natural bare ground, and artificial bare ground, based on
its annual time series.

Table 2. Comparison of main the characteristics of the abovementioned datasets such as DeepGLobe,
Dstl and LandCoverNet.

Datasets Number of Classes Spatial Resolution Number of Images

DeepGlobe 7 1.24 m 1146

Dstl 10 1.24 m 57

LandCoverNet 7 10 m 1980

Augmented Images 7 - 6517

Total - - 9700

The first version of this dataset contains 1980 images with a size of 256 × 256 pixels,
which contains 66 tiles from the Sentinel-2. Each image chip includes an annual class label
and temporal data from the Sentinel-2 surface reflectance product (L2A) at a 10-m spatial
resolution, which is stored as a GeoTIFF data format. The resolution and an annual class
label of each image are stored in a raster format, precisely as GeoTIFF files [32].

Table 2 compares datasets in terms of number of classes, spatial resolution, and number
of images. While both Dstl and DeepGlobe are high resolution images, the latter was chosen
for the proposed model because of the greater number of images. As mentioned earlier,
during the experiments we found that image data augmentation approaches, such as
geometric transformations, brightness/contrast enhancement, and data normalization,
proved to be the most effective way to improve the final accuracy rate. The effectiveness of
deep learning models depends on the size and resolution of the training image datasets.
Therefore, we rotated each original image and then flipped each rotated image horizontally
to increase the number of images in the satellite segmentation dataset. By applying the
data augmentation methods to the original 3183 fire images, we increased the total number
of images to 9700.

4. Proposed Architecture

Two different neural network designs are suggested in this study. The first neural
network architecture used for the segmentation task was the modified UNet model [33,34].
The second was the ResNet-50 model [35], which served both as the classification model
and as an encoder for the modified UNet model, as shown in Figure 2. The UNet model
was trained using different methods of ResNet backbone weight initialization models, that
is, with random weights and ResNet pre-trained on the ImageNet dataset. With the help
of this transfer learning strategy, we may apply the knowledge obtained from the first
task to a new one, which is a more challenging task because obtaining training data is
extremely difficult.
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Additionally, the DeepGlobe dataset was used to train the satellite image segmentation
model, which allowed for the use of ResNet weights that had already been learned, except
for modifying and training the final layers of the network.

With regards to DeepGlobe dataset, it includes high resolution images with 1.24 m
spatial resolution. The minimum requirements for the dataset is around 1000 high reso-
lution satellite images, since deep learning models require greater number of images for
training effectively. Using data augmentation techniques, the number of images in dataset
increases during training model. The proposed model was trained using 9700 images.

4.1. Modified ResUNet Architecture

UNet is the most easily scalable and sizable fully convolutional network architecture
for semantic segmentation. Generally, UNet architecture consists of two paths: a path that
contracts to record context and another that expands symmetrically to enable exact localiza-
tion. The contracting path follows a similar architecture to the ResNet architecture, where
there is a long skip connection on every level; moreover, there are local skip connections
between convolutions at each step. Feature maps are downsampled during the convolution
processes, which also increases the number of feature maps per layer. However, they are
upsampled before each step in the expanded route by a transposed convolution and this
expanding branch boosts the resolution of the feature map. The expanding path uses skip
connections to mix high-resolution features from the contracting path with upsampled
features to localize them [35]. The output of the UNet model is a pixel-wise mask that
shows the class of each pixel.

We applied transposed convolution layers to build a matching decoder, which doubles
the size of a feature map while cutting the number of channels in half. Then, the output
of a transposed convolution is concatenated with an output of the corresponding part of
the decoder. To maintain the same number of channels as in a symmetric encoder term,
the resulting feature map is applied to a convolution process. Figure 3 shows that this
upsampling process can be repeated several times to couple with max pooling layers.
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Technically, fully connected layers can accept inputs of any size, but because our max
pooling layer downsamples each image twice, the present network implementation can
only accept inputs with sides divisible by two.
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Figure 3. Trained model results.

4.2. ResNet Architecture

As an encoder of UNet, we used the pre-trained ResNet architecture, which consists
of 48 convolution layers and 1 MaxPool layer, known as ReNnet-50. The advantage of
ResNet over the sequential convolutional networks is that it can avoid the vanishing
gradient problem and mitigate the degradation problem, where adding more layers to the
model causes higher training errors. The ResNet architecture uses the repetitive layers of
ResBlocks, that is, the blocks with skip connections, which make the network deeper while
avoiding model degradation. After winning the ImageNet large-scale visual recognition
contest for image classification in 2015, the ResNet architecture became recognized as the
most sophisticated model architecture for image classification [35–37].

4.3. Evaluation Metrics

Both architecture models that modified UNet and ResNet-50 were assessed using
the validation set, which consisted of 20% data. Key metrics, such as precision, recall, F1
score [38–41], and Jaccard index [42–45], were used to evaluate the model results. The
precision metric was used to calculate the percentage of correctly labeled predictions across
all predicted labels. It is the ratio of the true positive (TP) and false positive (FP) results (1):

Precision =
TP

TP + FP
(1)

The recall metric was also considered to measure the proportion of correct labels in all
predicted labels. It is the ratio of the TP and false negative (FN) results (2):

Recall =
TP

TP + FN
(2)

The F1 score was used as a result of training the ResNet classifier, which combines
precision and recall with the same weights (3):

F1 =
2× precision× recall
(precision) + recall

(3)

The results of the UNet segmentation model were evaluated using the Jaccard index
metric (4):

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| (4)

4.4. Loss Functions

We can modify the evaluation metric of the Jaccard index for discrete pixel-wise picture
objects, where yi is the binary value (label) of the associated pixel and yi is the expected
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probability for the pixel. We used binary cross-entropy for the segmentation task since
it can be viewed as a pixel-by-pixel classification problem. The area of intersection (J)
between predicted masks and the related ground truth data is maximized by minimizing
the loss function, which also optimizes the probability of correctly predicted pixels [46–48].

5. Experimental Results

The modified UNet model was used for semantic segmentation of the DeepGlobe
dataset. The final modified TL-ResUNet model with initialized and tuned ResNet-50
encoder was trained and evaluated on the DeepGlobe dataset.

5.1. Model Training

The Pytorch framework is mostly recommended to train the machine and deep learn-
ing models. The modified UNet architecture is prototyped using the PyTorch framework
by combining the building blocks of the ResNet-50 as an encoder. GPU servers with Nvidia
Tesla V100 graphics cards and 43 GB of RAM were used during the training.

The ResNet-50 model is trained on the DeepGlobe dataset and initialized using weights
of the ResNet-50 model pre-trained on the ImageNet dataset. The model is trained in two
stages because a pre-trained model was used from the beginning: the first stage involves
training just the last layers, whereas the second involves unfreezing all the layers. The
model was trained with 20 epochs in total, i.e., 13 and 7 epochs for the first and second
stages, respectively.

Three methods of weight initialization were considered during the training. First, the
weights were initialized using a LeCun uniform initializer, which has a random uniform
distribution within [−L, L], where L = sqrt (1/fin) and fin is the number of input units in the
weight tensor. Second, we reused the same architecture with the ResNet-50 encoder pre-
trained on ImageNet, and all layers in the decoder were initialized using the LeCun uniform
initializer. Third, we also used the latest trained segmentation model by initializing the
encoder with the ResNet-50 but pre-trained on the DeepGlobe dataset, as shown in Figure 3.

5.2. Results

For the validation subset of the model using the DeepGlobe dataset, we achieved the
following results after 30 training epochs:

(1) Best score on randomly initialized weights: IoU = 0.68;
(2) Best score on the encoder pre-trained weights on ImageNet: IoU = 0.81.

Although the model performs well in the majority of cases (Figure 3), it may fail
to detect some classes such as narrow water bodies. An example of this case is given
below. Likewise, small, forested areas are misclassified in some cases (Figure 4). However,
dense forested areas are classified correctly though they are located near agricultural fields.
Distinguishing forested areas from farming lands is a challenging task. Furthermore, the
model performs extremely good for some classes such as urban and farming lands.

The learning curves for validation in Figure 5 below show the results of each approach.
A steady value is attained faster in pre-trained networks than in the randomly initialized
network, and the steady value is visually higher in the pre-trained models.

The visualization of overlaying the masks on the original image demonstrates the
advantage of training with the pre-trained models.

Note that the hyperparameter optimization techniques or the dataset preprocessing
can be applied to further improve the performance of the models. Table 3 specifies the
detailed scores.
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Table 3. Comparison of the UNet training results on IoU metric throughout epochs.

Epoch Train/Validation
UNet Trained with

Randomly Initialized
Weights

UNet Trained with Weights
Trained on ImageNet without

Residual Layers

UNet Trained with
Weights Trained on

ImageNet

10
train 0.51 0.52 0.54

validation 0.49 0.50 0.51

20
train 0.59 0.62 0.69

validation 0.58 0.61 0.64

30
train 0.68 0.75 0.84

validation 0.68 0.74 0.81

The hyperparameter tuning techniques and results are shown in Table 3. Overall, it
can be seen that UNet trained with transfer learning and residual layers can learn features
faster and in an effective way. While UNet with random weights reaches a 0.68 IoU score
in 30 epochs, UNet with ImageNet weights achieves a 0.74 IoU score. Finally, UNet with
ResNet50 and with ImageNet weights achieved a 0.81 IoU score.

To further understand the advantage of our model against the others, we show some
comparative results in Table 4. ClassmateNet produces fair segmentation output for
larger areas but fails to segment short details such as smaller areas and field boundaries.
DeepLabv3 and DeepLabv3+ improve performance on these details; however, they also
produce artefacts and fail to keep producing stable results at larger areas in some cases.
However, our model combines multi-level features effectively and produces more accurate
segmentation results at both larger and detail areas.

Table 4. Comparison of the TL-ResUNet with other models.

Algorithms IoU

Baseline 55.19

ClassmateNet 69.87

DFCNet 71.31

DeepLabv3 74.52

DeepLabv3+ 75.6

TL-ResUNet 81.0

We compared the robustness and weaknesses of previous methods with the proposed
method in different categories using quantitative and qualitative performance results, as
shown in Table 5. Based on the evaluated scores, the performance of the proposed approach
did not suffer with densely forested areas and classified them correctly though they are
located near agricultural fields. In addition, the model performs extremely well for some
classes such as urban and farming lands.

The outcomes of segmentation methods can be divided into three categories: robust,
standard, and powerless. Robust measures show that the method is applicable to segment
all types of land/field segmentation. The algorithm may fail in some circumstances, such
as narrow water bodies or small forested areas, according to normal standards. Powerless
evidence suggests that algorithms are unreliable in the presence of noise or color, and the
land classification procedure frequently modifies the initial geometry of moving objects.
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Table 5. Evaluation of the robustness and weaknesses of segmentation methods using different
characteristics.

Criterion DFCNet DeepLabv3 DeepLabv3+ Proposed
Method

Scene
Independence standard robust standard robust

Object
Independence standard robust robust standard

Robust to Noise powerless robust standard robust

Robust to Color standard standard powerless standard

Small Land
Segmentation robust standard robust robust

Multiple Land
Segmentation standard powerless powerless powerless

Processing Time powerless standard robust robust

6. Conclusions

In this study, we proposed a modified semantic segmentation deep neural network
model called the TL-ResUNet for land use/cover classification and segmentation of satellite
images. This developed model includes residual learning, UNet architecture, and a transfer
learning approach. The proposed architecture section discussed the implementation of
efficient training of the UNet model using pre-trained weights. The ResNet-50 model with
pre-trained weights was chosen as a backbone of the UNet for experimental purposes. For
the ease of building, training, and using the neural network, the library of the segmentation
model, which is based on the PyTorch deep learning framework, was chosen. Finally, the
environment and results of experimental training were analyzed using the commonly used
IoU metric to determine the score of similarity of the predicted map and expected ground
truth map. In the experiment, we verified the effectiveness of our proposed model and
demonstrated that our model performs satisfactorily against the state-of-the-art models on
the land use and cover task.

Future tasks include solving misclassification problems under similar color conditions
and increasing the accuracy of the approach. We plan to develop a small real-time “land use
land cover” model with YOLOv networks [49–51] using feature analyzing and extraction
approach [52–56].
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