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Abstract: The heart is one of the human body’s vital organs. An electrocardiogram (ECG) provides
continuous tracings of the electrophysiological activity originated from heart, thus being widely used
for a variety of diagnostic purposes. This study aims to design and realize an artificial intelligence
(AI)-based abnormal heart beat detection with applications for early detection and timely treatment
for heart diseases. A convolutional neural network (CNN) was employed to achieve a fast and
accurate identification. In order to meet the requirements of the modularity and scalability of the
circuit, modular and efficient processing element (PE) units and activation function modules were
designed. The proposed CNN was implemented using a TSMC 0.18 µm CMOS technology and had
an operating frequency of 60 MHz with chip area of 1.42 mm2 and maximum power dissipation
of 4.4 mW. Furthermore, six types of ECG signals drawn from the MIT-BIH arrhythmia database
were used for performance evaluation. Results produced by the proposed hardware showed that the
discrimination rate was 96.3% with high efficiency in calculation, suggesting that it may be suitable
for wearable devices in healthcare.

Keywords: very large scale integration implementation (VLSI); electrocardiogram (ECG); convolu-
tional neural network (CNN)

1. Introduction

Heart disease has become the leading cause in the top 10 causes of death globally. In
order to effectively reduce mortality from sudden cardiac death, an early warning system
for cardiac disease may be necessary. With regard to the noninvasive diagnostically useful
tools for identifying patients at high risk of sudden cardiac death, artificial-intelligence-
based medical electronic equipment technology, including wearable devices, has been
overwhelmingly and continuously explored and developed in recent years. Over many
aspects of such applications, electrocardiography (ECG) examination has been considered
as a mature and well-established monitoring method since it provides electrophysiological
signals emitted from the heart muscle. In fact, a variety of abnormal heart beats, for
example, may be identified simply by analyzing the ECG signals.

There are a number of previous studies in the literature showing that ECG can be
utilized for the development of noninvasive algorithms for accurately detecting various
types of abnormal or premature heart beats, including lethal arrhythmias such as ventricular
tachycardia and ventricular fibrillation [1–5]. In addition, some researchers have dedicated
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their efforts to the circuit-design-based studies aiming at the detection of abnormal ECG
signals using the system-on-chip (SoC) platforms [6–9].

A machine-learning-assisted cardiac sensor SoC (CS-SoC) was developed for mobile
healthcare applications [6]. According the results reported in this work, the CS-SoC achieved
95.8% in accuracy for ECG-based arrhythmia detection in a real-time manner with the only
48.6 µW in power consumption. In [7], a low-power biological signal acquisition and
classification system for human sensor networks is introduced; the SoC mainly consists of
three modules: a high-pass sigma delta modulator-based biosignal processor, a switch key
control transceiver, and a digital signal processor. In addition, another example of a wearable
cardiac arrhythmia early detection system as proposed by [8] is implemented in FPGA.
Numerical detection results produced by the MIT-BIH ECG arrhythmia database show
that the proposed system may achieve a sensitivity and specificity of 94.64% and 99.41%,
respectively. Moreover, a convolution neural network (CNN)-based premature ventricular
complex (PVC) detection chip is proposed by [9]. Comprising two convolution layers and
one fully connected layer, the CNN allows a fast training, and thus, the identification model
can be then effectively established, achieving a detection accuracy of 94.94%.

Due to an increasing interest of medical wearable monitoring equipment nowadays,
this research aims at the development of a CNN-based real-time ECG signal detection
circuit to achieve an efficient and accurate abnormal heartbeat classification/detection. In
general, the proposed circuit utilizes three convolution layers and two fully connected
layers to classify six different types of ECG heartbeats, including the normal one. It should
be noted that here the MIT-BIH arrhythmia database is adopted for network training and
testing. The proposed CNN chip was implemented in a TSMC 0.18 µm complementary
metal-oxide-semiconductor (CMOS) process to achieve a small area and high-speed design
that may be well compatible with wearable ECG electrodes [10,11] and is thus very suitable
for portable and wearable devices. In addition, it should be also noted that motion artifact
is a big challenge for wearable ECG monitoring. In this aspect, some previous studies
in the literature have indicated that motion artifact can be efficiently removed by deep
learning models, including CNN [12,13]. Therefore, with some appropriate arrangements,
we believe that the proposed CNN chip can be further applied to the task of ECG heart
beat detection for wearable devices in healthcare. As a results, the application specific
integrated circuit (ASIC) dissipates the power by 4.4 mW at the operating frequency of 60
MHz with a chip area of 1.4 mm2.

This paper is organized as follows: The overall structure of the CNN algorithm and
the details in the architectural design of the proposed circuit are presented in Section 2.
Section 3 provides the descriptions of a performance evaluation and comparison with a
discussion. Conclusions are then briefly drawn in Section 4.

2. Proposed Method and Architecture
2.1. Proposed Method

In general, a typical ECG signal consists of five characteristic points, denoted as P, Q, R,
S, and T, respectively. Different diseases manifest themselves by components formed by a
variety of combinations of these characteristic points, such as the QRS complex, PR interval,
ST segment, and so on. In addition, the variability of interbeat intervals (i.e., RR intervals),
alternatively known as the heart rate variability, can be diagnostically useful for serving as
a predictor of mortality after myocardial infarction. When an abnormality is detected at
early stage, patients can be treated on a timely basis. The database used in this research was
drawn from the MIT-BIH Arrhythmia Database [14]. It contains 48 two-channel ambulatory
ECG recordings obtained from 47 subjects studied by the BIH Arrhythmia Laboratory
between 1975 and 1979, and each recording is 30-min long. The recordings were sampled
by 360 Hz with 11-bit resolution over a 10 mV range. For each ECG recording, the database
also includes the computer-readable reference annotations for each beat, thus being very
suitable for the applications into the task of ECG classification.
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Our study aims to design and realize a CNN-based abnormal heartbeat detection
ASIC, and the chip is capable of identifying six different types of ECG signals drawn from
the MIT-BIH arrhythmia database as: normal, left bundle branch block (LBBB), right bundle
branch block (RBBB), premature ventricular contraction (PVC), atrial premature beat (APB),
and paced beat, as tabulated in Table 1.

Figure 1 provides a schematic block diagram illustrating the entire flow of the proposed
CNN algorithm for ECG heart beat classification. In order to reduce the circuit area, here we
only included two convolutional layers to perform the main calculations and inserted an extra
convolutional layer between both layers in the design of the CNN architecture, as shown in
Figure 1. Since the kernel size of the extra convolutional layer is 1 × 1, this design would
result in a significant reduction in the number of parameters, meaning the implementation of
the circuit becomes much simpler while the overall training accuracy would still maintain
at an adequately high level. To have a better idea about how the proposed CNN algorithm
works, we here just take the third convolution layer as an example to illustrate how the
convolution calculation performs and explain why it would produce three 2 × 3 blocks after
the convolution. First, it should be noted that there are three 1 × 7 kernel filters at this layer.
In addition, note that the input is a 2D array of size 2 × 9. The convolution is performed as
follows. We slide each 1 × 7 kernel filter column-wise first and then advance along the rows
over the input. Since each row of the input consists of only 9 data points and the filter length
is 7, without zero padding, it would then result in a 2D output of size 2 × 3 after the filtering
process. As a result, because there are three 1 × 7 kernel filters, it would finally produce
three 2 × 3 blocks as outputs after the convolution calculation at this layer is completed.
Moreover, in order to achieve the reusability in circuit design, we further analyzed all the
calculations required by the convolutional layers as well as the fully connected (FC) layer and
then determined the total number of the filter coefficients for the entire network structure.
As a result, the total number of filter coefficients or parameters required for each layer of the
proposed CNN structure are as listed in Table 2. Note that here in Table 2 “3 × 1 × 7” in the
first convolution layer means that there are three kernel filters of size 1 × 7 in this layer.

Table 1. Listing of different types of ECG heart beats drawn from the MIT-BIH arrhythmia database
to be detected.

Item Diseases Codename

1 Normal Beat N

2 Left Bundle Branch Block Beat (LBBB) L

3 Right Bundle Branch Block Beat (RBBB) R

4 Premature Ventricular Contraction (PVC) V

5 Atrial Premature Beat (APB) A

6 Paced Beat /Version January 14, 2022 submitted to MDPI 4 of 12

Figure 1. The schematic block diagram of the entire flow of the proposed CNN algorithm for ECG
heart beat classification.

Figure 2. The overall hardware architecture of the main CNN core as proposed in this study.
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Table 2. Number of parameters in each layer.

Layer Name Number of Parameters

1 Convolution (3 × 1 × 7) 21

2 MaxPooling (3 × 1 × 2 ) 0

3 Convolution (1 × 1 × 1 ) 3

4 Convolution (3 × 1 × 7 ) 21

5 MaxPooling (3 × 1 × 3 ) 0

6 Flatten 0

7 Fully Connected (6 × 21 ) 126

8 Fully Connected (21 × 6 ) 126

Total 297

2.2. Proposed Architecture

As described in previous subsection, when an ECG signal is input into the neural
network, two-dimensional convolution calculations of three 1 × 7 filters in the first layer
are performed and then followed by the 1 × 2 max pooling process. Note that a max
pooling operation simply reduces the feature dimension by replacing the corresponding
local patch in the convolutional layer of the same stage by its maximum value [15]. Next, a
1 × 1 filtering process in the second layer is then performed. Afterward, similar to the first
layer, in the third layer, the convolution calculations of three 1 × 7 filters are performed
and then followed by a 1 × 3 max pooling. Finally, the learned feature maps are flattened
and then fed into a fully connected neural network with an input layer of 21 nodes and
an output layer of 6 nodes (i.e., six types of different ECG heartbeats) obtained after the
Softmax calculation. Figure 1 shows the schematic diagram of the proposed CNN algorithm.
It should be noted that the main problem in implementing neural networks is that the
detection accuracy, number of neurons, and the circuit area affect one another. For example,
in order to enhance the detection accuracy, the number of neurons is unavoidably bound to
increase, and thus, the original circuit area would undesirably increase.

Therefore, the proposed research aims to design and implement a very large scale
integration (VLSI) circuit of the proposed CNN algorithm which can be used for ECG
heartbeat classification. In order to substantially reduce the circuit area, here a modular
design is adopted. Figure 2 shows the overall hardware architecture of the proposed
main CNN core. It executes all the operations such as multiplication, addition, activation
function, maximum pooling, and softmax calculations, as required by Figure 1. As depicted
in Figure 2, the proposed CNN circuit mainly consists of process element (PE), ReLU,
Softmax, MaxPooling, and Control Buffer modules. The PE module is essentially used
for all multiplication-accumulation (MAC) operations. The activation function employs
ReLU and Softmax modules. In addition, after each layer of CNN, the max pooling
layer is generally applied. Finally, a temporary storage space is designed for storing the
intermediate values produced by each layer. Consequently, under a constraint of small area,
the modules as mentioned above are all designed to be repeatedly used so that the circuit
may effectively and efficiently achieve a utilization maximization and the chip area may be
thus substantially reduced. The details in these five modules are discussed as follows.

• Process Element (PE) : The PE module is employed for all the multiplication and
addition (MAC) operations of the proposed CNN circuit. As shown in Figure 3, the
proposed PE module executes the CNN filter size of 1 × 7 and 1 × 1, and the fully
connected layer operation of 6 to 21 and 21 to 6. It should be noted that the proposed
PE module includes seven multipliers and six adders and thus, a complete fully
connected operation would include three executions of the PE module for finishing
doing the 21 MAC operations. Moreover, W, where W = [W0, W1, W2, W3, W4, W5, W6]

T ,
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can be either a set of filter coefficients or a set of weights; W is a set of filter coefficients
when the PE performs the convolution calculations while it is a set of weights when
the PE performs the MAC calculations at the fully connected layer.

• ReLU: The activation function of ReLU outputs the positive number after the CNN
operations. As shown in Figure 4, the proposed ReLU module uses the S2 signal
to select the results from 1 × 7 or 1 × 1 CNN operations and send them into the
ReLU operation. We utilize a adder and register (Reg) to implement the operation of
1 × 1 CNN.

• MaxPooling: Max pooling includes two specifications of maximum pooling calcu-
lations 1 × 2 and 1 × 3, which are respectively after the first layer of CNN and the
third layer of CNN. As shown in Figure 5, the proposed MaxPooling module shares
the same hardware resource and uses the S3 signal to select the result of 1 × 2 and
1 × 3 operations.

• Control Buffer: The proposed control buffer is the value temporary storage area
which consists of 54 registers as shown in Figure 6. The S5 signal is used to control
data feeding into the PE to calculate 1 × 1 CNN operation, and the selection signal S6
switches the data sending into PE to calculate 6 × 21 FC, 1 × 7 CNN, 21 × 6 FC, and
1 × 1 CNN operations.

• Softmax: The proposed softmax module calculates the maximum value as the de-
tection output. An adder and a register (Reg) accumulate three results from the PE
module to calculate the final layer of the 21 × 6 FC operations, as shown in Figure 7.
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Figure 1. The schematic block diagram of the entire flow of the proposed CNN algorithm for ECG
heart beat classification.

Figure 2. The overall hardware architecture of the main CNN core as proposed in this study.
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Figure 5. Architecture of the proposed MaxPooling module.
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Figure 6. Architecture of the proposed Control Buffer module.

180

3. Results and Discussion181

3.1. VLSI Chip Implementation182

The chip of the proposed CNN accelerator was entrusted to Taiwan Semiconductor Research183

Institute (TSRI) to tape out using the 1.8-V TSMC 0.18-µm 1P6M CMOS process technology. The184

Synopsys Design Compiler was used to synthesize the RTL code and the Cadence Innovus was then185

used for placement and routing. The proposed core was operated at a frequency of 60 MHz with186

power consumption of 4.4 mW. The chip area was 1.42 mm2. Also, the layout and photomicrograph187

of the proposed core and its characteristics are as shown in Figure 9 and listed in Table 4, respectively.188

In addition, we also employed an Advantest V93000 equipment to verify the function of the189

proposed chip. The testing steps are described as follows. First, the ECG data drawn from the190

MIT-BIH Arrhythmia Database were loaded to the Advantest V93000 equipment. Next, the Advantest191

V93000 generated the ECG signals and input them into the proposed chip and then measured the192

output data produced from the chip. We also loaded the fixed-point software simulation results from193

MATLAB to the Advantest V93000 so that both the hardware and software simulation results can be194

compared. Figure 10 provides a shmoo plot of the measurement results for the chip. In the shmoo195

plot, a square in green color called "pass" indicates that both the hardware and software results were196

the same. According to the measurement results as shown in Figure 10, one may see that under a core197

voltage of 1.8 V, the maximal operating frequency that the chip can achieve is 60 MHz.198

Figure 6. Architecture of the proposed Control Buffer module.
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Figure 7. Architecture of the proposed Softmax module.

Table 3. The designated values of the select input(s) of each multiplexer when operating at different
layers

Layer Name S1 S2 S3 S4 S5 S6

1 Convolution 0 1 × × × ×
2 MaxPooling × × 1 1 × ×
3 Convolution 1 0 × 0 00/01/10 00
4 Convolution 1 1 × × × 10
5 MaxPooling × × 0 1 × ×
6 Flatten × × × × × ×
7 Fully Connected 1 1 × 0 × 11
8 Fully Connected 1 × × × × 01

× means don’t care.

3.2. Comparison with the Existing Works199

Table 5 provides a performance comparison among a number of existing works, including the200

proposed one. First, it can be seen from the table that under the same manufacturing process,201

although the work proposed by [7] had the highest detection accuracy, their system can only detect202

three types of ECG heartbeats: normal, atrial premature beat, and premature ventricular contraction;203

also, their chip area is also the largest of all works. Moreover, the operating frequency of the circuit204

as proposed by [9] is the highest, but they could not achieve an adequately high accuracy (less than205

95%). On the other hand, we may see from Table 5 that while the area of the chip as proposed in206

our study is much smaller than that as proposed in [7] (1.42 mm2 vs. 2.47 mm2), our chip is capable207
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Figure 7. Architecture of the proposed Softmax module.

In addition, note that the calculation of the final FC layer is executed by the PE and
softmax modules, as shown in Figures 2 and 7, respectively. Since this final FC layer is in a
neural network structure of size 21× 6, there are 21 MAC operations required for producing
the numerical result of each of the six output nodes before softmax operation. Considering
our design in Figure 2, one may see that the proposed PE module has seven multipliers
and six adders. Therefore, in order to produce the numerical result of each output node,
the PE module should execute exactly three times, thus resulting in the required 21 MAC
operations in total; each time when the result of one of the three PE executions is obtained,
it is immediately sent to the softmax module, as indicated by “sum” in Figure 7. Further
observing Figure 7, one may see that there are a register and an adder in the proposed
softmax module. In fact, the register and adder are used to accumulate the results of the
three PE executions to obtain the final numerical result of each output node at the final
21 × 6 FC layer. Once the weighted sums of all the six output nodes are obtained, the
numerical results of all the six output nodes are stored in the registers R0, R1, R2, R3, R4,
and R5, respectively. Next, the maximum value of all these weighted sums stored in the
register array is then found so the final ECG heartbeat classification result as the detection
output is finally determined.

In the proposed circuit, there are six multiplexers (MUXs) to control each layer’s
operations as tabulated in Table 2. Table 3 shows the designated values of the select input(s)
of each multiplexer when operating at different layers. Taking the convolution operation
of the first layer as an example, we only need to set the values of S1 and S2 to 0 and 1,
respectively, and the other multiplexers can be ignored. In this way, the PE module can
be used to calculate 1 × 7 convolution operations of the first convolution layer. The rest
of the calculations can be also completed in accordance with the settings in Table 3 using
the proposed circuit. Obtaining this, the hardware resources of the proposed circuit can be
shared. Figure 8 illustrates the data flow of each operation in the proposed circuit.
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Table 3. The designated values of the select input(s) of each multiplexer when operating at
different layers.

Layer Name S1 S2 S3 S4 S5 S6

1 Convolution 0 1 × × × ×
2 MaxPooling × × 1 1 × ×
3 Convolution 1 0 × 0 00/01/10 00

4 Convolution 1 1 × × × 10

5 MaxPooling × × 0 1 × ×
6 Flatten × × × × × ×
7 Fully Connected 1 1 × 0 × 11

8 Fully Connected 1 × × × × 01
× means do not care.
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Figure 8. The operation for each layer in the proposed circuit.

Figure 9. The layout (left) and photomicrograph (right) of the proposed CNN accelerator.
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Figure 8. The operation for each layer in the proposed circuit.

3. Results and Discussion
3.1. VLSI Chip Implementation

The chip of the proposed CNN accelerator was entrusted to Taiwan Semiconductor
Research Institute (TSRI) to tape out using the 1.8-V TSMC 0.18-µm 1P6M CMOS process
technology. The Synopsys Design Compiler was used to synthesize the RTL code, and
the Cadence Innovus was then used for placement and routing. The proposed core was
operated at a frequency of 60 MHz with power consumption of 4.4 mW. The chip area
was 1.42 mm2. In addition, the layout and photomicrograph of the proposed core and its
characteristics are as shown in Figure 9 and listed in Table 4, respectively.

In addition, we also employed an Advantest V93000 equipment to verify the function
of the proposed chip. The testing steps are described as follows: First, the ECG data drawn
from the MIT-BIH Arrhythmia Database were loaded to the Advantest V93000 equipment.
Next, the Advantest V93000 generated the ECG signals and input them into the proposed
chip and then measured the output data produced from the chip. We also loaded the
fixed-point software simulation results from MATLAB to the Advantest V93000 so that
both the hardware and software simulation results can be compared. Figure 10 provides a
shmoo plot of the measurement results for the chip. In the shmoo plot, a square in green
color called “pass” indicates that both the hardware and software results were the same.
According to the measurement results as shown in Figure 10, one may see that under a core
voltage of 1.8 V, the maximal operating frequency that the chip can achieve is 60 MHz.
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Figure 10. Shmoo plot of measurement results.

Table 5. Performance comparison of the proposed circuit and a number of existing works

Method [6] [7] [8] [9] Proposed

Database MIT-PTB MIT-BIH MIT-BIH MIT-BIH MIT-BIH
# of Diseases 1 1 2 1 5

Accuracy 95.8% 97.25% 97.02% 94.94% 96.3%
Technology 90nm 0.18µm 0.18µm 0.18µm 0.18µm

Voltage 0.5V 1.2V 1.0V 1.8V 1.8V
Frequency 25MHz 120Hz 1KHz 66.6MHz 60MHz

Area 4.90mm2 2.47mm2 N/A 0.73mm2 1.42mm2

Power 48.06µW 5.97µW 5.04µW 3.1mW 4.4mW

proposed chip for all the ECG events might achieve more than 90% in accuracy, indicating that the225

proposed CNN chip may be suitably applied for wearable healthcare monitoring devices.226

4. Conclusion227

In this study, a VLSI chip of the proposed CNN accelerator with the applications into the ECG228

heartbeat detection was implemented using a TSMC 0.18µm COMS technology. The CNN circuit229

mainly consists of PE, ReLU, Softmax, MaxPooling, and Control Buffer modules and all the modules230

can meet the requirement of repeated use so the utilization may be maximized. As a result, it is231

revealed from the chip characteristics that the proposed CNN chip achieved a substantially small-area232

and high-speed design, in comparison to a number of previous works. Furthermore, the experimental233

results also demonstrated that the proposed chip can achieve 96.3% in overall detection accuracy for234

identifying six types of ECG heartbeats and this would represent a significant benefit from this study.235

We may speculate that the proposed CNN chip may be applicable for the development and demand236

of wearable healthcare monitoring devices.237
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Figure 10. Shmoo plot of measurement results.

3.2. Comparison with the Existing Works

Table 5 provides a performance comparison among a number of existing works, includ-
ing the proposed one. First, it can be seen from the table that under the same manufacturing
process, although the work proposed by [7] had the highest detection accuracy, their system
can only detect three types of ECG heartbeats: normal, atrial premature beat, and premature
ventricular contraction; moreover, their chip area is also the largest of all works. In addition,
the operating frequency of the circuit as proposed by [9] is the highest, but they could not
achieve an adequately high accuracy (less than 95%). On the other hand, we may see from
Table 5 that while the area of the chip as proposed in our study is much smaller than that
as proposed in [7] (1.42 mm2 vs. 2.47 mm2), our chip is capable of identifying six types
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of ECG heartbeats with an adequately high accuracy of 96.83%, indicating that our work
may achieve a better chip design than may other works. However, the weakness in our
design is the proposed chip has higher power consumption than do the other ones. Note
that the power dissipation can be substantially reduced simply by reducing the operating
frequency [16].

Table 5. Performance comparison of the proposed circuit and a number of existing works.

Method [6] [7] [8] [9] Proposed

Database MIT-PTB MIT-BIH MIT-BIH MIT-BIH MIT-BIH

# of Diseases 1 1 2 1 5

Accuracy 95.8% 97.25% 97.02% 94.94% 96.3%

Technology 90 nm 0.18 µm 0.18 µm 0.18 µm 0.18 µm

Voltage 0.5 V 1.2 V 1.0 V 1.8 V 1.8 V

Frequency 25 MHz 120 Hz 1 KHz 66.6 MHz 60 MHz

Area 4.90 mm2 2.47 mm2 N/A 0.73 mm2 1.42 mm2

Power 48.06 µW 5.97 µW 5.04 µW 3.1 mW 4.4 mW

3.3. Performance Evaluation for ECG Classification

To demonstrate the performance of the proposed CNN chip, twelve thousand ECG
segments in total were utilized for training process to obtain the CNN weights, and three
thousand ECG segments were used for testing process. The testing result in terms of
detection accuracy was then used to verify the function of the circuit. As a result, the
detection results produced by the proposed CNN chip showed that it can achieve 96.3%
in overall detection accuracy for the task of ECG heartbeat classification. Table 6 provides
the numbers of ECG segments used for training and testing processes, respectively, for
each type of ECG heartbeat. In order the evaluate the performance of the proposed chip
for ECG classification, a 6 × 6 confusion matrix, as shown in Table 7, was further adopted.
In general, the confusion matrix compares the actual labeled values with those predicted
by the proposed CNN model, and each row consists of the predicted values of the labeled
heartbeat corresponding to that row. Table 7 provides the detection results obtained from
the chip for all six labeled ECG heartbeats. One may see from Table 7 that the detection
results obtained from the proposed chip for all the ECG events might achieve more than 90%
in accuracy, indicating that the proposed CNN chip may be suitably applied for wearable
healthcare monitoring devices.

Table 6. The numbers of ECG segments used for training and testing processes for each type of ECG
heartbeats.

Item Diseases Codename # of Train # of Test Total

1 Normal Beat N 2000 500 2500

2 Left Bundle Branch Block Beat L 2000 500 2500

3 Right Bundle Branch Block Beat R 2000 500 2500

4 Premature Ventricular Contraction V 2000 500 2500

5 Atrial Premature Beat A 2000 500 2500

6 Paced Beat / 2000 500 2500

12,000 3000 15,000
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Table 7. Detection results for all six labeled ECG heart beats.

Labels
Predict

N L R V A /

N 496 0 0 1 2 1

L 0 492 0 7 1 0

R 1 0 488 7 4 0

V 2 1 2 486 7 2

A 4 0 16 16 464 0

/ 1 0 0 3 1 495

Accuracy 99% 98% 98% 97% 93% 99%

4. Conclusions

In this study, a VLSI chip of the proposed CNN accelerator with the applications into
the ECG heartbeat detection was implemented using a TSMC 0.18 µm COMS technology.
The CNN circuit mainly consists of PE, ReLU, Softmax, MaxPooling, and Control Buffer
modules, and all the modules can meet the requirement of repeated use so that the uti-
lization may be maximized. As a result, it is revealed from the chip characteristics that
the proposed CNN chip achieved a substantially small-area and high-speed design, in
comparison to a number of previous works. Furthermore, the experimental results also
demonstrated that the proposed chip can achieve 96.3% in overall detection accuracy for
identifying six types of ECG heartbeats, and this would represent a significant benefit
from this study. We may speculate that the proposed CNN chip may be applicable for the
development and demand of wearable healthcare monitoring devices.
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