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Abstract: Target-following mobile robots have gained attention in various industrial applications.
This study proposes an ultra-wideband-based target localization method that provides highly accurate
and robust target tracking performance for a following robot. Based on the least square approximation
framework, the proposed method improves localization accuracy by compensating localization bias
and high-frequency deviations component by component. Initial calibration method is proposed
to measure the device-dependent localization bias, which enables a compensation of the bias error
not only at the calibration points, but also at the any other points. An iterative complementary filter,
which recursively produces optimal estimation for each timeframe as a weighted sum of previous and
current estimation depending on the reliability of each estimation, is proposed to reduce the deviation
of the localization error. The performance of the proposed method is validated using simulations and
experiments. Both the magnitude and deviation of the localization error were significantly improved
by up to 77 and 51%, respectively, compared with the previous method.

Keywords: autonomous mobile robot; UWB localization; target tracking

1. Introduction

Recently, human-following mobile robots have been introduced to ease the burden of
human operators in various applications [1–3]. Robust and reliable human tracking is a key
technology of following robots, and it enables mobile robots to operate in cooperation with
humans. Following robots have been successfully applied in several domains, including
logistics [4,5], shopping [6–8], and smart factories [9–11]; however, they are not technically
mature and require further technical development for robust and reliable human tracking.

Human-tracking methods can be classified depending on the type of sensors used to
measure the location of a target person. Camera vision was generally adopted in previous
studies because it provides abundant scene information with relatively low cost [12].
However, the absence of depth information, a narrow field of view, and malfunctions due to
illumination changes make it difficult to use only camera vision for tracking. Depth cameras
and LiDAR have been used to supplement camera vision to provide three-dimensional
point clouds of a target object. Previous studies have proposed human-tracking methods
that combine camera vision with depth camera or LiDAR data [13,14]. However, these
sensor-fusion methods also have a critical limitation because tracking failure can frequently
occur in crowed environments when the camera loses the target when it is hidden by
opaque obstacles.

A wireless-communication-based indoor positioning system (IPS) can be used to
robustly measure the position of the target person regardless of surrounding obstacles.
Even though the accuracy may be affected by the obstacles, the system does not lose
the target. Wireless LAN (WLAN) [15], Bluetooth [16], and Zigbee [17] have been used
for indoor positioning in various applications, but meter-level positioning errors (>1 m)
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prevent the use of these systems for human tracking in following robots. Ultra-wideband
(UWB)-based IPS, which uses frequency bands ranging from 3.1 to 10.6 GHz with a broad
occupancy bandwidth of more than 20% of the central frequency, provides a more accurate
position measurement (<30 cm) compared with other IPS methods, and it can be adopted
in the following robot as an effective sensor system for human tracking.

UWB-based IPS is composed of multiple UWB transceiver modules that are stationar-
ily installed in the environment, called anchors, and a transceiver module installed on a
moving target, called a tag. The system estimates the position of the tag using the given
distances between the tag and each anchor, which are calculated using the time-of-flight
of UWB communication. Previous studies describe two types of approaches to reduce
positioning errors under the given errors in a distance measurement, i.e., fingerprinting
and geometric approaches. In the fingerprinting approaches, machine learning techniques
are used to estimate the position of the tag using empirical datasets, which consist of ex-
perimentally measured UWB transceiver signals and corresponding true locations [18,19].
It provides accurate position estimation for pre-trained environments, but it is difficult
to use in practical applications because the positioning accuracies are too dependent on
the training datasets, which are not applicable to unknown environments. The geometric
approaches estimate the position of the tag utilizing the geometrical relations between
the transceivers. The geometric approaches estimate the position of the tag utilizing the
geometrical relations between the transceivers. In the literature, several methods have been
proposed including receive signal strength (RSS), angle-of-arrival (AOA), time-difference
of arrival (TDOA), and time-of-arrival (TOA) [20]. The geometric approaches can be clas-
sified into two categories, i.e., parametric and nonparametric methods, according to the
description of the error characteristics in the distance measurement [18]. The parametric
method defines the error characteristics using a probability density function, and it requires
a sufficiently large number of samples to ensure the reliability of the probability density
function. Maximum likelihood [21,22] and Bayesian estimation [23] have been proposed for
the precise parameterization of the error that results in an improvement of the positioning
accuracy; however, the accuracy can be critically degraded by variations in the error char-
acteristics. The nonparametric method, which determines the error characteristics based
on descriptive statistics, provides a position estimation that is robust to the uncertainties
in the errors. Even though the parametric method may demonstrate superior perfor-
mance in specific cases, the nonparametric method is more appropriate for the UWB-based
IPS, owing to device-dependent errors in the UWB-based distance measurement, such as
clock drift, frequency drift, and a timestamp that is difficult to represent as a probability
density function [24].

A typical example of the nonparametric method is the least square (LS) approximation.
In a practical situation, the LS approximation sensitively responds to non-line-of-sight
(NLOS) situations and device-dependent measurement errors [25]. The weighted least
square (WLS) approximation, which introduces weight factors to the LS, was proposed to
improve the performance of the LS approximation [26,27]; however, it experiences difficul-
ties in determining the weight factors based on the covariance of errors. Residual weighted
least square (RWLS) approximation, which evaluates the reliability of data using residuals
rather than weight factors, has been proposed to address this problem [27]. The LS-based
approximations find the optimal position estimation inside a particular area bound that
covers possible distance-measurement errors. Unlike the LS-based approximation, the
modified hyperbolic (M-HB) algorithm estimates the position of the tag by investigat-
ing possible intersection points between lines that connect the points of the tag to each
anchor [28]. It uses distance data from two of the three anchors to create two intersections
that are probable tag positions, and the remaining anchor determines the correct intersec-
tion between the two. However, M-HB has difficulty in identifying the exact position of the
tag in the case where the distances between the remaining anchor and the two intersections
are same, thereby limiting its angle of use.
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Previous UWB-based positioning methods assumed that the UWB transceivers are
configured as a UWB tag moves in the area enclosed by multiple (>3) UWB anchors that
are stationarily installed in the environment. However, the configuration of the UWB
transceivers should be modified for human tracking in the following robot. The UWB
anchors should be mounted on the robot because it aims to identify the position of the tag
relative to the robot instead of the environment. In this configuration, the positioning error
can increase because the tag is located outside the convex hull made by the anchors [29].
The anchors installed in close proximity also negatively affect the positioning accuracy [30].

Assuming a configuration in which the human holds a UWB transceiver (tag) and four
UWB transceivers are mounted on the mobile robot, this study proposes a novel method to
estimate the position of the tag relative to the mobile robot for precise and robust human
tracking in the following robot. Based on the previous LS approximation framework, the
proposed method improves the positioning accuracy by developing sensor calibration to
manage device-dependent error characteristics, as well as the interactive complementary
filter to reduce the standard deviation of positioning errors. The main contribution of this
study is the novel component-wise localization error correction method that alleviate not
only the bias but also the deviation in the localization error. This paper identified two
main components of localization error in the LS approximation through the mathematical
derivation and proposed the error correction methods that alleviate the errors component
by component. As the proposed method precisely tackles each error component based
on in-depth error analysis, it achieved superior localization performance compared to the
methods proposed in the literature. The contributions of this paper are as follows:

1. This study proposes a component-wise error correction method to increase the accu-
racy of UWB localization based on the in-depth analysis of UWB error characteristics.
The core UWB error components are classified into two parts, i.e., bias and noise, and
error corrections that fit into each component are proposed.

2. The sensor calibration is proposed to measure and compensate the device-dependent
bias errors, which consistently appear in UWB localization. By conducting the cali-
bration only once in the initialization, it can successfully correct the consistent bias of
the localization.

3. The interactive complementary filter is proposed to alleviate the high-frequency noise
of the localization. Radial and tangential components of the localization noise are
significantly reduced by the proposed filter.

The following manuscript is structured as follows. In Section 2, the component-
wise error correction method is described in detail including mathematical descriptions
on the localization error analysis, initial calibration to correct bias error, and iterative
complementary filter to alleviate deviation of the error. In Section 3, simulation and
experimental results are presented to evaluate the performance of the proposed method.
In Section 4, we discuss the advantages and limitations and conclude the paper in the
following section.

2. Materials and Methods
2.1. Target Localization Using Least Square Approximation

Figure 1 shows the overall configuration of the UWB transceiver modules for target
localization that should be followed by the robot. The position of the target is obtained
relative to the robot-attached coordinate system. Four UWB transceiver modules, which
are called anchors, are installed on the upper corners of the robot. The anchors are rigidly
attached on the robot; thus, the coordinate values of the anchors with respect to the robot-
attached coordinate system can be assumed to be constant. The other transceiver module,
which is called the tag, is assumed to be held by the target, and the target position is
estimated as the position of the tag. Four distance values, between the tag and each
anchor, are measured using two-way ranging, and these values are given as inputs to the
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localization algorithm [31]. The distances can be expressed using the position of the tag
and anchors as follows:

ri = {(T−Ai)(T−Ai)
T}

1
2 , i = 1, 2, 3, 4 (1)

where ri denotes the distance between the tag and the ith anchor, and T =
[
Tx , Ty

]T ,

Ai =
[
Ai,x , Ai,y

]T are the position of the tag and ith anchor, respectively. By substituting
r2 = T2

x + T2
y into Equation (1), the following is obtained:

Tx Ai,x + Ty Ai,y −
1
2

r2 =
1
2
(Ai,x

2 + Ai,y
2 − ri

2) (2)

Equation (2) can be expressed in a matrix form as

AX = C (3)

where

A =

 A1,x A1,y − 1
2

...
...

...
A4,x A4,y − 1

2

, X =

 Tx
Ty
r2

, C =
1
2

 A1,x
2 + A1,y

2 − r1
2

...
A4,x

2 + A4,y
2 − r4

2

.

Because there exist measurement errors in ri, X can be estimated using the
LS approximation [32]:

X̃ = argmin
X

(AX− C̃)T(AX− C̃) = (ATA)−1ATC̃, (4)

where X̃ = [T̃x, T̃y, r̃2] is the estimated vector that represents the tag position and distance
from the robot, and X = [Tx, Ty, r2] represents an optimization variable vector. In the vector
C̃, ri is replaced with r̃i, which includes the measurement error.
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𝑇𝑦

𝑟2
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1

2
[
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2 + 𝐴1,𝑦

2 − 𝑟1
2
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2.2. Localization Error Analysis

Assuming that the coordinate system is located at the center of the robot, the coordinate
of the anchor position

(
Ai,x, Ai,y

)
can be replaced with the width

(
wx, wy

)
of the robot,

and Equation (4) can be expressed as

X̃ =

 T̃x
T̃x
r̃2

 = (ATA)−1ATC̃ =


r̃2

1−r̃2
2−r̃2

3+r̃2
4

4wx

r̃2
1+r̃2

2−r̃2
3−r̃2

4
4wy

r̃2
1+r̃2

2+r̃2
3+r̃2

4−w2
x−w2

y
4

 (5)

where r̃i = ri + ei represents the measured distance including the measurement error ei. The
estimation error of the tag position E = T̃− T can be expressed by substituting Equation (3)
and r̃i = ri + ei into Equation (5):

E =


e2

1−e2
1−e2

1+e2
1+2(e1r1−e2r2−e3r3+e4r4)

4wx

e2
1+e2

1−e2
1−e2

1+2(e1r1+e2r2−e3r3−e4r4)
4wy

, (6)

where ei denotes the measurement error between the tag and the ith anchor. Equation (6)
indicates that the absolute value of the estimation error increases proportionally to the
distance between the tag and the anchors (ri), and it is inversely proportional to the
distances between the anchors (wx and wy). Therefore, the estimation error in the proposed
configuration, in which the anchor placement is quite limited by the size of the robot, may
be more amplified compared with the conventional configuration. Assuming that the
square of the measurement errors (e2

i ) are negligible, and the size of the robot (wx, wy) is
sufficiently small compared with the distance between the tag and the robot (ri ≈ r), the
estimation error can be simplified as

E ≈ Ẽ =

 (e1−e2−e3+e4)
2wx

(e1+e2−e3−e4)
2wy

r. (7)

Assuming a normal distribution of ei, the measurement error can be divided into two
components as ei = ebias

i + enoise
i , where ebias

i is the bias of the measurement, which can be
regarded as the average of the measurement errors, and enoise

i represents the variation of
the errors based on the central limit theorem [33]. Substituting this into Equation (7), the
estimation error can be divided into two components as follows:

Ẽ =


(ebias

1 −ebias
2 −ebias

3 +ebias
4 )

2wx

(ebias
1 +ebias

2 −ebias
3 −ebias

4 )
2wy

r +


(enoise

1 −enoise
2 −enoise

3 +enoise
4 )

2wx

(enoise
1 +enoise

2 −enoise
3 −enoise

4 )r
2wy

r = Ẽ
bias

+ Ẽ
noise

, (8)

where Ẽ
bias

, Ẽ
noise

are fractions of the estimation errors that represent the bias and noise
components, respectively. Figure 2 shows the component-wise classification of the estima-
tion error.
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Figure 2. Component-wise classification of the estimation error. T̃ denotes the initial estimation using

the LS approximation of the tag position. T̃
C

denotes the calibrated estimation by removing the bias

error Ẽ
bias

through initial calibration, and T̃
F

denotes the final estimation, which removes Ẽ
noise

from T̃
C

.

2.3. Component-Wise Estimation Error Correction

This study proposes a component-wise error correction strategy that mitigates two

components of the estimation error, i.e., Ẽ
bias

, Ẽ
noise

, to improve the accuracy of the target

localization. The final estimation of the tag position T̃
F

is computed by removing the
estimation error component by component as follows:

T̃
F
= T̃

C − Ẽ
noise

= T̃− Ẽ
bias − Ẽ

noise
, (9)

where T̃ is the initial estimation of the tag position using the LS approximation without

error correction, and T̃
C

is the calibrated estimation that removes Ẽ
bias

from T̃. T̃
F

is the
final estimation that removes both error components, Ẽ

bias
and Ẽ

noise
.

2.3.1. Bias Correction through Initial Calibration

The bias error Ẽ
bias

arises from the bias of the distance measurements ebias
i , as shown in

Equation (8), and it can be regarded as the device-dependent error component. Assuming

that Ẽ
bias

is a static offset that varies according to the UWB transceiver modules (specific

pair of tag and anchor), Ẽ
bias

can be corrected through the initial calibration, which needs
to be conducted once prior to the measurement. In the initial calibration, samples of the
tag positions are collected using a standard LS approximation at pre-determined positions

for a particular period. The bias error is computed as Ẽ
bias

= Tcalb − T̃
calb
ave , where Tcalb

denotes the true position of the calibration point, and T̃
calb
ave represents the average of the

estimation samples acquired at the calibration point. Because Ẽ
bias

varies according to the

distance r, a normalized bias error Ẽ
bias
norm= Ẽ

bias
/r is used in the calibration. The calibration

should be performed at multiple calibration points, as shown in Figure 3, to reflect the
error characteristics of the UWB transceiver, which vary according to the direction of the

signal [34]. Ẽ
bias
norm is computed as the average of the normalized biases measured at the

calibration points as follows:

Ẽ
bias
norm =

1
n ∑n

i=1

Tcalb
i − T̃

calb
i, ave

r̃calb
i

, (10)

where Tcalb
i , T̃

calb
i, ave represent the true and estimated position of the ith calibration point,

r̃calb
i denotes the distance between the robot and T̃

calb
i, ave, and n is the number of calibration
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points. Then, the calibrated tag position T̃
C

can be computed from the initial estimation T̃
as follows:

T̃
C
= T̃− Ẽ

bias
= T̃− Ẽ

bias
norm × r̃, (11)

where r̃ denotes the estimated distance between the robot and tag computed by the
LS approximation.
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Figure 3. Initial calibration method to measure bias error Ẽ
bias

. Initial calibration is conducted prior

to the measurement at multiple calibration points to measure Ẽ
bias
norm.

2.3.2. Noise Reduction Using Iterative Complementary Filter

Ẽ
noise

arises from the deviation in the distance measurement (enoise
i ), and it has high-

frequency characteristics that can be alleviated by low-pass filters. This study proposes an
iterative complementary filter (ICF), which acts similar to a low-pass filter to remove high-
frequency noise components in T̃. The main idea of the ICF is combining the previous and
current estimation with variable weight coefficients, which are determined by evaluating
the reliability of the estimation. The noise-filtering procedure of the ICF is composed of the
following three steps:

STEP 1 (Alleviating Radial Directional Noise Components): The calibrated estimation

at time k (T̃
C
k ) can be further improved by adjusting its magnitude using the distance

estimation r̃k, which is acquired by the LS approximation. The subscript k indicates the

sampling time of the variables. While Ẽ
noise
k is amplified by the distance rk (Equation (8)),

the errors in the distance estimation r̃k are determined only by linear combination of the
distance errors between the tag and anchors ei,k. The magnitude and variation of the

distance error are smaller than those of Ẽ
noise
k , and it can be used to alleviate the radial
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direction component of Ẽ
noise
k included in T̃

C
k , as shown in Figure 4. The estimation corrected

in the radial direction is computed as follows:

T̃
R
k = r̃k ×

T̃
C
k

T̃
C
k

(12)

where T̃
R
k denotes the estimation corrected in the radial direction at time step k.
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Figure 4. Alleviating the radial directional noise component of Ẽ
noise
k . The magnitude of T̃

C
k is adjusted

by the distance estimation r̃k.

STEP 2 (Computing Estimation Candidate Z̃k from Previous Estimation T̃
F
k−1): T̃

R
k com-

puted in STEP1 is one part of the final estimation T̃
F
k . The other part Z̃k is computed

by attracting the previous estimation T̃
F
k−1 to T̃

R
k , as shown in Figure 5. The estimation

candidate Z̃k is computed as follows:

Z̃k = r̃k
T̃

F
k−1

rF
k−1

+ (r̃F
k−1 − r̃k)

T̃
R
k

r̃k
r̃k, (13)

where rF
k−1 =‖ T̃

F
k−1 ‖ denotes the distance between the robot and the previous estimation

of the tag position.

STEP 3 (Computing Final Estimation T̃
F
k ): The final estimation of the tag position T̃

F
k is

computed as a weighted linear combination of T̃
R
k and Z̃k as follows:

T̃
F
k =

αkZ̃k + βkT̃
R
k

αk + βk
, (14)

where αk, βk are the weight coefficients of the ICF that represent the reliability of Z̃k and

T̃
R
k , respectively, and can be determined as follows:

αk =
1
4 ∑4

i=1

∣∣∣∣{(T̃R
k −Ai)(T̃

R
k −Ai)

T
} 1

2 − r̃i

∣∣∣∣, βk =
1
4

4

∑
i=1

[{
(Z̃k −Ai)(Z̃k −Ai)

T
} 1

2 − r̃i

]
(15)

The reliability of the Z̃k and T̃
R
k values is evaluated by comparing the estimated and

measured distance between the anchor and tag.
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3. Results

The localization accuracy of the proposed method was validated via simulation and
experiment. Figure 6 shows the configuration of the UWB anchors attached to the mobile
robot (OMO-R1, OMOROBOT Inc., Gyeonggi-do, Korea) that was used for the simulation
and experiment. As shown in the figure, a UWB anchor is mounted on each of the four
corners of the robot. The UWB anchors are 594 mm above ground, and the distance between
them is set to 502 (wx) and 510 mm (wy). Using these UWB anchors, we evaluated the
localization accuracy of the proposed method at various tag positions.
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3.1. Simulation Setup and Results
3.1.1. Simulation Setup

The simulation was constructed using MATLAB R2021 (MathWorks, Natick, MA,
USA). The distance-measurement error between the UWB anchor and tag is defined by
the mean and standard deviation. These values were acquired through the experiment, in
which the distance-measurement data was collected for a minute at four reference points
(0◦, 90◦, 180◦, 270◦) located 1 m away from the center of the robot. The mean and standard
deviation of the error used in the simulation are shown in Table 1.
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Table 1. Mean and standard deviation of distance measurement used in the simulation.

UWB Anchor ID Mean (mm) Standard Deviation

A1 −10 50

A2 −180 50

A3 56 50

A4 −29 50

Figure 7 shows two simulation scenarios used for the accuracy evaluation. Assuming
that the robot is fixed, the tag moves following two different reference paths around the
robot. A square path with a side length of 5000 mm and a circular path with a diameter
of 5000 mm were used as reference paths. In both scenarios, the robot was located at the
center of the paths, and the tag passed through the entire path one time from the starting
point (2500, 0) with constant velocity of 100 mm/s. The height of the tag was set as 594 mm
from the ground which is identical to the height of the anchor. A total of 2000 samples of
the tag-position estimation were acquired for each path.
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3.1.2. Simulation Results

Figures 8 and 9 shows the effect of component-wise error removal for the square and
circular paths, respectively. The result of the position estimation using the LS approximation
(T̃) (Figures 8a and 9a) shows a consistent bias to the right-lower direction for both paths.

The initial bias was successfully calibrated by applying the initial calibration (T̃
C

) as

it removes the Ẽ
bias

component, as shown in Figures 8b and 9b. The variation of the

error was alleviated by removing the radial-direction noise component (T̃
R

), as shown

in Figures 8c and 9c, and the errors were further reduced by applying the ICF (T̃
F
), as

shown in Figures 8d and 9d. Figures 8e and 9e confirm that the estimation errors were
improved stepwise as the errors were alleviated component by component. Table 2 shows
the mean, standard deviation, maximum, and minimum values of the estimation error
of T̃, T̃

C
, T̃

R
, and T̃

F
in the square path. The mean errors were 703.3, 360.2, 239.5, and

162.2 mm for T̃, T̃
C

, T̃
R

, and T̃
F
, respectively. The proposed method improves the mean

and standard deviation of the estimation error of the LS approximation by up to 77 and
62%, respectively, for the square path. Table 3 shows the estimation error for the circular
path, which is similar to the results of the square path.

Figures 10 and 11 show the estimation accuracy of the proposed method compared
with previous methods, i.e., LS [32], RWLS [27], and M-HB [28], in the square and circular
paths, respectively. The proposed method exhibits a superior performance in bias correction
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and alleviates the variation because the estimation result of the proposed method is located
in the closest region to the reference path compared with the previous methods. The
proposed method improved the mean estimation error by up to 79.8, 76.9, and 74.0%
compared with the M-HB, LS, and RWLS methods, respectively, for the square path, as
shown in Table 4. Similarly, the standard deviation also improved by up to 81.7, 61.9, and
70.5% compared with the M-HB, LS, and RWLS methods, respectively. For the circular
path, the results were similar to those of the square path, as presented in Table 5.
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Table 2. Comparison of estimation error for T̃, T̃
C

, T̃
R

and T̃
F

in the square path.

Mean (mm) SD (mm) Max (mm) Min (mm)

T̃ 703.3 283.0 1856.3 32.1

T̃
C 360.2 197.5 1286.6 3.7

T̃
R 239.5 171.6 1135.9 4.8

T̃
F 162.2 107.8 694.8 4.5

Table 3. Comparison of estimation error for T̃, T̃
C

, T̃
R

and T̃
F

in the circular path.

Mean (mm) SD (mm) Max (mm) Min (mm)

T̃ 610.2 235.9 1453.1 4.0

T̃
C 314.8 162.0 979.0 15.1

T̃
R 212.8 146.5 849.3 3.9

T̃
F 143.3 91.2 552.9 11.0
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Table 4. Comparison of estimation error between the proposed method and previous methods for
the square path.

Mean (mm) SD (mm) Max (mm) Min (mm)

M-HB 801.8 588.1 3334.1 9.4

LS 703.3 283.0 1856.3 32.1

RWLS 623.9 365.8 2212.7 7.0

Proposed Method 162.2 107.8 694.8 4.5

Table 5. Comparison of estimation error between the proposed method and previous methods for
the circular path.

Mean (mm) SD (mm) Max (mm) Min (mm)

M-HB 686.1 495.5 2945.7 3.8

LS 610.2 235.9 1453.1 4.0

RWLS 547.6 312.7 2031.7 11.8

Proposed Method 143.3 91.2 552.9 11.0

3.2. Experimental Setup and Results
3.2.1. Experimental Setup

Figure 12 shows an experimental setup to evaluate the estimation accuracy of the
proposed method. The experiment was conducted using the UWB transceiver module
DWM1001 (Decawave, Ireland). It uses 38.4 MHz reference crystal and has about 20 cm
ranging error [35,36]. The UWB channel and data rate were set as 2 (3.99 GHz) and 6.8 Mbps,
respectively. The UWB anchor configuration was identical to the simulation setup (Figure 6).
The height of the tag was set as 1000 mm from the ground considering the height of the tag
held by the person in general situation. Since the heights of the anchors and the tag were
different, the distance measurement between the tag and each anchor were adjusted by
projecting it on the plane made by the anchors. The estimation accuracy was evaluated at
20 pre-defined reference locations with various distances (1, 3, 5, 7 m) and angles (0◦, 45◦,
90◦, 135◦, 180◦) from the robot, as shown in Figure 12b. Four distances, measured for each
pair of UWB anchor and tag, were collected at the master anchor (one of four anchors) and
transmitted to a laptop through serial communication. The communication rate between
the master anchor and laptop was 6–7 Hz. The localization algorithms, including the
proposed and previous methods, were executed on the laptop to compute the position
estimation of the tag using the four given distance values. Approximately 400 sets of
samples were collected at each reference location and used to compute the position of the
tag. The initial calibration was performed prior to conduct the experiment with the UWB
anchors and tag modules used in the experiment.
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3.2.2. Experimental Results

The performance of the proposed method for each step was analyzed through the

simulation. Therefore, the final result of the proposed method (T̃
F
) will only be discussed as

a comparison with the previous methods. The position-estimation results for each method
are plotted in Figure 13, and the mean, standard deviation, maximum, and minimum
values at four different distances are listed in Table 6. The mean and standard deviation of
the error were improved for all distances (1, 3, 5, 7 m) compared with the previous methods.
The proposed method exhibited an improvement of 50.56% for the mean and 38.98% for
the standard deviation compared with the LS approximation.

Sensors 2022, 22, 1180 15 of 19 
 

 

3.2.2. Experimental Results 
The performance of the proposed method for each step was analyzed through the 

simulation. Therefore, the final result of the proposed method (𝑻෩𝑭) will only be discussed 
as a comparison with the previous methods. The position-estimation results for each 
method are plotted in Figure 13, and the mean, standard deviation, maximum, and mini-
mum values at four different distances are listed in Table 6. The mean and standard devi-
ation of the error were improved for all distances (1, 3, 5, 7 m) compared with the previous 
methods. The proposed method exhibited an improvement of 50.56% for the mean and 
38.98% for the standard deviation compared with the LS approximation. 

 
Figure 13. Experimental setup for performance evaluation. (a) experimental setup, (b–d) reference 
locations. 

Table 6. Comparison of estimation error of the proposed method with that of the previous methods 
for the circular path. 

Distance Method Mean (mm) SD (mm) Max (mm) Min (mm) 

1 m 

M-HB 274.8 117.2 754.4 33.8 
LS 242.7 76.1 612.6 58.1 

RWLS 219.6 88.7 547.4 25.8 
Proposed Method 96.6 36.2 429.4 36.4 

3 m 
M-HB 610.0 313.4 1546.8 111.1 

LS 592.3 189.7 1442.5 109.4 

Figure 13. Experimental setup for performance evaluation. (a) experimental setup, (b–d) reference
locations.

Table 6. Comparison of estimation error of the proposed method with that of the previous methods
for the circular path.

Distance Method Mean (mm) SD (mm) Max (mm) Min (mm)

1 m

M-HB 274.8 117.2 754.4 33.8

LS 242.7 76.1 612.6 58.1

RWLS 219.6 88.7 547.4 25.8

Proposed Method 96.6 36.2 429.4 36.4
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Table 6. Cont.

Distance Method Mean (mm) SD (mm) Max (mm) Min (mm)

3 m

M-HB 610.0 313.4 1546.8 111.1

LS 592.3 189.7 1442.5 109.4

RWLS 560.1 281.6 1884.2 63.6

Proposed Method 282.3 112.4 844.8 64.6

5 m

M-HB 976.1 529.7 3851.6 61.0

LS 863.3 341.0 4026.0 186.9

RWLS 676.0 378.4 2825.7 36.1

Proposed Method 487.9 216.3 2280.7 113.2

7 m

M-HB 1303.6 573.5 3737.7 138.6

LS 1271.6 412.9 4083.6 185.4

RWLS 1132.1 601.4 3413.9 100.0

Proposed Method 601.3 257.3 2127.7 139.0

4. Discussion

In the proposed UWB localization method, the anchors are mounted in a narrow
region constrained by the size of the mobile robot, and the tag is positioned outside
of the convex hull of the anchors. This results in large errors that are proportional to
the distance between the tag and the anchors. To overcome this disadvantageous UWB
configuration and to enhance localization accuracy, this study proposed component-wise
error corrections that effectively alleviate device-dependent bias and high-frequency noise
component by component based on the in-depth analysis of localization errors. The
experimental validation shows that the localization errors were considerably improved by
up to 50.6% by applying the proposed initial calibration and the ICF compared with the
conventional LS approximation.

The UWB localization errors originate from the errors in the distance measurement
between the anchor and tag pair, which varies depending on both the device and antenna
orientations. Hence, calibrating the distance-measurement errors for each anchor and
tag pair cannot effectively remove the resultant localization bias. This study proposed
an initial calibration method to measure the localization bias, which is specific to the
given anchor configuration, not to a single anchor module. The bias is measured at
four reference positions, in which the tag is located in four different directions from the
anchors, to consider the variation in the bias errors depending on the antenna orientation.
Furthermore, normalization of the bias enables the calibration of the bias error, not only in
various directions, but also at various distances to the tag position. The bias corrections
made by the proposed calibration method considerably improved the localization error of
the conventional LS approximation by up to 49% in the simulation results.

Although the initial calibration effectively corrects bias errors, noise-like high-frequency
error components still remain in the localization. The ICF is proposed to eliminate the

high-frequency error component (Ẽ
noise

). Assuming that the distance estimation of the
LS approximation is more reliable than the localization, the bias-removed tag position is
adjusted in the radial direction before applying the iterative filter. The radial directional
deviations were significantly reduced in this step. The remaining error components were
alleviated by iteratively updating the current estimation as a weighted sum of the previ-
ous and current estimation. In this iterative procedure, the weight values were flexibly
determined by evaluating the reliability of each estimation. The ICF contributed to the
improvement in the variation of the error, and the standard deviation of the error was
substantially improved by up to 62% in the simulation results.
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The proposed component-wise error correction method significantly improved target
localization accuracy by up to 77 and 51% compared with the LS approximation in the
simulation and experimental validation, respectively; however, there is still a limitation
that should be addressed in future research. In this paper, the effect of the human, who
hold the tag, or any other obstacles causing non-line-of-sight (NLOS) situations to the
localization accuracy. We have conducted pilot experiment to identify the human effect to
the localization accuracy. The experimental results reveal that the human effect was not
significant, but it requires in-depth analysis and additional experiments to prove practical
applicability of the proposed method. Although the magnitude and deviation of the error
were reduced compared with previous methods, the error still increases as the tag position
moves farther away from the anchor, as shown in Table 6. This error characteristic is
inherent to the UWB configuration of the following robot, and it can be improved using
additional sensors, such as an inertial measurement unit (IMU). We believe that sensor
fusion with the IMU can improve the localization performance of the proposed method in
future research.

5. Conclusions

In this study, we proposed a component-wise error-correction method to improve the
localization accuracy of a target-following mobile robot. The localization bias and high-
frequency deviation of the error were successfully alleviated through the proposed initial
calibration and iterative complementary filter. The performance evaluation conducted via
the simulation and experiment confirmed that the proposed method significantly improves
the localization accuracy of previous methods. We believe that the proposed method can
be used for the industrial application of following robots, and it contributes to easing the
burden of the human operator.
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