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Abstract: Vibration sensors are mostly used for fault diagnoses of machines or structures. If more
sensors are applied, more accurate fault diagnosis is possible. However, it will obviously cost more.
There are many approaches to optimize the number and installation location/point of vibration
sensors for more efficient fault diagnosis. Existing methods require a great deal of computational
throughput for optimization when considering many mode frequencies with points where vibration
sensors are likely to be installed. This paper proposes a practical way of optimizing the sensor
installation point considering many mode frequencies with lots of places for sensor installation. FEA
was conducted to identify displacement values of each frequency in the candidate points. Then,
correlation coefficients were applied to the FEA result to optimize the installation location and number
of vibration sensors. Taking into account cases where the number of sensors has been set by users,
FIM was applied. The correlation coefficient optimized the candidate points where 24,252 vibration
sensors were to be installed and reduced this to 10 points. FIM, which was not suitable for directly
optimizing sensor locations because it required a lot of computational throughput and was usually
applied to evaluate other methods, is now applicable to candidate points that have been reduced by
the correlation coefficient. This paper does not draw the best optimal sensor location but presents a
way to apply to large-scale or complicated forms with a little computational throughput.

Keywords: automatic storage; finite element analysis; fisher information matrix; modal mass;
mode shape

1. Introduction

In order to diagnose a failure of machines or structures, a method of collecting and
diagnosing data by attaching vibration sensors is widely used [1–3]. However, it is ex-
pensive to attach the sensors to all necessary portions of the target and it requires a lot of
computational throughput for data collection and fault diagnoses with the data collected
from the sensors. Thus, it is necessary to install the proper number of vibration sensors that
are needed at proper points. The most commonly used method is to extract the mode shape
of the target with FEA (finite element analysis); then, an algorithm for optimizing the sensor
location is applied to the analysis result drawn from each node. Here, the node positions
become the candidate points where sensors will be installed. The best sensor locations are
those with the largest FIM (Fisher information matrix) determinant values; FIM determi-
nant values are used to evaluate optimized sensor locations with an algorithm [4–6]. FIM
determinant values may be directly used to optimize sensor location, but there are too many
determinant values to calculate with computers. Therefore, there have been numerous
studies on effective optimal sensor placement algorithms and even comparative studies on
which algorithm is the most suitable one for optimization. Z. N. Li, J. Tang and Q. S. Li [7]
applied four different methods for optimized vibration sensor installation location, such
as GA (Genetic algorithm), MSF (modal scale factor), MAC (modal assurance criterion),
and similarity of two vibration modes to cantilevers and compared the results. G. Martin,
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E. Balmes, and T. Chancellier [8] applied four methods for optimizing vibration sensor
installation location to drum brake parts, including MAC, CoMAC (coordinate MAC),
eCoMAC (enhanced CoMAC), and MACCo (MAC coordinate) and compared the results.
C. Yang, R. Ma and R. Ma [4] applied six different methods for optimized vibration sensor
installation location, including Efi (effective independence), DPR (driving point residue),
ADPR (average DPR), Efi-DPR, EVP (eigenvalue vector product), and MSSP (modal shape
summation plot) to satellites and compared the optimization results. D. C. Kammer and
M. L. Tinker [5] applied two different methods for optimized vibration sensor installation
location in the order of MKE (modal kinetic energy) and Efi3 to a reusable launch vehicle
and optimized the sensor location. M. Meo and G. Zumpano [9] applied Efi, Efi-DPR, MKE,
EVP (Eigenvalue vector product), NODP (non-optimal drive point) and VM (variance
method) to optimize the vibration sensor installation location on bridge structures and
compared the results. C. Yang [6] applied a synthetic method by giving a weight on several
optimization methods.

Unless actual data are collected from sensors attached to machines or structures with
faults, vibration characteristics in the fault state are unknown. Thus, it is necessary to
optimize sensor location for fault diagnosis in consideration of the proper amount of
mode shapes. Moreover, the proper number of nodes should be arranged to gain reliable
FEA results [10,11]. Most studies on algorithms to optimize vibration sensor position are
conducted to identify proper sensor location reducing computational throughput; however,
they are still insufficient to optimize the position of vibration sensors considering many
mode shapes and nodes. In fact, most studies optimize the vibration sensor location with
algorithms that are applied to the FEA results drawn considering only a few mode shapes
or with candidate points less than 10,000 [4–9,12–14].

This paper proposes an algorithm for practically optimizing vibration sensor instal-
lation location that is applicable even when there are lots of mode shapes and nodes to
consider with less computational throughput when compared to other conventional ways.
First, a correlation coefficient was applied to mode shapes of each node drawn from the
FEA result. In general, the correlation coefficient is used to build a deep learning-based
fault diagnosis model with collected data from vibration sensors [15–17]. However, it is
used to optimize both the number and location of vibration sensors in the paper, which
allows one to produce valid results with less computational throughput. When the number
of vibration sensors optimized with the correlation coefficient is larger than the number
of sensors retained, the existing algorithms, such as Efi or FIM, can be applied to mode
shapes of the optimized sensor points to acquire final sensor points. FIM had not been
applicable, as it required a lot of computational throughput, but was applicable here, as
many nodes are already eliminated from the candidate group by the correlation coefficient.
The FIM results were compared to those of Efi, which has been regarded as the most
effective algorithm in several studies [4,9]. The overall procedure adopted for the study is
shown in Figure 1 and was applied to an AS/RS (automatic storage and retrieval system),
SAR-400, to show the result.
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Figure 1. Flowchart.

2. Theoretical Background

According to the study herein, first, the correlation coefficient is applied to mode
shapes of the AS/RS unit acquired from FEA. Then, other existing methods are applied in
order to optimize the location and number of vibration sensors.

After generating S0 nodes in FEA, a modal analysis to calculate N mode frequencies
was conducted and mode shapes at each mode frequency were extracted. The mode shape
consists of displacement values of each node calculated at relevant mode frequency and
the displacement value is expressed by column vector di of S0 × 1 dimension.

di = {di
1, di

2, . . . , di
S0
}T

, i = 1, 2, . . . , N (1)

here, di
j is the modal analysis result, the displacement at jth node from ith mode frequency.

Assuming that sensors are all attached to each node, the displacement of all mode frequen-
cies may be expressed as the following vector.

2.1. Correlation Coefficient

In general, when developing a deep learning-based fault diagnosis model with data
collected from vibration sensors, a correlation coefficient is applied to features extracted
from the original data to reduce computational throughput; only one feature among those
with high correlation remains, while the rest are eliminated [15–17]. Applying correlation
coefficients for optimizing the number and location of sensors started from this idea. When
the correlation coefficient is applied to mode shapes of each node drawn from FEA results,
only one node among nodes with correlated mode shapes remains; the rest of the nodes are
eliminated from the installation point candidates, which optimizes the location and number
of vibration sensors. When sensors are attached to the positions of nodes with correlated
mode shapes, the data collected by each sensor can be determined to be similar. It gets
more effective when collecting data with a fast sample rate or a long sample collection
period. This is because the mode shape values drawn from FEA results are far smaller than
the actual data variables.
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The correlation coefficient represents the dependence of two consecutive variables as
a value between +1 and −1. Some representative correlation coefficients include Pearson’s,
and Spearman and Kendall’s tau correlations, which are shown in (2–4), respectively [18,19].

ρP =
∑N

i=1

{(
di

j1
−mean

(
dj1
))(

di
j2
−mean

(
dj2
))}√

∑N
i=1

(
di

j1
−mean

(
dj1
))2

∑N
i=1

(
di

j2
−mean

(
dj2
))2

(2)

ρS =
∑N

i=1

[{
rank

(
di

j1

)
−mean

(
rank

(
dj1
))}{

rank
(

di
j2

)
−mean

(
rank

(
dj2
))}]√

∑N
i=1

{
rank

(
di

j1

)
−mean

(
rank

(
dj1
))}2

∑N
i=1

{
rank

(
di

j2

)
−mean

(
rank

(
dj2
))}2

(3)

ρK =
∑N

i=1 ∑N
k=1 sgn

(
di

j1
− dk

j1

)
sgn
(

di
j2
− dk

j2

)
N(N − 1)

(4)

where: sgn(x) =


1 i f x > 0
0 i f x = 0
−1 i f x < 0

.

While existing methods to be described later simultaneously consider the mode shapes
of all nodes, the correlation coefficient has much less computational throughput, since the
mode shapes of two points are considered in a single repeated calculation. In addition,
the number of iterations itself is much lower than other methods, because the nodes with
correlation coefficient values above the threshold are excluded at once. If the number of
nodes excluded by the correlation coefficient is lower than intended, it can be re-determined
by changing only the threshold, so it requires less computational throughput than the
existing method.

2.2. Fisher Information Matrix

Since many nodes are excluded from the candidate points where sensors are likely to
be installed with the correlation coefficient, FIM, which was not used as it required a great
deal of computational throughput, is applied.

y =
[
d1 d2 . . . dN

]
q + w = Dq + w (5)

here, q = {q1, q2, . . . , qN}T that consists of qj(j = 1, 2, . . . , N) refers to the contribution
on y. w is the noise related to the sensor measurement and D is the matrix comprised
of displacements estimated with the modal analysis. Vector q indicates the contribution
estimated from each mode frequency and the estimate error covariance matrix is expressed
as below.

X = E[(q− q̂)(q− q̂)T] =
[

DTR−1D
]−1

(6)

here, q̂ is the estimate of q, E is the expectation operator and R is the covariance matrix of
noise. The result of (6) is the inverse matrix of FIM Q, which can be defined as below.

Q = DTR−1D (7)

Maximizing Q results in minimizing X and, in turn, the nearest q’s estimate, q̂, can be
calculated. Therefore, vibration sensors should be installed at points where Q is maximized.
FIM can be replaced by the following equation.

Q = DTR−1D = (DTR−1/2)(R−1/2D) = DTD (8)

here, D = R−1/2D is the displacement matrix with noise taken into consideration. If noise w
shows no correlation with sensors and sensors possess the same noise characteristics, noise
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does not influence the determining of the sensor location. Thus, the Fisher information
matrix may be simplified as follows [12].

Q = DTD (9)

Parameters to maximize Q include trace, condition number and determinant values.
In particular, the determinant |Q| holds the largest value when the estimate is the best.
Therefore, it was applied for this study [13].

2.3. Effective Independence

Efi for lth node, EDl , can be expressed in FIM as shown in (10).

EDl =
|Q| − |Qτl |
|Q| (10)

here, Qτl expresses the FIM with lth node deleted from the candidate point. In other
words, EDl shows how the determinant of FIM changes when the lth node is removed from
the candidate point. Hence, the most efficient sensor installation point can be identified
when the algorithm repeatedly removes the node at which EDl represents the minimum
value from the candidate points until the number of nodes is equivalent to the number of
vibration sensors that users want to remain. Here, |Q| is recalculated with the displacement
of nodes that have been decreased in the previous step. The overall calculation steps are
shown in Figure 2; S indicates the number of vibration sensors that users want [13,14].

Sensors 2022, 22, x FOR PEER REVIEW 5 of 16 
 

 

Parameters to maximize  include trace, condition number and determinant values. 
In particular, the determinant | | holds the largest value when the estimate is the best. 
Therefore, it was applied for this study [13]. 

2.3. Effective Independence 
Efi for th node, , can be expressed in FIM as shown in (10). = | |− | || |  (10)

Here,  expresses the FIM with th node deleted from the candidate point. In other 
words,  shows how the determinant of FIM changes when the th node is removed 
from the candidate point. Hence, the most efficient sensor installation point can be 
identified when the algorithm repeatedly removes the node at which  represents the 
minimum value from the candidate points until the number of nodes is equivalent to the 
number of vibration sensors that users want to remain. Here, | | is recalculated with the 
displacement of nodes that have been decreased in the previous step. The overall 
calculation steps are shown in Figure 2;  indicates the number of vibration sensors that 
users want [13,14]. 

 
Figure 2. Process of Efi. 

3. Numerical Example 
3.1. Target Shape and Mechanical Properties 

In this section, we will examine the location and number of vibration sensors 
optimized by the correlation coefficient, FIM and Efi, stated in Section 2 for the AS/RS unit 
fault diagnosis. An AS/RS unit is a device designed to bring out items that users are 
searching for in a list of loaded items without having to move around the actual 
warehouse to take out articles. The shape of the AS/RS unit SAR-400 that the study 
adopted is shown in Figure 3 and is a rotary type of device in which the pallets containing 
articles rotates up and down. In the SAR-400, parts made of pre-coated steel sheets and 

Figure 2. Process of Efi.

3. Numerical Example
3.1. Target Shape and Mechanical Properties

In this section, we will examine the location and number of vibration sensors optimized
by the correlation coefficient, FIM and Efi, stated in Section 2 for the AS/RS unit fault
diagnosis. An AS/RS unit is a device designed to bring out items that users are searching
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for in a list of loaded items without having to move around the actual warehouse to take
out articles. The shape of the AS/RS unit SAR-400 that the study adopted is shown in
Figure 3 and is a rotary type of device in which the pallets containing articles rotates up
and down. In the SAR-400, parts made of pre-coated steel sheets and stainless steel are
connected to the aluminum profiles and brass hexagonal posts. The mechanical properties
of materials used for analysis are described in Table 1 [20].
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Table 1. Material Properties.

Material Density
(kg/m3)

Young’s Modulus
(GPa) Poisson’s Ratio

Aluminum 2770 71 0.33
Brass 8460 103 0.35
Pre-coated steel sheet 7800 204 0.29
SS41 7850 206 0.29
SUS304 8000 197 0.3

3.2. Boundary Conditions and Meshing

Nodes generated at the meshing step become the candidate points where vibration
sensors may be installed. Thus, the study conducted an analysis with point mass replacing
moving parts because it is meaningless to calculate the displacements for moving parts in
which sensors cannot be attached and it requires a great deal of computational throughput.
The moving parts are mainly grouped into door parts and rotating parts; the mass points
that replace those parts are shown in Table 2. In addition to this, the boundary condition of
FEA is illustrated in Figure 4.
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Table 2. Point Mass.

Definition Door Unit Rotary Unit

Mass (kg) 6.927 491.32
Mass moment of inertia X (kg·m2) 6.978 496.71
Mass moment of inertia Y (kg·m2) 1.341 356.45
Mass moment of inertia Z (kg·m2) 5.647 244.15
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Moving parts had all been replaced with point mass; there were no dynamic com-
ponents inside the SAR-400 modeling. Thus, bonded contact conditions were added to
all contact surfaces so that the cut surfaces or contact surfaces of the components did not
separate or rub against each other. In addition, augmented Lagrange was adopted as the
formulation of the contact conditions. Augmented Lagrange is a contact algorithm based
on the penalty method and features an increased probability of convergence by adding a
Lagrange multiplier to pure penalty. It can also calculate the analysis results of all surfaces
with contact conditions. Gauss point detection was used to detect contact points, which
increases the compatibility of contact surfaces with the same curvature [21,22].

Since the node point is the point where a vibration sensor will be installed, the element
size is the interval of sensors. Thus, the study assumed that the sensor size was 25 mm and
set the average element size as 25 mm to prevent sensor overlaps. The divided element
shape is illustrated in Figure 5; they are divided into 1,564,172 nodes and 647,369 elements
with the application of tetrahedral and hexahedral elements.
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3.3. Modal Analysis Results

As shown in Figure 6, the analysis result was drawn from points where there was
enough space to install sensors and was connected to the moving parts. In the process, the
candidate points where sensors could be installed were reduced to 24,252.

Modal analysis was adopted to estimate the mode frequency and shape of the AS/RS
unit. However, it may require a lot of computational throughput when too many modes
are extracted. To prevent this phenomenon, M. E. DEMİR [23] and E. TASDELEN [24]
extracted mode frequencies until the effective modal mass was more than 90% and 80%,
respectively. Here, the effective modal mass indicates the mass of each mode affected in
a specific direction [25]. Considering the shape of the components with vibration sensor
attachment position candidates and the direction in which they are fastened, the vibration
in the Y-axis direction possesses the greatest influence on them. Therefore, this study
extracted mode frequencies until the effective modal mass in the Y-axis direction was more
than 80% of the total mass. In total, 302 modes were extracted; they are partially presented
in Table 3. In addition, Figure 7 shows the images viewed from the +Y direction of the 25th,
26th, and 35th modes with the highest effective modal mass and from the −Y direction.
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Table 3. Mode Extraction.

Mode Frequency (Hz) Modal Mass (%)

1 7.024 0.000
2 8.880 0.000
3 9.010 0.001

...

25 24.621 19.475
26 24.986 31.647

...

33 27.081 2.207

...

35 27.551 4.849

...

82 47.551 4.353

...

122 61.446 1.359

...

262 109.81 1.028

...

300 123.14 0.017
301 123.30 0.291
302 123.39 0.057

Total 80.051

3.4. Optimal Sensor Placement and Number Results

The correlation coefficient compares mode shapes of each node extracted from the
FEA result; only one node among the nodes with correlated mode shape remains, while
the rest are excluded from the candidate group. Nodes with a correlation coefficient of
0.7 or above were removed from the candidate group, as shown in Table 4; the correlation
coefficient estimation of the remaining points is shown in Figure 8. It was found that the
proper number of sensors was extracted according to the reference value.

Table 4. Correlation Coefficient Results.

Correlation Coefficient Threshold The Number of Sensors

Pearson
0.7

10
Spearman 11
Kendall tau 25
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The lowest number of sensors was extracted from optimization with the Pearson
correlation coefficient. Thus, this study applies FIM and Efi to the Pearson correlation
coefficient optimization result and compares the results.

FIM and Efi were applied to 10 candidate points for sensor installation that had been
optimized with the Pearson correlation coefficient, which reduced the number of sensors
to 5, as shown in Table 5 and Figure 9. Efi is a method of eliminating sensors one by one
and FIM is a method of considering every number of cases until the highest determinant
value is calculated when the number of sensors is fixed. Efi is a method that uses FIM for
repetitive calculations; however, it was found that the sensor positions applied with Efi
were not the same as those applied with FIM. This may be because Efi failed to estimate the
global maximum value of |Q| considering all possible cases in the process of eliminating
sensor points and, instead, calculated the local maximum.
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Table 5. OSP Results.

The Number of
Sensors

Node Numbers Same Node
NumbersPearson-FIM Pearson-Efi

2 1,358,355, 1,406,113 1,351,085, 1,406,113 1

3 1,343,710, 1,358,355, 1,406,113 1,351,083, 1,351,085, 1,406,113 1

4 1,343,710, 1,351,085, 1,358,355, 1,406,113 1,343,710, 1,351,083, 1,351,085, 1,406,113 3

5 1,343,708, 1,351,083, 1,351,085, 1,358,355,
1,406,113

1,343,708, 1,343,710, 1,351,083, 1,351,085,
1,406,113 4
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When Efi is applied directly to 24,252 candidate points, the number of FIM determinant
values to be calculated is ∑24,252

x=6 x = 294, 091, 863. In fact, Efi was tried directly, but the
computer’s memory could not withstand it due to a lot of computational throughput.
When FIM is used directly, the number of FIM determinant values to be calculated is

(
24, 252

5
) = 6.99× 1019, which is more than when Efi is applied directly; thus, it was

meaningless to try applying FIM directly because it would have needed to calculate more
than when applying Efi directly.

3.5. Verification

To compare and verify the method presented in this paper, as shown in Figure 10, the
initial sensor attachment candidate group with reduced nodes was generated to enable di-
rect application of Efi. There were 488 initial sensor attachment candidates in the candidate
group; the methods applied here were Efi and Pearson-FIM. FIM was not applicable because
it required computational throughput to the extent that they could not be applied even in
the reduced candidate group; Pearson-Efi was not applied because it was obvious that it
had a lower |Q| than Pearson-FIM. For Efi, we could obtain a local maximum value of |Q|
in 488 sensor attachment candidates; since Pearson-FIM derives a global maximum value
of the candidate group reduced by the Pearson correlation coefficient, it was meaningful to
compare the performance of these two methods.
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The application flow presented in this paper was applied to the reduced candidate
group as it was; the results are shown in Figure 11. In previous sections, |Q| was not
shown because Pearson-FIM obviously displayed higher |Q| than Pearson-Efi; however,
this comparative verification indicated which method had higher |Q| and compared its
performance. The higher the |Q| value, the higher the mutual independence of the opti-
mized sensor positions, which means that the sensor positions could be confirmed as a
combination of sensor positions with higher performance. As a result, it was found that
Pearson-FIM possessed higher overall |Q| values than Efi. It has been verified that the
method presented in this paper required lower computational throughput and achieved
higher performance than Efi.
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4. Discussion

The correlation coefficient optimizes both the location and the number of sensors.
Other algorithms consider mode shapes of all nodes in one repeated calculation, but the
correlation coefficient considers only mode shapes of two nodes in one repeated calculation,
which results in far less computational throughput. As a result, it was possible to optimize
the sensor location with less computational throughput than conventional techniques.
The correlation coefficient is disadvantageous in that it cannot optimize after determining
the number of sensors; however, if the number of candidates excluded as a result of
optimization is less than the intended number, only the threshold can be changed to
determine whether to exclude the points. Therefore, even considering recalculating, its
computational requirements are small. In addition, even if the number of sensors was
accurately determined in advance, other methods can be used in succession; the additional
computational throughput that occurs in this case is negligible. For example, the correlation
coefficient allows FIM application that was not possible in the past and that reduces
computational throughput in Efi. In addition, as a result of comparing the sequential
application of correlation coefficients and FIM with Efi, which was judged to have the
best performance in several papers [4,9], the method in this paper was found to have
lower computational throughput and better performance. However, since this comparative
verification was performed in a limited environment, there may be situations in which |Q|
of Efi is higher than Pearson-FIM, as, for example, when Efi finds the global maximum
value of |Q|. However, even considering this uncertainty, the method in this paper is
meaningful in that it is a practical method with much lower computational throughput
than other methods. In addition to FIM, these characteristics could serve as a steppingstone
for the application of other methods requiring high computational throughput.

Afterwards, comparing data collected in diverse vibration settings after sensors are
installed at optimized points is recommended. In addition, if the environment supports it,
it would be good to apply FIM directly and to compare it with the method in this paper.

5. Conclusions

In this paper, it was confirmed that the location and number of vibration sensors to
be attached to the target can be effectively optimized by applying a correlation coefficient
to the modal analysis result. The initial candidate points for sensor installation are nodes
created at the FEA step; points where sensors cannot be physically installed were primarily
excluded. At this step, 24,252 nodes were selected as candidates for sensor attachment.
Then, the applied correlation coefficient eliminated nodes, except for one node among nodes
with similar vibration characteristics at several mode frequencies from the candidate group.
As a result, not only the sensor locations but also the number of sensors were optimized;
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positions of the sensors decreased from 24,252 to 10. At last, two different methods, Efi
and FIM, were applied to the remaining candidate points for sensor installation; the results
were compared. FIM is capable of identifying the best installation location, but it requires a
lot of computational throughput. Efi may not identify the best sensor installation location,
but optimizes the sensor location with reasonable computational throughput. Thus, it is
best for users to determine which method to apply after adopting the correlation coefficient.
Subsequently, the difference of |Q| between Pearson-FIM and Efi confirmed that |Q| of
Pearson-FIM was higher. This may be a coincidence, but Pearson-FIM showed that, unlike
Efi, there is no risk of calculating the local maximum when the computational requirements
are low.
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