
����������
�������

Citation: Ma, M.; Han, L.; Qian, Y.

CVDF DYNAMIC—A Dynamic

Fuzzy Testing Sample Generation

Framework Based on BI-LSTM and

Genetic Algorithm. Sensors 2022, 22,

1265. https://doi.org/10.3390/

s22031265

Academic Editors: Athanasios

V. Vasilakos and Vassilis

S. Kodogiannis

Received: 22 December 2021

Accepted: 4 February 2022

Published: 7 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

CVDF DYNAMIC—A Dynamic Fuzzy Testing Sample
Generation Framework Based on BI-LSTM and
Genetic Algorithm
Mingrui Ma 1 , Lansheng Han 1,* and Yekui Qian 2

1 School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074,
China; jkpathfinder@hust.edu.cn

2 PLA Army Academy of Artillery and Air Defense, Zhengzhou 450052, China; scienceart2021@163.com
* Correspondence: 1998010309@hust.edu.cn

Abstract: As one of the most effective methods of vulnerability mining, fuzzy testing has scalability
and complex path detection ability. Fuzzy testing sample generation is the key step of fuzzy testing,
and the quality of sample directly determines the vulnerability mining ability of fuzzy tester. At
present, the known sample generation methods focus on code coverage or seed mutation under a
critical execution path, so it is difficult to take both into account. Therefore, based on the idea of
ensemble learning in artificial intelligence, we propose a fuzzy testing sample generation framework
named CVDF DYNAMIC, which is based on genetic algorithm and BI-LSTM neural network. The
main purpose of CVDF DYNAMIC is to generate fuzzy testing samples with both code coverage and
path depth detection ability. CVDF DYNAMIC generates its own test case sets through BI-LSTM
neural network and genetic algorithm. Then, we integrate the two sample sets through the idea of
ensemble learning to obtain a sample set with both code coverage and vulnerability mining ability
for a critical execution path of the program. In order to improve the efficiency of fuzzy testing,
we use heuristic genetic algorithm to simplify the integrated sample set. We also innovatively put
forward the evaluation index of path depth detection ability (pdda), which can effectively measure
the vulnerability mining ability of the generated test case set under the critical execution path of the
program. Finally, we compare CVDF DYNAMIC with some existing fuzzy testing tools and scientific
research results and further propose the future improvement ideas of CVDF DYNAMIC.

Keywords: genetic algorithm; Bi-LSTM neural network; fuzzy testing sample generation; deep learning

1. Introduction and Background

Vulnerability in program has always been a serious threat to software security, which
may cause denial of service, information leakage and other exceptions. Some typical cases
of vulnerability exploitation, such as wannacry ransomware, have a disastrous impact on
social economy and network security. Therefore, mining vulnerabilities scientifically and
efficiently has been a hot topic.

At present, vulnerability mining technology can be divided into static vulnerability
mining and dynamic testing (fuzzy testing) [1]. The former does not construct test cases nor
run source code. By extracting the characteristics or key operations of the corresponding
types of vulnerabilities, static code audit is carried out on the source code to detect the
possibility of various vulnerabilities. The target source code of static vulnerability mining
can be advanced language, assembly language generated by compiler, or binary file. The
advantages of static vulnerability mining lie in fast mining speed, high efficiency, and
good detection accuracy for vulnerabilities with obvious characteristics. However, static
vulnerability mining often leads to high false positive rate and false negative rate for
vulnerabilities with unclear features or diverse types and forms (such as null pointer
reference vulnerability in C/C++). Dynamic fuzzy testing can solve this problem by

Sensors 2022, 22, 1265. https://doi.org/10.3390/s22031265 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22031265
https://doi.org/10.3390/s22031265
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2073-6424
https://doi.org/10.3390/s22031265
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22031265?type=check_update&version=2

Sensors 2022, 22, 1265 2 of 21

constructing reasonable test examples. However, the efficiency of dynamic fuzzy testing is
lower than that of static vulnerability mining because it needs to construct samples and run
programs to determine whether there are vulnerabilities. Therefore, how to construct test
cases with high pdda and code coverage is the key of fuzzy testing. In practical application,
it is often necessary to combine static vulnerability mining with fuzzy testing to achieve
better vulnerability detection performance. Existing mainstream fuzzy testing can be
divided into the following three categories:

• Black box test (construct test cases to test without source code at all);
• White box test (analyze source code to generate corresponding test cases); e.g., [2];
• Grey box test (introduce lightweight program analysis technology to analyze program

state), e.g., [3].

In black box test, the internal structure of the program is not understood at all, and
the test cases are constructed blindly. Thus, its testing efficiency is very low. White box
test uses program analysis methods [4] (such as path traversal and symbolic execution) to
analyze the program source code and then constructs the corresponding test cases. The
white box test can cover deeper test path, which causes a lot time cost and system resources
with poor scalability. The grey box test [5] can achieve a good balance between the test
efficiency and the coverage of test cases because of the introduction of lightweight program
analysis technology. It is more effective than a black box test and more extensible than a
white box test. At present, the grey box testing program is mainly guided by code coverage.
The typical grey box fuzzers are AFL [6] and so on.

However, the problem of current grey box fuzzers is that they are designed to cover as
many code execution paths as possible. In the regulation of seed energy, they usually use
the idea of average distribution instead of regulating different energies for different test
paths. Nevertheless, most of the source code vulnerabilities are concentrated on a small
number of critical test paths in reality. Existing grey box fuzzers often spend a lot of time to
detect the path whose vulnerability is not easy to be detected, thus reducing the efficiency
of fuzzy testing.

Because the application of a single method in grey box fuzzy testing has its own
limitations, more and more researchers have begun to integrate a variety of methods to
achieve better fuzzy testing results, such as [7].

Based on existing research work [8], this paper proposes a new framework of fuzzy
testing sample generation called CVDF DYNAMIC. It consists of three parts:

(1) The strategy of sample generation based on a genetic algorithm;
(2) The strategy of sample generation based on a bi-LSTM neural network;
(3) The strategy of sample reduction based on a heuristic genetic algorithm.

The genetic algorithm can improve the quality of test cases and expand the code
coverage by simulating the natural process of gene recombination and evolution. The
bi-LSTM time sequence can regulate different energy of the test path, which can make
the seeds on the critical path iterate and mutate for many times, and enhance the path
depth detection ability. The critical contribution of CVDF DYNAMIC is that it integrates
the two methods of sample generation, and simplifies the sample set by using a heuristic
genetic algorithm, which makes the test case set achieve a good balance in code coverage,
path depth detection ability and sample set size. This paper also compares the proposed
method with other fuzzy testing samples and further presents the improvement direction
of that method.

2. Related Work

At present, researchers have applied fuzzy testing to different types of vulnerability
mining. Lin et al. [9] proposed a priority-based path searching method (PBPS) to utilize the
capability of concolic execution better. Peng et al. [10] proposed Angora, a new mutation-
based fuzzer, and proved that Angora has better performance than other fuzzing tools.
Wang et al. [8] used a neural network to guide the sample generation of fuzzy testing

Sensors 2022, 22, 1265 3 of 21

and proposed a solution called NeuFuzz. NeuFuzz has a very significant performance in
the vulnerability mining of the critical execution path of the program. Zhang et al. [11]
summarized existing fuzzy testing technologies and use case generation technologies
of fuzzy testing. Zhang el al. [12] proposed an algorithm of sensitive region prediction
based on a neural network and improved the detection efficiency and detection depth
through the incremental learning method of sensitive areas. Combining fuzzy testing and
symbolic execution, Xie [13] proposed a hybrid testing method based on a branch coverage
called AFLeer. Xu et al. [14] applied a recurrent neural network to fuzzy testing sample
generation. Luca et al. [2] designed a novel concolic executor to improve the efficiency of
concolic execution and investigate whether techniques borrowed from the fuzzing domain
can be used to solve the symbolic query problem. Stefan [15] proposed the notion of
coverage-guided tracing to improve the efficiency of code coverage guided fuzzy testing.
Yang et al. [16] proposed a novel programmable fuzzy testing framework. Developers
only need to write a small number of fuzzy testing guidance programs to implement
customized fuzzy testing. Patrice et al. [17] proposed learn&fuzz, which used a learned
input probability distribution to intelligently guide fuzzing inputs. Li et al. [18] proposed
symfuzz, which is a method combining directed fuzzy testing technology with selective
symbolic execution technology and can realize vulnerability detection under complex path
conditions. Liang et al. [19] proposed a machine-learning-based framework to improve
the quality of seed inputs for fuzzing programs. Zou et al. [1] described the development
from traditional automation to intelligent vulnerability mining in software vulnerability
mining. This paper also pointed out that the application of traditional machine learning
technology in the vulnerability mining field still has limitations. Ma et al. [20] proposed the
optimization strategy of sample set reduction in the fuzzy process, including approximation
algorithm. Cornelius [21] proposed IJON, an annotation mechanism that a human analyst
can used to guide the fuzzer.

In the experimental part, this paper compares the simplification and efficiency of
sample set between heuristic genetic algorithm and approximation algorithm. He et al. [22]
proposed a tool called VCCFinder to find potential vulnerabilities. Nick et al. [23] used
mined vulnerabilities by utilizing a code attribute graph for fuzzy testing. She et al. [24]
proposed a novel program smoothing technique using a surrogate neural network models
to achieve higher edge coverage and improve the ability of finding new bugs. Chen
et al. [25] proposed POLYGLOT, a genetic fuzzing framework that generates high-quality
test cases for exploring processors of different programing languages. Huang et al. [4]
proposed PANGOLIN, an approach based on polyhedral path abstraction, which preserves
the exploration state in the concolic execution stage and allows more effective mutation and
constraint solving over existing techniques. Zhang et al. [26] proposed a novel incremental
and stochastic rewriting technique STOCHFUZZ that piggy-backs on the fuzzing procedure.
Liang et al. [3] presented DeepFuzzer, an enhanced greybox fuzzer with qualified seed
generation, balanced seed selection and hybrid seed mutation. Chen et al. [7] proposed
an ensemble fuzzing method, EnFuzz. Enfuzz contains many different heuristic genetic
algorithms and achieves a better performance in terms of path coverage, branch coverage
and bug discovery. The idea of ensemble is also similar to the CVDF DYNAMIC proposed
in this paper. Yue et al. [27] presented a variant of the adversarial multi-armed bandit model
for modeling AFL’s power schedule process named EcoFuzz, which can effectively regulate
seed energy in fuzzy testing. Zong et al. [28] proposed FuzzGuard, a deep-learning-based
approach to predict the reachability of inputs and further improve the performance of DGF.
Gan [5] proposed a data flow sensitive fuzzing solution GREYONE, which can further
improve the performance of data flow analysis, and the experiments show that GREYONE
has better performance than the existing fuzzy testing tools such as AFL. Sebastian et al. [29]
proposed ParmeSan, a sanitizer guided fuzzing method to solve the low-bug coverage
problem. Oleksii et al. [30] proposed specfuzz, which is a novel fuzzy testing method,
which can be used to detect speculative execution vulnerabilities including spectre and out-
of-order execution vulnerabilities. Compared with the traditional static analysis method,

Sensors 2022, 22, 1265 4 of 21

specfuzz has further improved the analysis accuracy. Lee et al. [31] proposed a constraint-
guided directed greybox fuzzing method, which aims to satisfy a sequence of constraints
rather than merely reaching a set of target sites. Christopher et al. [32] proposed a brand-
new token-level fuzzing method. Different from the fuzzy method based on data flow or
seed energy regulation, token-level fuzzing applies mutations at the token level instead of
applying mutations either at the byte level or at the grammar level. The authors found many
unknown bugs through the token-level fuzzing method on popular javascript engines.
In recent years, the safety of deep learning technology has also attracted the attention of
scholars. It is possible for attackers to deduce the sensitive training data of engineering
through the unsafe deep learning model. Ximeng Liu et al. [33] briefly introduced four
different types of attacks in deep learning, reviewed and summarized the security defense
measures of deep learning attack methods and further discussed the remaining challenges
and privacy issues of deep learning security. MB mollah et al. [34] proposed an efficient
data-sharing scheme, which allows smart devices to share secure data with others at the
edge of cloud-assisted IOT.

3. Algorithm Description
3.1. An Introduction of Existing Fuzzy Testing Sample Generation Methods

At present, the generation and variation methods of test cases are mainly described
as follows:

The method based on symbolic execution [13].
The core idea of this method is to take the test case as the symbol value and search

the core constraint information on the test path during the processing. A new test case is
generated by constraint solving to cover different program execution paths. This method
is suitable for testing programs with simple structure and less execution paths. However,
the complexity of the program increases with the diversification of functions, resulting in
the explosion of the number of paths. It is difficult for symbolic execution to be applied to
constructing complex program test cases because of complex constraint solving problems.

The method based on taint analysis [10].
The core idea of this method is to mark the pollution source of the input data by using

the dynamic taint analysis technology, focus on the spread process of the taint, extract the
key taint information from it and use the taint information to guide the generation of seed
variation and related test samples. It is an effective method to construct test samples for
some key execution paths in programs and has good code coverage, such as Angora [10].
However, with the application of genetic algorithm and neural network in fuzzy testing,
the disadvantage of low efficiency of taint analysis technology is gradually emerging.

The method based on evolutionary algorithm [35].
The evolutionary algorithm uses some core rules of biological evolution to guide the

generation of fuzzy testing samples. At present, genetic algorithm is the most widely used
evolutionary algorithm with the best performance. Its core idea is to carry out multiple
rounds of iterative mutation on test cases, eliminate the test cases that do not meet the
requirements according to some rules or select the samples with the best performance from
them as the seeds of the next round of mutation. Genetic algorithm can be used not only to
generate new test cases but also to simplify the sample set, so as to further improve the
efficiency of fuzzy testing.

The method based on neural network [14].
As mentioned above, neural network has a very significant performance advantage

in solving some nonlinear problems. The bi-LSTM neural network is used to mutate the
seeds on a certain execution path to obtain a new test example. In the experiment, we
prove that the bi-LSTM neural network has stronger path depth detection ability in specific
key execution paths than that of the taint analysis. Moreover, Learn & Fuzz proposed by
Patrice [17] et al. can improve the code coverage of fuzzy testing. Therefore, it can be
predicted that the neural network will play a greater role in the future development of
fuzzy testing.

Sensors 2022, 22, 1265 5 of 21

3.2. Formal Definition

In order to facilitate the subsequent description of the algorithm, we give some related
concepts and formal definitions of the evaluation index.

• Definition 1 PUT (input sample)

We define the program under test as PUT. For CVDF DYNAMIC, PUT is the corre-
sponding binary executable program, and the corresponding test cases are mentioned in
Section 4.1.

• Definition 2 Set Covering Problem (SCP)

A large number of facts show that there is an exponential proportional relationship
between the growth number of execution paths of PUT and the growth number of its branch
conditions, so the test cases cannot completely cover all execution paths. Therefore, in fuzzy
testing, the problem of sample set coverage is transformed into the problem of minimum
set coverage [36]. The minimum set covering problem is an NP hard problem [37]. The
simplest algorithm idea is to use greedy algorithm to find the approximate optimal solution.
The following formal definition is used to describe SCP problem:

For A = [aij], it is a 0–1 matrix of m-row n-columns, where C = Cj is an n-dimensional
column vector. Let p = [1, 2, 3 m] and q = [1, 2, 3 n] be the row and column
vectors of matrix A. Furthermore, let Cj, j ∈ q represent the cost of a column. Without
losing generality, we assume that Cj > 0, j ∈ q. It is specified here that if aij = 1, it
means that column j ∈ q at least covers one row i ∈ p. Therefore, the essence of the SCP
problem is to find a minimum cost subset S ⊆ q. So, for every row i ⊆ p, it is covered
by at least one column j ⊆ S. A natural mathematical model of SCP can be described as
v(SCP) = min ∑

j∈q
Cjxj, and it obeys ∑

j∈q
aijxj ≥ 1, i ∈ p, xj ∈ (0, 1)(j ∈ q). If xj = 1(j ∈ S),

then xj = 0.

• Definition 3 Path Depth Detection Ability

In fuzzy testing, there are many program-execution paths that may have vulnerabilities
in PUT, so the generation of fuzzy testing samples should cover as many as possible for
these program execution paths that may have vulnerabilities. For a program execution
path, the number of detected vulnerabilities may be more than one, and different program
execution paths can detect different numbers of vulnerabilities. We define the total number
of vulnerabilities detected by the fuzzy testing sample under the current path as DNUM, the
total number of vulnerabilities contained in the current path as ANUM and the weight of the
total number of vulnerabilities contained in the current path as W. DetectionCapability(DC)
is a weighted result, and its operation method is shown in Equation (1):

DC =
DNUM
ANUM

×W (1)

Among them, W increases with the number of vulnerabilities in the current path. This
is because the number of vulnerabilities in different paths is different. For the variation
method of the same fuzzy testing sample seed, if more vulnerabilities are contained in a
path, the smaller the value of DNUM

ANUM
is. If the weight W is a constant, the DC value will

decrease, and the path depth detection ability of a test case generation method cannot be
objectively measured.

Suppose that a program under test has n execution paths, we define the average path

detection ability as WDC =

n
∑

i=1
DCi

n : It can measure the ability of a fuzzy testing tool to
detect the overall path depth

3.3. CVDF DYNAMIC Fuzzy Testing Sample Generation

The complete process of fuzzy testing sample generation of CVDF DYNAMIC is
shown in Figure 1.

Sensors 2022, 22, 1265 6 of 21

Sensors 2022, 21, x FOR PEER REVIEW 6 of 24

in a path, the smaller the value of
NUM

NUM

A

D
is. If the weight W is a constant, the DC value

will decrease, and the path depth detection ability of a test case generation method cannot

be objectively measured.

Suppose that a program under test hasn execution paths, we define the average path

detection ability as
n

DC
WDC

n

i
i

 1 : It can measure the ability of a fuzzy testing tool

to detect the overall path depth

3.3. CVDF DYNAMIC Fuzzy Testing Sample Generation

The complete process of fuzzy testing sample generation of CVDF DYNAMIC is

shown in Figure 1.

Figure 1. Complete Flow Chart of CVDF DYNAMIC Fuzzy Testing sample generation.

In the fuzzy testing part, we learn from the ensemble learning method in artificial

intelligence. The seeds are mutated by genetic algorithm to generate a set of test cases, and

then the seeds are mutated by the bi‐LSTM neural network to generate another set of test

cases. Finally, the two sets of test cases are integrated to obtain the final set of test cases.

Considering that the size of the sample set obtained by the integration of the two

methods is too large, which reduces the efficiency of fuzzy testing, we use heuristic ge‐

netic algorithm to simplify the sample set. Finally, the reduced sample set is used for fuzzy

testing, and the parameters in the bi‐LSTM neural network are optimized according to the

result feedback.

3.3.1. Theoretical Model and Training Process of BI‐LSTM Neural Network

The BI‐LSTM neural network training process of CVDF DYNAMIC is shown in the

Figure 2.

Figure 2. Training of neural network.

Figure 1. Complete Flow Chart of CVDF DYNAMIC Fuzzy Testing sample generation.

In the fuzzy testing part, we learn from the ensemble learning method in artificial
intelligence. The seeds are mutated by genetic algorithm to generate a set of test cases, and
then the seeds are mutated by the bi-LSTM neural network to generate another set of test
cases. Finally, the two sets of test cases are integrated to obtain the final set of test cases.

Considering that the size of the sample set obtained by the integration of the two
methods is too large, which reduces the efficiency of fuzzy testing, we use heuristic genetic
algorithm to simplify the sample set. Finally, the reduced sample set is used for fuzzy
testing, and the parameters in the bi-LSTM neural network are optimized according to the
result feedback.

3.3.1. Theoretical Model and Training Process of BI-LSTM Neural Network

The BI-LSTM neural network training process of CVDF DYNAMIC is shown in the
Figure 2.

Sensors 2022, 21, x FOR PEER REVIEW 6 of 24

in a path, the smaller the value of
NUM

NUM

A

D
is. If the weight W is a constant, the DC value

will decrease, and the path depth detection ability of a test case generation method cannot

be objectively measured.

Suppose that a program under test hasn execution paths, we define the average path

detection ability as
n

DC
WDC

n

i
i

 1 : It can measure the ability of a fuzzy testing tool

to detect the overall path depth

3.3. CVDF DYNAMIC Fuzzy Testing Sample Generation

The complete process of fuzzy testing sample generation of CVDF DYNAMIC is

shown in Figure 1.

Figure 1. Complete Flow Chart of CVDF DYNAMIC Fuzzy Testing sample generation.

In the fuzzy testing part, we learn from the ensemble learning method in artificial

intelligence. The seeds are mutated by genetic algorithm to generate a set of test cases, and

then the seeds are mutated by the bi‐LSTM neural network to generate another set of test

cases. Finally, the two sets of test cases are integrated to obtain the final set of test cases.

Considering that the size of the sample set obtained by the integration of the two

methods is too large, which reduces the efficiency of fuzzy testing, we use heuristic ge‐

netic algorithm to simplify the sample set. Finally, the reduced sample set is used for fuzzy

testing, and the parameters in the bi‐LSTM neural network are optimized according to the

result feedback.

3.3.1. Theoretical Model and Training Process of BI‐LSTM Neural Network

The BI‐LSTM neural network training process of CVDF DYNAMIC is shown in the

Figure 2.

Figure 2. Training of neural network. Figure 2. Training of neural network.

(a) Preprocessing and Vectorization

We preprocess the training dataset, including unifying the input format of the test cases
and changing the format of some binary executable programs, so that they can adapt to the
input of the neural network without changing the logic function of the original program.

Then, we use the PTFuzz tool, which is a tool to obtain the program execution path by
using the Intel Processor Tracing module (IntelPT). PTFuzz makes a further improvement
on the basis of AFL, which removes the dependence on the program instrument but uses
PT to collect package information and filter package information, and finally obtains the
execution path of the current seed according to the package information. In order to
achieve this goal, our hardware environment should be based on Intel CPU platform
and run under the appropriate version of Linux system. Since the PTFuzz tool stores
the program execution path information in data packets in order to obtain the program
execution path information that can be trained for neural networks, we need to decode the
data packets in the corresponding memory and recover the complete program execution

Sensors 2022, 22, 1265 7 of 21

path according to the entry, exit and other relevant information of each data packet. The
pseudocode of the Algorithm 1 Extracting program execution path is as follows:

Algorithm 1. Extracting program execution path

Start Func
Func ExtractPath(binary-source-code)
1: Start = LoadBinaryProgram(binary-source-code)
2: ProgStaddr = GetProgramEntry(Start)
3: ExecutionPath = []
4: while True:
5: PackagePath = LoadCurrentPackage(ProgStaddr)
6: ExecutionPath +|= PackagePath
7: If ProgStaddr == JumpNextInstrument()
8: ProgStaddr = GetNextInstruAddr()
9: If ProgStaddr == EndOfMemSpace()
10: break
11: Return ExecutionPath
End Func

In the pseudocode, JumpNextInstrument() and EndOfMemspace() are two judgment
functions, which are used to judge whether to jump to the next instruction address and
whether the end of the memory address of PTFuzz package has been reached, respectively.
The ExecutionPath variable forms a complete program execution path by continuously
connecting the PackagePath variable after decodeding. +|= is a concatenate operation.

After extracting the program execution path, we need to convert the program execution
path containing instruction bytecodes into vector form and save the original semantic
information of the original program execution path as much as possible.

We use the tool word2vec and regard a complete program execution path as a state-
ment and an instruction as a word. Specifically, we regard the hexadecimal code of an
instruction as a token, and then we use word2vec to train the corresponding bytecode
sequence. In order to preserve as much context information as possible in the program
execution path, we choose the Skip-Gram model in word2vec because it often has better
performance in large corpus. The Skip-Gram model structure is shown in the Figure 3.

Finally, we need to transform the output of word2vec into an equal length coding
input, which can be used as the input vector of the neural network. Let us set a maximum
length, which is MaxLen. When the output length of word2vec is less than MaxLen, we use
0 to fill in the back end to make it MaxLen. When the output length of word2vec is larger
than MaxLen, we truncate it from the front end and control the length to MaxLen.

(b) BI-LSTM neural network structure and parameter optimization

The neural network structure we choose is bi-LSTM.
Bi-LSTM has excellent performance in dealing with long-term dependency problems,

such as statement prediction and named entity recognition [38]. The statements associated
with vulnerability characteristics may be far away in the whole program execution path, so
we need the bi-LSTM neural network structure for the long-term memory of the information
related to the vulnerability characteristics. In order to make the bi-LSTM neural network
suitable for fuzzy testing, we modify the corresponding rules of the input gate, output gate
and forgetting gate of the bi-LSTM. The specific structure of the single LSTM neuron and
the specific rules of the input gate, output gate and forgetting gate are shown in Figure 4.

The number of hidden layers in the bi-LSTM neural network, epochs, batch size and
other parameters will affect the final performance of the neural network. According to the
experimental part in Section 4.2, we set the number of hidden layers to 5, the batch size
to 64 and the drop rate to 0.4 and use a BPTT back-propagation algorithm to adjust the
network weight, using random gradient descent (SGD) method to prevent the model from
falling into the local optimal solution. For the hyper parameters in the bi-LSTM neural

Sensors 2022, 22, 1265 8 of 21

network, we choose to use dichotomy to accelerate the selection of corresponding values.
Figure 5 shows the complete structure of the bi-LSTM neural network.

Sensors 2022, 21, x FOR PEER REVIEW 8 of 24

Figure 3. The Basic Structure Diagram Of Skip‐Gram Model.

Finally, we need to transform the output of word2vec into an equal length coding

input, which can be used as the input vector of the neural network. Let us set a maximum

length, which is MaxLen. When the output length of word2vec is less than MaxLen, we

use 0 to fill in the back end to make it MaxLen. When the output length of word2vec is

larger than MaxLen, we truncate it from the front end and control the length to MaxLen.

(b) BI‐LSTM neural network structure and parameter optimization

The neural network structure we choose is bi‐LSTM.

Bi‐LSTM has excellent performance in dealing with long‐term dependency problems,

such as statement prediction and named entity recognition. [38] The statements associated

with vulnerability characteristics may be far away in the whole program execution path,

so we need the bi‐LSTM neural network structure for the long‐term memory of the infor‐

mation related to the vulnerability characteristics. In order to make the bi‐LSTM neural

network suitable for fuzzy testing, we modify the corresponding rules of the input gate,

output gate and forgetting gate of the bi‐LSTM. The specific structure of the single LSTM

Figure 3. The Basic Structure Diagram Of Skip-Gram Model.

Sensors 2022, 21, x FOR PEER REVIEW 9 of 24

neuron and the specific rules of the input gate, output gate and forgetting gate are shown

in Figure 4.

Figure 4. The Specific Structure of LSTM Neuron.

The number of hidden layers in the bi‐LSTM neural network, epochs, batch size and

other parameters will affect the final performance of the neural network. According to the

experimental part in 4.2, we set the number of hidden layers to 5, the batch size to 64 and

the drop rate to 0.4 and use a BPTT back‐propagation algorithm to adjust the network

weight, using random gradient descent (SGD) method to prevent the model from falling

into the local optimal solution. For the hyper parameters in the bi‐LSTM neural network,

we choose to use dichotomy to accelerate the selection of corresponding values. Figure 5

shows the complete structure of the bi‐LSTM neural network.

Figure 4. The Specific Structure of LSTM Neuron.

Sensors 2022, 22, 1265 9 of 21
Sensors 2022, 21, x FOR PEER REVIEW 10 of 24

Figure 5. The Complete Structure of the bi‐LSTM neural network.

From Figure 5, we make the coding input with length MaxLen pass through several

bi‐LSTM hidden layers to extract clearer context dependencies. We let the output of the

last bi‐LSTM hidden layer pass through a feed forward neural network layer and sigmoid

activation function. The sigmoid activation function also normalizes the final output vec‐

tor, which is the vector form of the fuzzy testing sample generated by the bi‐LSTM neural

network.

3.3.2. Genetic Algorithm for Constructing Test Cases

The core of the genetic algorithm used to construct samples can be divided into sev‐

eral parts, including population initialization, tracking and executing the tested program,

fitness calculation and individual selection, crossover and mutation. The overall structure

is shown in Figure 6.

Figure 6. General Flow Chart of Generating Test Cases By Genetic Algorithm.

Figure 5. The Complete Structure of the bi-LSTM neural network.

From Figure 5, we make the coding input with length MaxLen pass through several
bi-LSTM hidden layers to extract clearer context dependencies. We let the output of the
last bi-LSTM hidden layer pass through a feed forward neural network layer and sigmoid
activation function. The sigmoid activation function also normalizes the final output
vector, which is the vector form of the fuzzy testing sample generated by the bi-LSTM
neural network.

3.3.2. Genetic Algorithm for Constructing Test Cases

The core of the genetic algorithm used to construct samples can be divided into several
parts, including population initialization, tracking and executing the tested program, fitness
calculation and individual selection, crossover and mutation. The overall structure is shown
in Figure 6.

Sensors 2022, 21, x FOR PEER REVIEW 10 of 24

Figure 5. The Complete Structure of the bi‐LSTM neural network.

From Figure 5, we make the coding input with length MaxLen pass through several

bi‐LSTM hidden layers to extract clearer context dependencies. We let the output of the

last bi‐LSTM hidden layer pass through a feed forward neural network layer and sigmoid

activation function. The sigmoid activation function also normalizes the final output vec‐

tor, which is the vector form of the fuzzy testing sample generated by the bi‐LSTM neural

network.

3.3.2. Genetic Algorithm for Constructing Test Cases

The core of the genetic algorithm used to construct samples can be divided into sev‐

eral parts, including population initialization, tracking and executing the tested program,

fitness calculation and individual selection, crossover and mutation. The overall structure

is shown in Figure 6.

Figure 6. General Flow Chart of Generating Test Cases By Genetic Algorithm. Figure 6. General Flow Chart of Generating Test Cases By Genetic Algorithm.

Sensors 2022, 22, 1265 10 of 21

(a) Population initialization

In a genetic algorithm, the population is composed of several individuals. We abstract
an individual as a chromosome. Let us set the length of the chromosome as Dlen, which
means the number of bytes of test data. Then, the ith individual in the population can be
expressed as Xi = (xi,1, xi,2, xi,3, . . . , xi,Dlen). Population initialization is performed to assign
a value to each gene xi,k(1 ≤ k ≤ Dlen in Xi). When there are initial test data, each byte of
the initial test data is used to assign a value of xi,k. Otherwise, the whole population can be
initialized by randomized assignment.

(b) Tracking and executing the program under test

Tracking is divided into two aspects:

• Monitor whether the current test data will cause the tested program to crash;
• Record the execution path of the program

Because each program can be divided into many basic blocks during execution, the
essence of the program execution is the process of execution and jump between basic blocks.

Each basic block has only one entry and exit. So, in a basic block, the program enters
from the entry and exits from the exit. Therefore, we can use the entry address Inaddr of
the basic block to represent each basic block. Then, the program execution process can
be expressed as a sequence of basic blocks: (Inaddr1, Inaddr2, . . . , Inaddrn) We define the
jump of a basic block as e = (Inaddrk, Inaddrk+1), where (1 ≤ k ≤ n− 1).

Obviously, if every basic block is regarded as a point in a graph, then E is an edge in
the graph. Since a basic block may be executed multiple times in the execution sequence,
the graph is directed. In this case, the execution path of the program can be expressed as a
sequence of edges Ee = (e1, e2, e3 . . . en−1).

Because some basic blocks may be repeated many times during program execution,
some edges may appear many times. We combine the same edges to obtain a set of edges
with the information of times of occurrence and analyze the frequency statistics of this set
and further divide it into many groups according to the different times of occurrence 1, 2–3,
4–7, 8–15, 16–31, 32–63, 64–127 and 128.

It is easy to see that the significance of this classification is that it can use different bits of
a byte to represent the times information, so it can improve the processing speed of the pro-
gram. Finally, we will obtain a new set of occurrence information Fe = (f1, f2, f3 . . . fn−1).

We use the above processing method for each basic block to get the final program
execution path information.

(c) Fitness calculation

By tracking the program under test, we can see that an execution path information
can be expressed as a sequence of edges. Therefore, in order to find a new execution path
and improve the path coverage of CVDF DYNAMIC, we need to calculate the fitness. We
define the sequence set of edges as V = (V1, V2, . . . , Vn), where each Vk (1 ≤ k ≤ n) is
equivalent to Ee. For any edge in Ee, let us assume that the final test data are Xi. We can
obtain a binary set of edge information related to the test data, as shown in Equation (2):

Qi = {(ei,1, Xi,1), (ei,2, Xi,2) . . . (ei,n, Xi,n)} (2)

It is not difficult to find that its essence is a weighted digraph, and the weight is the
test data. We define that the fitness (adaptation) f of an individual consists of two functions,
as shown in Equations (3) and (4).

Finding the number of new edges f1 and the number of edges f2 associated with them
in Qi:

f1(Xi) = card(Vi − Et) (3)

f2(Xi) = ∑q
q∈Vi

G(Wq, Xi) (4)

Sensors 2022, 22, 1265 11 of 21

G(X1, X2) =

{
1(X1 = X2)
0(X1 6= X2)

(5)

Firstly, the fitness f1 of each individual is calculated, and then the fitness f2 of each
individual is calculated after updating the set. The two sets used to calculate the fitness are
updated after each round of testing. When comparing two individuals, first f1 is compared;
if f1 cannot be distinguished, then compare f2.

(d) Individual selection, crossover and variation

Our individual selection method uses elite selection to produce new individuals.
It is a strategy of generating new individuals in genetic algorithm, which makes the
individuals with high fitness enter the next generation. The method of crossover is 2-opt
transformation. A number of random numbers are generated as the intersection points,
and then the fragments of the intersection points in the chromosome are exchanged. Rather
than using the random mutating method, this paper proposes a control mutation method to
improve the effect of mutation. A motivating example of the Algorithm 2 Control Mutation
is as follows:

Algorithm 2. Control Mutation

Start Func
Func ControlPROC(X,Y)
1: A = 1, B = 1
2: IF Y >= B THEN
3: FORK1: A = A × X, B = B + 1
4: ELSE:
5: IF X >= A THEN
6: FORK2: A = A + X, B = B − 1
7: ELSE:
8: FORK3: A = A − X, B = B/2
9: RETURN A
End Func

The input data format of the program is (X, Y) assuming that the template data are
(X = 1, Y = 1), and the variation factor is the operation of replacing 0. Therefore, two test
data can be generated by mutation (X = 1, Y = 0) and (X = 0, Y = 1), which can cover
FORK1 and FORK2. This form of testing could not achieve 100% branch coverage due
to the failure to cover FORK3. For control variation, when the test data (X = 1, Y = 0)
generated by the variation make the program enter the new branch FORK2, the variation
field of this time will be marked as an immutable field, and the variation will be carried
out on the basis of the test data. In this example, the control variation marks Y = 0 as an
immutable field and mutates the remaining fields, the X value, to 0, resulting in test data
(X = 0, Y = 0) that can be overridden by FORK3.

The control mutation strategy consists of the test data and control information that
make the program enter the new branch. The control mutation process is as follows: Firstly,
the control mutation strategy is taken out from the policy database, and the test data
entering the new branch are taken as the mutation template. Secondly, check the stored
control information and each byte in the template to confirm whether it is marked as control
information; if so, check the next byte, if not, modify the byte in combination with random
mutation strategy, generate test data and execute fuzzy testing, then continue to check the
next byte. Finally, after all bytes are checked, we complete one time of mutation, and the
above process is repeated.

After completing the above operations, we have completed a round of iteration of the
genetic algorithm taking the newly generated chromosome data as the test data of the next
round of mutation, that is, continuous iterative mutation.

Sensors 2022, 22, 1265 12 of 21

3.3.3. Integrating New Test Data with Integration Idea

Firstly, through the above genetic algorithm, test cases with high path coverage are
constructed from the original test case seeds. Then, for the test cases located on different
execution paths, the bi-LSTM neural network is used to construct test cases with stronger
path depth detection ability. Finally, we integrate the test case set constructed by the two
methods to obtain the final test case set. Considering that the test case set generated by the
above two methods may be too large and the efficiency of the fuzzy testing is reduced, this
paper uses heuristic genetic algorithm to simplify the integrated test case set to ensure that
the efficiency of fuzzy testing can be improved without losing the test performance.

3.3.4. Using Heuristic Genetic Algorithm to Reduce Sample Set

In order to reduce the sample set without losing the performance of fuzzy testing
as much as possible, the screening principle of heuristic genetic algorithm in this paper
is to give priority to the samples with stronger code coverage and Path Depth Detection
Ability. Then, select the remaining test samples in the order of decreasing test performance,
until the performance index basically covers the original fuzzy testing sample set (see the
experiment in Section 4.4 for specific results). Here, our heuristic algorithm is a selection
mutation algorithm for chromosomes.

(a) Using a compression matrix to represent chromosomes

At present, the common chromosome representation method is to use a 0–1 matrix [39].
The element of each row vector of the 0–1 matrix is 0 or 1. As mentioned earlier, we treat the
basic block address as a collection of elements. Each basic block is equivalent to the gene in
the genetic algorithm. Therefore, 1 in the 0–1 matrix indicates that a basic block exists in
the sample, while 0 indicates that it does not exist. In this way, the sample set formed by
all samples constitutes a 0–1 matrix, and the set of genes in each column is equivalent to a
chromosome. Considering the complexity of the program execution path, the 0–1 matrix
is a sparse matrix. If it is stored directly in the way of 0–1, the space efficiency will be
significantly reduced. Therefore, this paper compresses the 0–1 matrix. Our storage method
is a triple sequence < Val, Xcor, Ycor >, where Val is the element with the storage value of 1,
and Xcor and Ycor are its X and Y coordinates in the original matrix, respectively. Since the
value of Val is 1 by default, the value of this item can be omitted in the actual operation.

(b) Using heuristic genetic algorithm to improve chromosome

Each chromosome has its own independent gene sequence, but there will also be
a large number of repeated and overlapping genes. Therefore, as mentioned above, we
should solve the SCP when carrying out set coverage and reduce set redundancy as much
as possible. Therefore, the heuristic function of the heuristic genetic algorithm is mainly
reflected in eliminating the redundancy caused by gene duplication and screening better
chromosomes through genetic iteration.

The specific algorithm is described as follows:
We deduce the chromosome from the position information in the compression matrix.

For genes in the same column, if they contain more “1” values, it indicates that the perfor-
mance priority of this column is relatively high, so we give priority to selection, mark the
selected column and so on. Subsequently, we perform gene exchange on chromosomes.
We assume that there are two different chromosomes Fa1 and Fa2 in the parent generation.
After chromosome exchange, we can obtain the child’s chromosomes Ch1 and Ch2. It is
assumed that Ch1 and Ch2 can cover set S1. We use sets T1 and T2 to store the line numbers
not covered in the genes and use sets Cot1 and Cot2 to store the genes contained in Ch1 and
Ch2. First, we calculate the performance priority of each gene in the parents Fa1 and Fa2,
that is, count the number of “1” values in each column for screening. Then, we screen out
the chromosomes with the highest performance priority in Fa1 and Fa2, copy them to Ch1,
count the genes contained in Ch1 and delete the genes contained in Ch1 from Cot1. Then,
we calculate the value of Cot1 − Ch1, which is the difference set, and store its line number
in set T1. Next, we continue to arrange the remaining genes of Fa1 and Fa2 using the same

Sensors 2022, 22, 1265 13 of 21

performance priority selection method, and then put them into Ch1 again. The remaining
genes will be put into Ch2.

In the process of gene selection and gene exchange, there are some special cases
with the same gene performance. At this time, we need to further screen them to obtain
the optimal gene. Suppose that there are two genes, Gene1 and Gene2, with the same
performance priority in Fa1, and there is one gene Gene3 in set Ch1. At this time, we need
to compare the results of Gene1 ∩ Gene3 and Gene2 ∩ Gene3 to screen out the larger results.
Considering that there will be a corresponding mutation process in the genetic algorithm,
the above calculation should be carried out before and after mutation to ensure that the
optimal result is always selected.

From the above description, the heuristic genetic algorithm proposed in this paper
uses the compression matrix on the basis of the original population and selects the optimal
chromosome according to the way of gene selection and gene exchange. Therefore, this
heuristic genetic algorithm essentially does not change the workflow of ordinary genetic
algorithm, but through the optimization of search conditions, it simplifies the sample set
and further improves the efficiency of fuzzy testing.

The specific process of the ordinary genetic algorithm has been described above. The
heuristic genetic algorithm is different from ordinary genetic algorithm in the following aspects:

(c) Paternal selection

There are three common methods of paternal selection: random selection, tournament
selection and roulette bet. Here, we use roulette method, the specific operation is as follows:

Step 1: The fitness of each individual in the population is calculated fi (i = 1,2,3, . . . n),
where n is the population size.

Step 2: Calculate the probability pi =
fi

∑n
1 fi

of each individual being inherited into the
next generation population.

Step 3: Calculate the probability distribution of each individual:

qi =
i

∑
j=1

p(xj). (6)

Step 4: A pseudo-random number (rand) with uniform distribution is generated in
the interval (0, 1).

Step 5: When rand < q1, q1 is chosen; otherwise, if qk−1 ≤ rand ≤ qk, individual K
is chosen.

Step 6: Repeat step 4 and step 5 several times, and the number of repetitions depends
on the size of the population.

(d) Cross rate selection

Crossover is the main way to produce new individuals. The crossover rate is the
number of chromosomes in the crossover pool. A reasonable crossover rate can ensure
that new individuals will be produced continuously in the crossover pool, but it will not
produce too many new individuals, so as to prevent the genetic order from being destroyed.
This paper adopts the most popular method of the adaptive crossover rate.

(e) Variation rate selection

The mutation rate is the proportion of the number of genes in a population based on
the number of all genes. Because mutation is a way to produce new individuals, we can
control the mutation by setting the number of genes or the rate of random mutation. Too
low a mutation rate will lead to too few chromosomes involved in the mutation, which
leads to the problem that the chromosome containing unique genes cannot be entered into
the set. The high mutation rate will cause too many chromosomes involved in the mutation,
which will generate some illegal data and increase the time cost. After the experiment and
model tuning, the final mutation rate is 0.5.

Sensors 2022, 22, 1265 14 of 21

(f) Elite ratio

The elite ratio means that the individuals with the highest fitness in the current popu-
lation do not participate in crossover and mutation operations but replace the individuals
with the lowest fitness in the current population after crossover and mutation operations.

After the experiment and model optimization, the final elite ratio is 0.06.

(g) Stopping Criteria

The genetic algorithm has to go through several rounds of iterative evolution until
it reaches the ideal result or reaches the threshold of the number of iterations. For the
heuristic genetic algorithm, the threshold of iterations is 25.

4. Experiment and Evaluation
4.1. Data Sources

In the training part of the neural network, we need a large number of training samples
to train our neural network so that the time series neural network can effectively capture
the corresponding kinds of vulnerability characteristics from the training set. Therefore, we
first collect a large number of vulnerability information from CVE and CNNVD national
security vulnerability database, then screen out the vulnerability information, which is
obviously suitable for neural network training. Then, we select the corresponding binary
executable program and corresponding test cases from GitHub [40] and SARD [41] dataset
and obtain a small number of training datasets from Symantec Security Company. The
dataset we screened contains a variety of CWE vulnerability types, such as buffer overflow
vulnerability (CWE-119, CWE-120, CWE-131), format string (CWE-134), etc. For the binary
executable program corresponding to each vulnerability information, we filter out two
versions, which are vulnerable version (no patch version) and clean version (with patch
version). The purpose of using two different versions to train the neural network is
to verify whether the corresponding test cases can trigger the vulnerability successfully.
Second, we can further enhance the learning of the neural network for vulnerability features
through this method of comparative training, so as to achieve a better training effect. The
inspiration for the construction of this training dataset comes from the special training
dataset constructed for generator G in GAN neural network, which contains labeled
samples and unlabeled samples. Finally, all the datasets we get are shown in Table 1.

Table 1. Dataset Information of CVDF DYNAMIC.

Data Sources Types of Vulnerabilities

SARD (CWE-119, CWE-120, CWE-131, CWE-134 etc)

Security Focus (CWE-119, CWE-120, CWE-189, CWE-369 etc)

Github (CWE-415, CWE-476, CWE-119, CWE-763 etc)

We randomly select 80% of the data for the bi-LSTM neural network training set
and the remaining 20% for CVDF DYNAMIC framework and subsequent experimental
comparative analysis test set.

In the experiment, we mainly answer the following three questions:
Q1: Is the theoretical model of CVDF DYNAMIC valid?
Q2: Does CVDF DYNAMIC have a performance advantage in test case generation

compared with the existing fuzzy testing tools?
Q3: What is the performance overhead of CVDF DYNAMIC? Does the reduction of

sample sets improve the efficiency of CVDF DYNAMIC sample generation?

4.2. Evaluate the Validity of CVDF DYNAMIC’s Theoretical Model

For Q1, our BI-LSTM neural network optimizes the parameters according to the
method mentioned above, and after seven epochs training, the accuracy and loss perfor-
mance of the model are shown in Figure 7.

Sensors 2022, 22, 1265 15 of 21

Sensors 2022, 21, x FOR PEER REVIEW 17 of 24

Table 1. Dataset Information of CVDF DYNAMIC.

Data Sources Types Of Vulnerabilities

SARD (CWE‐119, CWE‐120, CWE‐131, CWE‐134 etc)

Security Focus (CWE‐119, CWE‐120, CWE‐189, CWE‐369 etc)

Github (CWE‐415, CWE‐476, CWE‐119, CWE‐763 etc)

We randomly select 80% of the data for the bi‐LSTM neural network training set and

the remaining 20% for CVDF DYNAMIC framework and subsequent experimental com‐

parative analysis test set.

In the experiment, we mainly answer the following three questions:

Q1: Is the theoretical model of CVDF DYNAMIC valid?

Q2: Does CVDF DYNAMIC have a performance advantage in test case generation

compared with the existing fuzzy testing tools?

Q3: What is the performance overhead of CVDF DYNAMIC? Does the reduction of

sample sets improve the efficiency of CVDF DYNAMIC sample generation?

4.2. Evaluate the Validity of CVDF DYNAMIC’s Theoretical Model

For Q1, our BI‐LSTM neural network optimizes the parameters according to the

method mentioned above, and after seven epochs training, the accuracy and loss perfor‐

mance of the model are shown in Figure 7.

Figure 7. The Relationship Between the Accuracy and Loss Of bi‐LSTM And Epochs.

It can be seen from Figure 7 that after seven training epochs, the accuracy of the BI‐

LSTM neural network is more than 90%, approaching 93% and stable, while the loss is

less than 20% and tends to be stable.

Figure 8 shows a specific example of parameter optimization for the number of hid‐

den layers of the bi‐LSTM neural network. As can be seen from Figure 8, when the number

of hidden layers is five, the performance of the bi‐LSTM neural network on the three eval‐

uation indices of precision, recall and accuracy is the best. Other parameters such as drop

rate and batch size are optimized in a similar way.

Figure 7. The Relationship Between the Accuracy and Loss Of bi-LSTM And Epochs.

It can be seen from Figure 7 that after seven training epochs, the accuracy of the
BI-LSTM neural network is more than 90%, approaching 93% and stable, while the loss is
less than 20% and tends to be stable.

Figure 8 shows a specific example of parameter optimization for the number of hidden
layers of the bi-LSTM neural network. As can be seen from Figure 8, when the number
of hidden layers is five, the performance of the bi-LSTM neural network on the three
evaluation indices of precision, recall and accuracy is the best. Other parameters such as
drop rate and batch size are optimized in a similar way.

Sensors 2022, 21, x FOR PEER REVIEW 18 of 24

Figure 8. Relationship Between Evaluation Indices And Layer Numbers.

In the part of using the genetic algorithm to generate test cases, we compare the ge‐

netic algorithm with the existing fuzzy testing tool AFLFast under the two evaluation in‐

dices of code coverage and the number of generated edge sequences EdgeNum. The ge‐

netic algorithm has been generated through 25 rounds of iterations, and the test program

uses the media processing program named FFmpeg [42] in the test set constructed above.

The final experimental results are shown in Figure 9.

Figure 9. Comparative Test Results Of Genetic Algorithm And AFLFast.

In Figure 9, the ordinate dimension of code coverage is a percentage, and the dimen‐

sion of the sequence number of edges is
210value . As can be seen from Figure 9, com‐

pared with AFLFast, the genetic algorithm has significant performance advantages in

code coverage and the number of edge sequences. The genetic algorithm finds 9246 edge

sequences for FFmpeg, while AFLFast only finds 8137 edge sequences. Because of the pos‐

itive correlation between the number of edges and code coverage, the code coverage of

the genetic algorithm is better than that of AFLFast.

Figure 8. Relationship Between Evaluation Indices And Layer Numbers.

In the part of using the genetic algorithm to generate test cases, we compare the genetic
algorithm with the existing fuzzy testing tool AFLFast under the two evaluation indices
of code coverage and the number of generated edge sequences EdgeNum. The genetic
algorithm has been generated through 25 rounds of iterations, and the test program uses
the media processing program named FFmpeg [42] in the test set constructed above. The
final experimental results are shown in Figure 9.

Sensors 2022, 22, 1265 16 of 21

Sensors 2022, 21, x FOR PEER REVIEW 18 of 24

Figure 8. Relationship Between Evaluation Indices And Layer Numbers.

In the part of using the genetic algorithm to generate test cases, we compare the ge‐

netic algorithm with the existing fuzzy testing tool AFLFast under the two evaluation in‐

dices of code coverage and the number of generated edge sequences EdgeNum. The ge‐

netic algorithm has been generated through 25 rounds of iterations, and the test program

uses the media processing program named FFmpeg [42] in the test set constructed above.

The final experimental results are shown in Figure 9.

Figure 9. Comparative Test Results Of Genetic Algorithm And AFLFast.

In Figure 9, the ordinate dimension of code coverage is a percentage, and the dimen‐

sion of the sequence number of edges is
210value . As can be seen from Figure 9, com‐

pared with AFLFast, the genetic algorithm has significant performance advantages in

code coverage and the number of edge sequences. The genetic algorithm finds 9246 edge

sequences for FFmpeg, while AFLFast only finds 8137 edge sequences. Because of the pos‐

itive correlation between the number of edges and code coverage, the code coverage of

the genetic algorithm is better than that of AFLFast.

Figure 9. Comparative Test Results Of Genetic Algorithm And AFLFast.

In Figure 9, the ordinate dimension of code coverage is a percentage, and the di-
mension of the sequence number of edges is value× 102. As can be seen from Figure 9,
compared with AFLFast, the genetic algorithm has significant performance advantages in
code coverage and the number of edge sequences. The genetic algorithm finds 9246 edge
sequences for FFmpeg, while AFLFast only finds 8137 edge sequences. Because of the
positive correlation between the number of edges and code coverage, the code coverage of
the genetic algorithm is better than that of AFLFast.

So far, we have effectively solved the first problem, that is, the CVDF DYNAMIC
theoretical model is effective. For the bi-LSTM neural network part of CVDF DYNAMIC,
Figure 7 shows that our model achieves ideal training results. For the part of genetic
algorithm generating test cases in CVDF DYNAMIC, our test cases have performance
advantages over AFLFast in terms of code coverage and number of edges.

4.3. Performance Comparison between CVDF DYNAMIC and Existing Fuzzy Testing Tools

For Q2, we use NeuFuzz, which is also based on a neural network to guide the
generation of fuzzy testing samples, and AFLFast tools for comparative testing. In order to
facilitate testing and comparison, we use widely used evaluation metrics in vulnerability
mining and neural networks, including false positive rate (FPR), true positive rate (TPR)
and accuracy rate (ACC).

Firstly, the common definitions of vulnerability evaluation index are given.
TP (true positive): True positive samples are samples with their own vulnerabilities

and are correctly identified.
FP (false positive): False positive samples are samples that do not contain vulnerabili-

ties and are not correctly identified.
FN (false negative): False negative samples are samples that contain vulnerabilities

and are not correctly identified.
TN (true negative): True negative samples are samples that do not contain vulnerabili-

ties and are correctly identified.
The specific forms of FPR, TPR and ACC are as follows:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

ACC =
TP + TN

TP + FP + TN + FN

Sensors 2022, 22, 1265 17 of 21

On the other hand, in order to intuitively show the performance advantages of the
bi-LSTM neural network and genetic algorithm integration, we also add two evaluation
indices, which are code coverage and path depth detection ability, and use the dataset
constructed in this paper to test it. The experimental results are shown in Table 2.

Table 2. Comparison Test Results Of CVDF DYNAMIC With Other Tools.

Tool
Evaluation Indicator

FPR TPR ACC Code Coverage WDC

CVDF DYNAMIC 5.6% 92.3% 88.9% 89.6% 2.76

NeuFuzz 10.2% 79.8% 83.4% 24.7% 2.78

VDiscover 8.5% 86.7% 85.8% 86.5% 2.33

AFLFast 11.2% 88.7% 82.9% 80.1% 1.94

It can be seen from Table 2 that CVDF DYNAMIC has performance advantages over
other fuzzy testing tools. This is because CVDF DYNAMIC combines the advantages of
neural network and genetic algorithm and is superior to other tools in comprehensive
performance. However, other tools are also very advanced fuzzy testing tools, so they
also have good performance in contrast testing. CVDF DYNAMIC and NeuFuzz are very
close to each other in terms of other evaluation indices, except code coverage. However,
CVDF DYNAMIC has obvious advantages over NeuFuzz in code coverage because it
combines the advantages of the bi-LSTM neural network and genetic algorithm. It should
also be pointed out here that the author of NeuFuzz explains that NeuFuzz focuses on seed
mutation and test case generation under critical execution path rather than code coverage.
However, CVDF DYNAMIC is still in the leading position in comprehensive performance.

4.4. Performance Overhead of CVDF DYNAMIC and Effectiveness of Sample Set Reduction

For Q3, we consider the performance cost of CVDF DYNAMIC and the effectiveness of
sample set reduction from the number of sample sets before and after reduction, the time of
fuzzy testing before and after reduction, the compression ratio and other evaluation indicators.

From Table 3, it can be seen that the compression algorithm greatly reduces the number
of samples, and the compression rate reaches 54.6%. However, because the compressed
sample set basically retains the key path, the execution time has decreased to some extent,
but it is not as obvious as the compression rate. The code coverage and WDC evaluation
index of the compressed sample set are identical with the original sample set. It shows that
the compression of the test case sample set has no loss of performance, and then proves the
significance and necessity of the sample set compression.

Table 3. Index Comparison Of Sample Set Before And After Compression.

Number of Samples Compression Ratio Execution Times/s Code Coverage WDC

Initial sample set 6308
54.6%

46,184 89.6% 2.76

Compressed
sample set 2864 32,428 89.6% 2.76

We use a random sampling method to form 6 initial sample sets with the scales of 1000,
2000, 3000, 4000, 5000 and 6000. The execution efficiency and time of the initial sample set
and of the compressed sample set are compared, and the results are shown in Figure 10.

As can be seen from Figure 10, with the increase in the initial sample set size, the
execution time efficiency after compression is gradually improved compared with that
before compression.

Sensors 2022, 22, 1265 18 of 21

Finally, this paper compares the compression ratio and test time of the sample set
between the CVDF DYNAMIC heuristic genetic algorithm and the greedy-based approxi-
mation algorithm. The experimental results are shown in Figures 11 and 12.

Sensors 2022, 21, x FOR PEER REVIEW 20 of 24

pointed out here that the author of NeuFuzz explains that NeuFuzz focuses on seed mu‐

tation and test case generation under critical execution path rather than code coverage.

However, CVDF DYNAMIC is still in the leading position in comprehensive performance.

4.4. Performance Overhead of CVDF DYNAMIC and Effectiveness of Sample Set Reduction

For Q3, we consider the performance cost of CVDF DYNAMIC and the effectiveness

of sample set reduction from the number of sample sets before and after reduction, the

time of fuzzy testing before and after reduction, the compression ratio and other evalua‐

tion indicators.

From Table 3, it can be seen that the compression algorithm greatly reduces the num‐

ber of samples, and the compression rate reaches 54.6%. However, because the com‐

pressed sample set basically retains the key path, the execution time has decreased to

some extent, but it is not as obvious as the compression rate. The code coverage and WDC

evaluation index of the compressed sample set are identical with the original sample set.

It shows that the compression of the test case sample set has no loss of performance, and

then proves the significance and necessity of the sample set compression.

Table 3. Index Comparison Of Sample Set Before And After Compression.

Number of

Samples

Compression

Ratio

Execution

Times/s
Code Coverage WDC

Initial sample

set
6308

54.6%

46184 89.6% 2.76

Compressed

sample set
2864 32428 89.6% 2.76

We use a random sampling method to form 6 initial sample sets with the scales of

1000, 2000, 3000, 4000, 5000 and 6000. The execution efficiency and time of the initial sam‐

ple set and of the compressed sample set are compared, and the results are shown in Fig‐

ure 10.

Figure 10. Execution Time Comparison.

As can be seen from Figure 10, with the increase in the initial sample set size, the

execution time efficiency after compression is gradually improved compared with that

before compression.

Figure 10. Execution Time Comparison.

Sensors 2022, 21, x FOR PEER REVIEW 21 of 24

Finally, this paper compares the compression ratio and test time of the sample set

between the CVDF DYNAMIC heuristic genetic algorithm and the greedy‐based approx‐

imation algorithm. The experimental results are shown in Figures 11 and 12.

Figure 11. Comparison Of Compression Ratio Between Heuristic Genetic Algorithm And Approxi‐

mation Algorithm.

.

Figure 12. Comparison of Test Time Between Heuristic Genetic Algorithm And Approximation Al‐

gorithm.

It can be seen that the compression ratio based on the heuristic genetic algorithm has

obvious advantages in different size sample sets compared with an approximation algo‐

rithm. With the increase in sample size, the test time of the heuristic genetic algorithm is

more and more advanced.

5. Discussion on Security and Privacy of CVDF DYNAMIC Model

Because CVDF DYNAMIC combines the bi‐LSTM neural network and the genetic

algorithm to generate fuzzy testing samples, the final sample set is a mixed sample set,

and the sample set has no label for classification. Therefore, it is very difficult to deduce

Figure 11. Comparison Of Compression Ratio Between Heuristic Genetic Algorithm And Approxi-
mation Algorithm.

Sensors 2022, 21, x FOR PEER REVIEW 21 of 24

Finally, this paper compares the compression ratio and test time of the sample set

between the CVDF DYNAMIC heuristic genetic algorithm and the greedy‐based approx‐

imation algorithm. The experimental results are shown in Figures 11 and 12.

Figure 11. Comparison Of Compression Ratio Between Heuristic Genetic Algorithm And Approxi‐

mation Algorithm.

.

Figure 12. Comparison of Test Time Between Heuristic Genetic Algorithm And Approximation Al‐

gorithm.

It can be seen that the compression ratio based on the heuristic genetic algorithm has

obvious advantages in different size sample sets compared with an approximation algo‐

rithm. With the increase in sample size, the test time of the heuristic genetic algorithm is

more and more advanced.

5. Discussion on Security and Privacy of CVDF DYNAMIC Model

Because CVDF DYNAMIC combines the bi‐LSTM neural network and the genetic

algorithm to generate fuzzy testing samples, the final sample set is a mixed sample set,

and the sample set has no label for classification. Therefore, it is very difficult to deduce

Figure 12. Comparison of Test Time Between Heuristic Genetic Algorithm And Approximation Algorithm.

Sensors 2022, 22, 1265 19 of 21

It can be seen that the compression ratio based on the heuristic genetic algorithm
has obvious advantages in different size sample sets compared with an approximation
algorithm. With the increase in sample size, the test time of the heuristic genetic algorithm
is more and more advanced.

5. Discussion on Security and Privacy of CVDF DYNAMIC Model

Because CVDF DYNAMIC combines the bi-LSTM neural network and the genetic
algorithm to generate fuzzy testing samples, the final sample set is a mixed sample set,
and the sample set has no label for classification. Therefore, it is very difficult to deduce
the sensitive training data of CVDF DYNAMIC through the final sample set generated
by CVDF DYNAMIC. On the other hand, in the description of experiment part 4.1, the
training data of CVDF DYNAMIC comes from the vulnerability databases of many different
countries or companies. Some of these databases are open access and some are private,
but CVDF DYNAMIC adopts mixed training for datasets from different sources in the
training process and randomly selects 80% as the training set and 20% as the testing set in
the mixed datasets. Therefore, even if the attacker obtains the CVDF DYNAMIC datasets
through reverse derivation, it is also very difficult to further distinguish private data from
the middle. However, the bi-LSTM neural network adopted by CVDF DYNAMIC is a
mature neural network structure, and there are corresponding scientific studies to attack
this neural network structure. The security of the bi-LSTM neural network structure still
needs to be strengthened in the future.

6. Conclusions

Existing fuzzy testing tools and methods only focus on the code coverage or the
test case generation on the critical path. It is difficult to take both the code coverage
and path depth detection ability into account. Therefore, this paper proposes CVDF
DYNAMIC, a fuzzy testing sample generation framework based on the bi-LSTM and the
genetic algorithm.

By combining the genetic algorithm and the bi-LSTM neural network, the framework
has the ability of code coverage and path depth detection and has excellent comprehensive
performance. This paper also proposes path depth detection ability, which is an evaluation
metrics of vulnerability detection ability under critical execution path. Meanwhile, a heuris-
tic genetic algorithm is used for simplifying the sample set. Finally, the experimental results
show that CVDF DYNAMIC is feasible and effective, and its performance is improved
compared with existing fuzzy testing tools, such as AFLFast and NeuFuzz in several evalu-
ation indices. (FPR, TPR, ACC, Code Coverage and WDC). The reduction in the sample
set further improves the efficiency of the CVDF DYNAMIC test case generation. In the
future, we will further optimize the performance of CVDF DYNAMIC by optimizing the
neural network structure in CVDF DYNAMIC and perfecting the iterative rules of genetic
algorithm and integrate more fuzzy testing sample generation methods to further improve
the code coverage and path depth detection ability.

Author Contributions: Conceptualization, M.M.; methodology, M.M.; software, M.M.; validation,
M.M.; formal analysis, M.M.; investigation, M.M.; resources, L.H.; data curation, M.M.; writing—
original draft preparation, M.M.; writing—review and editing, L.H.; visualization, M.M.; supervision,
Y.Q.; project administration, L.H.; funding acquisition, L.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This paper is supported by the National Natural Science Foundation of China: 6217071437,
62072200, 62127808.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2022, 22, 1265 20 of 21

Data Availability Statement: Data available on request due to restrictions eg privacy or ethical. The
data presented in this study are available on request from the corresponding author. The data are not
publicly available due to [Data privacy issues].

Acknowledgments: The authors thank the anonymous reviewers for their insightful suggestions on
this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zou, Q.; Zhang, T.; Wu, R.; Ma, J.; Li, M.; Chen, C.; Hou, C. From automation to intelligence: Survey of research on vulnerability

discovery technique. J. Tsinghua Univ. (Sci. Technol.) 2018, 58, 1079–1094. [CrossRef]
2. Borzacchiello, L.; Coppa, E.; Demetrescu, C. FUZZOLIC: Mixing fuzzing and concolic execution. Comput. Secur. 2021, 108, 102368.

[CrossRef]
3. Liang, J.; Jiang, Y.; Wang, M.; Jiao, X.; Chen, Y.; Song, H.; Choo, K.R. DeepFuzzer: Accelerated Deep Greybox Fuzzing. IEEE Trans.

Dependable Secur. Comput. 2019, 18, 2675–2688. [CrossRef]
4. Huang, H.; Yao, P.; Wu, R.; Shi, Q.; Zhang, C. PANGOLIN: Incremental Hybrid Fuzzing with Polyhedral Path Abstraction. In

Proceedings of the 2020 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 18–21 May 2020. [CrossRef]
5. Gan, S.; Zhang, C.; Chen, P.; Zhao, B.; Qin, X.; Wu, D.; Chen, Z. GreyOne: Data Flow Sensitive Fuzzing. In Proceedings of the 29th

USENIX Security Symposium, Boston, MA, USA, 12–14 August 2020. Available online: https://www.usenix.org/conference/
usenixsecurity20/presentation/gan (accessed on 25 January 2022).

6. Bohme, M.; Pham, V.-T.; Roychoudhury, A. Coverage-Based Greybox Fuzzing as Markov Chain. IEEE Trans. Softw. Eng. 2019,
5, 489–506. [CrossRef]

7. Chen, Y.; Jiang, Y.; Ma, F.; Liang, J.; Wang, M.; Zhou, C.; Jiao, X.; Su, Z. EnFuzz: Ensemble Fuzzing with Seed Synchronization
among Diverse Fuzzers. In Proceedings of the 28th USENIX Security Symposium, Santa Clara, CA, USA, 14–16 August
2019. Available online: https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang (accessed on
24 January 2022).

8. Wang, Y.; Wu, Z.; Wei, Q.; Wang, A.Q. NeuFuzz: Efficient Fuzzing with Deep Neural Network. IEEE Access 2019, 7, 36340–36352.
[CrossRef]

9. Lin, P.; Hong, Z.; Li, Y.; Wu, L. A priority based path searching method for improving hybrid fuzzing. Comput. Secur. 2021,
105, 102242. [CrossRef]

10. Chen, P.; Chen, H. Angora: Efficient Fuzzing by Principled Search. In Proceedings of the 2018 IEEE Symposium on Security and
Privacy, San Francisco, CA, USA, 20–24 May 2018. [CrossRef]

11. Zhang, X.; Li, Z. Survey of Fuzz Testing Technology. Comput. Sci. 2016, 43, 5. [CrossRef]
12. Zhang, Y.; Zhao, L.; Jin, Y. Sensitive Region Prediction based on neuralnetwork in Fuzzy Test Algorithm Research. J. Cyber Secur.

2020, 5, 1. [CrossRef]
13. Xie, X.F.; Li, X.H.; Chen, X.; Meng, G.Z.; Liu, Y. Hybrid testing based on symbolic execution and fuzzing. Ruan Jian Xue Bao/J.

Softw. 2019, 30, 3071–3089. (In Chinese)
14. Xu, P.; Liu, J.; Lin, B.; Sun, H.; Lei, B. Generation of fuzzing test case based on recurrent neural networks. Appl. Res. Comput. 2019,

36, 2679–2685. [CrossRef]
15. Nagy, S.; Hicks, M. Full-speed Fuzzing: Reducing Fuzzing Overhead through Coverage-guided Tracing. In Proceedings of the

2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019. [CrossRef]
16. Yang, M.F.; Huo, W.; Zou, Y.Y.; Yin, J.W.; Liu, B.X.; Gong, X.R.; Jia, X.Q.; Zou, W. Programmable fuzzing technology. Ruan Jian Xue

Bao/J. Softw. 2018, 29, 1258–1274. (In Chinese)
17. Godefroid, P.; Peleg, H.; Singh, R. Learn&Fuzz: Maching Learning for Input Fuzzing. In Proceedings of the 2017 32nd IEEE/ACM

International Conference on Automated Software Engineering (ASE), Urbana, IL, USA, 30 October−3 November 2017.
18. Li, M.-L.; Huang, H.; Lu, Y.-L.; Zhu, K.-L. SymFuzz: Vulnerability Detection Technology under Complex Path Conditions.

Comput. Sci. 2021, 48, 7. [CrossRef]
19. Cheng, L.; Zhang, Y.; Zhang, Y.; Wu, C.; Li, Z.; Fu, Y.; Li, H. Optimizing seed inputs in fuzzing with machine learning. In

Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), Montreal, QC, Canada, 25−31 May 2019.

20. Ma, J.; Zhang, T.; Li, Z.; Zhang, J. Improved fuzzy analysis methods. J. Tsinghua Univ. (Sci. Technol.) 2016, 56, 478–483. [CrossRef]
21. Aschermann, C.; Schumilo, S.; Abbasi, A.; Holz, T. IJON: Exploring Deep State Spaces via Fuzzing. In Proceedings of the 2020

IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 18–21 May 2020. [CrossRef]
22. Perl, H.; Arp, D.; Fahl, S. VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assist Code Audits. In

Proceedings of the CCS ‘15: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, 12–16 October 2015. [CrossRef]

23. Stephens, N.; Grosen, J.; Salls, C. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. NDSS 2016, 16, 21–24.
[CrossRef]

http://doi.org/10.16511/j.cnki.qhdxxb.2018.21.025
http://doi.org/10.1016/j.cose.2021.102368
http://doi.org/10.1109/TDSC.2019.2961339
http://doi.org/10.1109/SP40000.2020.00063
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
http://doi.org/10.1109/TSE.2017.2785841
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
http://doi.org/10.1109/ACCESS.2019.2903291
http://doi.org/10.1016/j.cose.2021.102242
http://doi.org/10.1109/SP.2018.00046
http://doi.org/10.11896/j.issn.1002-137X.2016.5.001
http://doi.org/10.19363/J.cnki.cn10-1380/tn.2020.01.02
http://doi.org/10.19734/j.issn.1001-3695.2018.03.0222
http://doi.org/10.1109/SP.2019.00069
http://doi.org/10.11896/jsjkx.2.00600128
http://doi.org/10.16511/j.cnki,qhdxxb.2016.25.004
http://doi.org/10.1109/SP40000.2020.00117
http://doi.org/10.1145/2810103.2813604
http://doi.org/10.14722/ndss.2016.23368

Sensors 2022, 22, 1265 21 of 21

24. She, D.; Pei, K.; Epstein, D.; Yang, J.; Ray, B.; Jana, S. NEUZZ: Efficient Fuzzing with Neural Program Smoothing. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 19–23 May 2019. [CrossRef]

25. Chen, Y.; Zhong, R.; Hu, H.; Zhang, H.; Yang, Y.; Wu, D.; Lee, W. One Engine to Fuzz’em All: Generic Language Processor
Testing with Semantic Validation. In Proceedings of the 2021 IEEE Symposium on Security and Privacy, San Francisco, CA, USA,
24–27 May 2021. [CrossRef]

26. Zhang, Z.; You, W.; Tao, G.; Aafer, Y.; Liu, X.; Zhang, X. STOCHFUZZ: Sound and Cost-effective Fuzzing of Stripped Binaries
by Incremental and Stochastic Rewriting. In Proceedings of the 2021 IEEE Symposium on Security and Privacy, San Francisco,
CA, USA, 24–27 May 2021. [CrossRef]

27. Yue, T.; Wang, P.; Tang, Y.; Wang, E.; Yu, B.; Lu, K.; Zhou, X. EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant of the
Adversarial Multi-Armed Bandit. In Proceedings of the 29th USENIX Security Symposium, Boston, MA, USA, 12–14 August 2020.
Available online: https://www.usenix.org/conference/usenixsecurity20/presentation/yue (accessed on 17 January 2022).

28. Zong, P.; Lv, T.; Wang, D.; Deng, Z.; Liang, R.; Chen, K. FuzzGuard: Filtering out Unreachable Inputs in Directed Grey-Box
Fuzzing through Deep Learning. In Proceedings of the 29th USENIX Security Symposium, Boston, MA, USA, 12–14 August 2020.
Available online: https://www.usenix.org/conference/usenixsecurity20/presentation/zong (accessed on 17 January 2022).

29. Österlund, S.; Razavi, K.; Bos, H.; Giuffrida, C. ParmeSan: Sanitizer-guided Greybox Fuzzing. In Proceedings of the 29th
USENIX Security Symposium, Boston, MA, USA, 12–14 August 2020. Available online: https://www.usenix.org/conference/
usenixsecurity20/presentation/osterlund (accessed on 17 January 2022).

30. Oleksenko, O.; Trach, B. Mark Silberstein, Christof Fetzer, SpecFuzz: Bringing Spectre-type vulnerabilities to the surface.
In Proceedings of the 29th USENIX Security Symposium, Boston, MA, USA, 12–14 August 2020. Available online: https:
//www.usenix.org/conference/usenixsecurity20/presentation/oleksenko (accessed on 5 January 2022).

31. Lee, G.; Shim, W.; Lee, B. Constraint-Guided Directed Greybox Fuzzing. In Proceedings of the 30th USENIX Security Sympo-
sium, Vancouver, BC, Canada, 11–13 August 2021. Available online: https://www.usenix.org/conference/usenixsecurity21/
presentation/lee-gwangmu (accessed on 13 January 2022).

32. Salls, C.; Jindal, C.; Corina, J.; Kruegel, C.; Vigna, G. Token-Level Fuzzing. In Proceedings of the 30th USENIX Security
Symposium, Vancouver, BC, Canada, 11–13 August 2021. Available online: https://www.usenix.org/conference/usenixsecurity2
1/presentation/salls (accessed on 10 January 2022).

33. Liu, X.; Xie, L.; Wang, Y.; Zou, J.; Xiong, J.; Ying, Z.; Vasilakos, A.V. Privacy and Security Issues in Deep Learning: A Survey.
IEEE Access 2021, 9, 4566–4593. [CrossRef]

34. Mollah, M.B.; Azad, M.A.K.; Vasilakos, A. Secure data sharing and searching at the edge of cloud-assisted internet of things.
IEEE Cloud Comput. 2017, 4, 34–42. [CrossRef]

35. Yi, G.; Yang, X.; Huang, P.; Wang, Y. A Coverage-Guided Fuzzing Framework based on Genetic Algorithm for Neural Networks.
In Proceedings of the 2021 8th International Conference on Dependable Systems and Their Applications (DSA), Yinchuan, China,
5–6 August 2021. [CrossRef]

36. Lin, G.; Guan, J. An Adaptive Memetic Algorithm for Solving the Set Covering Problem. J. Zhejiang Univ. (Sci. Ed.) 2016,
43, 168–174. [CrossRef]

37. Alyahya, K.; Rowe, J.E. Landscape Analysis of a Class of NP-Hard Binary Packing Problems. Evol. Comput. 2019, 27, 47–73.
[CrossRef] [PubMed]

38. Hoesen, D.; Purwarianti, A. Investigating Bi-LSTM and CRF with POS Tag Embedding for Indonesian Named Entity
Tagger. In Proceedings of the 2018 International Conference on Asian Language Processing (ALP), Bandung, Indonesia,
15–17 November 2018.

39. Zhao, Y.W.; Wang, J.; Guo, M.Z.; Zhang, Z.L.; Yu, G.X. Prediction of protein function based on 0–1 matrix decomposition. Sci. Sin.
Inf. Sci. 2019, 49, 1159–1174. (In Chinese)

40. Github. Available online: https://github.com/ (accessed on 31 December 2021).
41. NIST Test Suites. Available online: https://samate.nist.gov/SRD/testsuite.php (accessed on 31 December 2021).
42. FFmpeg. FFmpeg [EB/OL]. (2016-10-01) [2017-04-13]. Available online: https://www.ffmpeg.org/ (accessed on 31 December 2021).

http://doi.org/10.1109/SP.2019.00052
http://doi.org/10.1109/SP40001.2021.00071
http://doi.org/10.1109/SP40001.2021.00109
https://www.usenix.org/conference/usenixsecurity20/presentation/yue
https://www.usenix.org/conference/usenixsecurity20/presentation/zong
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund
https://www.usenix.org/conference/usenixsecurity20/presentation/oleksenko
https://www.usenix.org/conference/usenixsecurity20/presentation/oleksenko
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
https://www.usenix.org/conference/usenixsecurity21/presentation/salls
https://www.usenix.org/conference/usenixsecurity21/presentation/salls
http://doi.org/10.1109/ACCESS.2020.3045078
http://doi.org/10.1109/MCC.2017.9
http://doi.org/10.1109/DSA52907.2021.00054
http://doi.org/10.3785/j.issn.1008-9497.2016.02.008
http://doi.org/10.1162/evco_a_00237
http://www.ncbi.nlm.nih.gov/pubmed/30365387
https://github.com/
https://samate.nist.gov/SRD/testsuite.php
https://www.ffmpeg.org/

	Introduction and Background
	Related Work
	Algorithm Description
	An Introduction of Existing Fuzzy Testing Sample Generation Methods
	Formal Definition
	CVDF DYNAMIC Fuzzy Testing Sample Generation
	Theoretical Model and Training Process of BI-LSTM Neural Network
	Genetic Algorithm for Constructing Test Cases
	Integrating New Test Data with Integration Idea
	Using Heuristic Genetic Algorithm to Reduce Sample Set

	Experiment and Evaluation
	Data Sources
	Evaluate the Validity of CVDF DYNAMIC’s Theoretical Model
	Performance Comparison between CVDF DYNAMIC and Existing Fuzzy Testing Tools
	Performance Overhead of CVDF DYNAMIC and Effectiveness of Sample Set Reduction

	Discussion on Security and Privacy of CVDF DYNAMIC Model
	Conclusions
	References

