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Abstract: Early identification of cognitive impairment would allow affected patients to receive care at
earlier stage. Changes in the arterial stiffness have been identified as a prominent pathological feature
of dementia. This study aimed to verify if applying machine-learning analysis to spectral indices of
the arterial pulse waveform can be used to discriminate different cognitive conditions of community
subjects. 3-min Radial arterial blood pressure waveform (BPW) signals were measured noninvasively
in 123 subjects. Eight machine-learning algorithms were used to evaluate the following 4 pulse
indices for 10 harmonics (total 40 BPW spectral indices): amplitude proportion and its coefficient of
variation; phase angle and its standard deviation. Significant differences were noted in the spectral
pulse indices between Alzheimer’s-disease patients and control subjects. Using them as training
data (AUC = 70.32% by threefold cross-validation), a significant correlation (R2 = 0.36) was found
between the prediction probability of the test data (comprising community subjects at two sites) and
the Mini-Mental-State-Examination score. This finding illustrates possible physiological connection
between arterial pulse transmission and cognitive function. The present findings from pulse-wave
and machine-learning analyses may be useful for discriminating cognitive condition, and hence in the
development of a user-friendly, noninvasive, and rapid method for the early screening of dementia.

Keywords: dementia; pulse; spectral analysis; machine learning; community subjects; Mini-Mental
State Examination

1. Introduction

Dementia encompasses neurodegenerative disorders that are characterized by the
progressive loss of cognitive function and the ability to perform activities of daily living [1].
It gradually becomes a burdensome disease not only for affected individuals but also their
families [2].

The standard diagnostic assessment of dementia includes history-taking, clinical ex-
aminations (e.g., neurological, mental state, and cognitive examinations), and an interview
with a relative other than the informant. Recent guidelines also recommend computed
tomography or magnetic resonance imaging of the brain to exclude structural causes for
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the clinical phenotype [1,2]. It has been reported that anywhere from 29% to 76% of pa-
tients with dementia or probable dementia are not diagnosed by primary-care clinicians [2].
Early identification of cognitive impairment through screening would allow patients and
their families to receive care at an earlier stage in the disease process, potentially allowing
discussions regarding health, financial, and legal decision-making while the patient is still
legally capable [2].

Screening is designed to identify unrecognized or asymptomatic disease by administer-
ing tests that can be applied rapidly without the primary intention of being diagnostic [1–3].
Recent UK health policy has encouraged the opportunistic testing of older people attending
primary care [1]. Screening of people with suspected dementia usually involves a brief test
of cognitive function, informant questionnaires, or both, with a low score indicating a need
for more in-depth assessments [1]. It has also been suggest that structural neuroimaging,
genetic testing, and brief structured assessments (mainly using various questionnaires) can
be used in dementia screening [2].

Alterations of the cerebral macrovasculature and microvasculature have been found
in association with dementia [4]. These vascular changes can reduce cerebral perfusion
and impair the ability to supply energy substrates and oxygen to active brain regions, and
thus play a role in neuronal dysfunction and damage [5]. The induced atherosclerosis takes
place not only in intracranial vessels but also in extracranial arteries such as the carotid,
femoral, and coronary arteries [5,6].

Machine-learning techniques are already widely used to analyze various kinds of
biological signals. The arterial pulse waveform transmits along the artery, and its character-
istics are determined by the interaction between the pumping of blood by the heart and the
arterial tree; it can therefore provide information about arterial wall stiffness [7–9]. Changes
in the pulse waveform can be detected by noninvasive measurements, and various analysis
methods (e.g., pulse-wave-velocity analysis [7] and frequency-domain analysis [10,11])
have been applied to the pulse waveform to evaluate changes induced by aging and various
diseases [12–19]. Changes in the pulse waveform are often complex, and machine-learning
analysis has the advantage of being able to capture subtle changes induced by physio-
logical and pathological factors [20]. For example, arterial pulse-wave measurements,
frequency-domain pulse analysis, and machine-learning analysis were used to distinguish
vascular aging [10]. Another study applying similar methods demonstrated that using
multilayer-perceptron analysis with frequency-domain pulse indices as features is highly
effective at distinguishing between Alzheimer’s-disease (AD) patients and control subjects,
with an accuracy of >80% and a particularly high specificity of >90% [11].

Based on our previous findings [11], the present study included community-dwelling
subjects from two community sites. The Mini Mental State Examination (MMSE) score was
used to define the cognitive condition of the subjects, and the aim was to verify if applying
machine-learning analysis to spectral indices of the pulse waveform can discriminate
between different cognitive conditions. In the machine-learning analysis, threefold cross-
validation was performed to evaluate the training of the models. We also attempted to
identify a relationship between the MMSE score and the prediction probability from the
testing results of the machine-learning model. The present findings on the induced changes
in the vascular properties and the pulse waveform indices may be useful for developing a
method to aid the early screening of dementia.

2. Materials and Methods

Details of the present experimental setup and the signal processing methods are
available elsewhere [10,11,15]. BPW signal was noninvasively measured in the subjects
(typical waveforms were shown in Figure 1; analysis procedure was shown in Figure 2).
Frequency-domain analysis was applied to derive the 40 harmonic indices from the mea-
sured BPW signal (n = 1–10): amplitude proportion (Cn), coefficient of variation of Cn
(CVn), phase angle (Pn), and standard deviation of Pn (Pn_SD) (details of measurement
and analysis are listed in Supplemental Materials). The present study used the MMSE
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and machine-learning analysis (eight models; models details see Table 1) to investigate
whether measured pulse indices are related to the cognitive condition in a sample of 38 AD
patients, 38 control subjects, 39 community subjects, and 8 young subjects (see Table 2).
The eight machine-learning methods used in the present study included support vector
machine (SVM), multilayer perception (MLP), Gaussian Naive Bayes (GNB), decision tree
(DT), random forest (RF), logistic regression (LR), linear discriminant analysis (LDA), and
K-nearest neighbor classification (KNN). When performing the threefold cross validation
of the training stage, we first randomly assigned the subjects into three subgroups, and
then the pulse sequence of the subjects within each subgroup were used to train the model.
When performing the testing stage, the data sequence of the pulse indices of the subject
was input into the trained model to get the classification probability.
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(d) Community Site 2; (e) Young. 
Figure 1. Typical measured pulse waveforms. (a) AD patient; (b) Control; (c) Community Site 1;
(d) Community Site 2; (e) Young.

The subjects were recruited from the Ren-Ai Branch of Taipei City Hospital. Informed
consent was obtained from the study participants or their legal designates (approved by the
Review Board of Taipei City Hospital; approval no. TCHIRB-10810016-E). A neurologist
or psychiatrist diagnosed AD, and evaluated the severity of disability in patients with
dementia [11]. Community subjects were recruited at two sites: Site A was Taipei Veterans
Home, located in the countryside of New Taipei City, and Site B was Hoping LOHAS
Daycare Center, located near the educational area of Taipei (near to National Taiwan
University and National Taiwan Normal University). Eight graduate students of National
Taiwan University of Science and Technology were also recruited as the young group.
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The study was approved by the Research Ethics Committee, National Taiwan University
(approval no. 202010EM001). Based on MMSE scores, the subjects were categorized into
mild dementia (MMSE scores > 16 and ≤24), moderate dementia (MMSE scores > 10 and
≤16), and severe dementia (MMSE scores ≤ 10). Subjects were excluded if they did not
agree to participate in the study or were unable to cooperate with the research steps, such
as due to their limbs trembling involuntarily, restlessness, or agitated movements.
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Table 1. Parameters of the machine-learning models.

Machine-Learning Methods Model Parameters

SVM
(support vector machine)

C = 1; kernel: rbf; gamma: auto; tol = 0.0001;
max_iter = −1; class_weight: none

MLP
(multilayer perception)

hidden_layer_sizes = 100; solver: adam;
alpha = 0.0001; batch_size: auto; max_iter = 200;

learning_rate_int = 0.001

GNB
(Gaussian Naive Bayes) Priors: none

DT
(decision tree)

Criterion: gini; Splitter: best; max_depth: none;
min_samples_split = 2; min_samples_leaf = 1;

min_weight_fraction_leaf = 0; max_features: none;
max_leaf_nodes: none; min_impurity_split = 0.0

RF
(random forest)

n_estimators = 100; criterion: gini; max_depth: none;
min_samples_split = 2; min_samples_leaf = 1;

min_weight_fraction_leaf = 0; max_features: none;
max_leaf_nodes: none

LR
(logistic regression)

Penalty: l2; Solver: lbfgs; multi_class: auto;
class_weight: none

LDA
(linear discriminant analysis) Solver: svd; Shrinkage: none; Priors: none

KNN
(K-nearest neighbor classification)

n_neighbors = 5; weights: uniform; algorithm: auto;
n_jobs: none; p: none
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Table 2. Characteristics of subjects.

AD patients

Mild dementia
16 < MMSE < 24

Moderate dementia
10 < MMSE ≤ 16

Heavy dementia
MMSE ≤ 10

gender male female male female male female

Subject number 4 6 5 7 6 10

subject number
(male + female) 10 12 16

Total subject number 38

Age 71.33 ± 6.5 73.86 ± 7.86 67 ± 19 77.42 ± 11.51 74.33 ± 9.29 77.4 ± 7.02

Age(male + female) 73.1 ± 7.21 73.08 ± 15.27 76.25 ± 7.79

Age (all) 74.42 ± 10.44

HR 68 ± 11.53 70.14 ± 11.86 67 ± 3.53 67.85 ± 16.24 66.4 ± 13.92 67.6 ± 9.64

HR (male + female) 69.5 ± 11.57 67.5 ± 12.19 68.87 ± 11.1

HR (all) 68.8 ± 11.18

Community Site A (Taipei Veterans Home)

MMSE > 24 Mild dementia
16 < MMSE < 24

Moderate dementia
10 < MMSE ≤ 16

gender male female male female male female

Subject number 8 0 7 0 5 0

subject number
(male + female) 8 7 5

Total subject number 20

Age 81.09 ± 10.31 83.43± 9.02 77.08 ± 5.36 0

Age(male + female) 81 ± 10.31 83± 9.02 86.4 ± 7.92

Age (all) 83.05 ± 9.10

HR 67.25 ± 15.26 68.29 ± 4.72 62.20 ± 5.22

HR (male + female) 67.25 ± 15.26 68.29 ± 4.72 62.20 ± 5.22

HR (all) 66.35 ± 10.43

Community Site B (Hoping LOHAS Daycare Center)

MMSE > 24 Mild dementia
16 < MMSE ≤ 24

Moderate dementia
10 < MMSE ≤ 16

gender male female male female male female

Subject number 2 8 1 6 2 0

subject number
(male + female) 10 7 2

Total subject number 19

Age 71.53 ± 0.71 75.64± 6.97 76.23 81.26 ± 4.51 84.46 ± 6.36

Age(male + female) 74.3 ± 6.33 80.71± 4.61 84.46 ± 6.36

Age (all) 78.25 ± 6.88

HR 79.50 ± 12.02 68.38 ± 6.86 61.00 67.00 ± 8.00 65.50 ± 6.36

HR (male + female) 70.6 ± 8.64 66.14 ± 7.65 65.50 ± 6.36

HR (all) 68.42 ± 8.04
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Table 2. Cont.

Control Young

gender male female male female

Subject number 11 27 7 1

Total subject number 38 8

Age 74.24 ± 3.26 72.08 ± 4.94 23.85 ± 1.46 23

Age (all) 72.71 ± 4.58 23.75 ± 1.38

HR 78.09 ± 9.11 79.88 ± 7.27 66.00 ± 5.94 64.00

HR (all) 79.36 ± 7.76 65.75 ± 5.54

3. Results

The characteristics of the study subjects are listed in Table 2. Figure 3 compares the
harmonic indices of the BPW signals (p values are listed in Table 3). For the amplitude
ratios, C4–C10 were larger in the AD patients than the control subjects (significantly for
C5–C10). All Cn indices were larger in Site-A subjects than in Site-B subjects (significantly
for C8 and C10). For phase-angle indices of BPW signals, Group AD had the largest values
of all CVn indices and P2–P9 (compared with Control; p < 0.05 for P8 and P9, 0.05 < p < 0.1
for P5 and P6).
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Figure 3. Comparisons of BPW harmonic indices of AD patients, control, community (Sites A and B),
and young subjects: (a) Cn, (b) CVn, (c) Pn, and (d) Pn_SD. Data are mean and standard-deviation
values. C6–C10 values have been multiplied by 10 to make the differences clearer. p values are listed
in Table 3.
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Table 3. Probability values for comparisons of BPW harmonic indices (Cn, CVn, Pn, and Pn_SD)
between AD patients, controls, and community subjects. Significant differences were underlined.
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For variability indices of BPW signals, Group AD had the largest values of all CVn
indices and Pn_SD1 to Pn_SD5. Group AD had larger values than Group Control of all
CVn indices (all significant) and Pn_SD indices (all significant except for Pn_SD10). Site
A had larger values than Site B of all CVn indices (p < 0.05 for CV3, CV5, CV6, CV8, and
CV9; 0.05 < p < 0.1 for CV4 and CV7) and Pn_SD indices (p < 0.05 for Pn_SD2 to Pn_SD10,
0.05 < p < 0.1 for Pn_SD1). Group Young had smaller values than Group AD of all Pn_SD
indices among the groups (all significant except for Pn_SD1).
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Table 4 lists the machine-learning analysis results (accuracy, sensitivity, specificity, and
AUC) for evaluating the performance in classifying the subjects into the AD and Control
groups. MLP had the best AUC (70.32%) among the eight methods. Detailed results of the
threefold cross-validation analysis for MLP are shown in Figure 4.
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Figure 4. MLP analysis results for comparisons of BPW indices between AD patients and Group
Control. Training and validation accuracy plots, AUC, and contradiction matrix are presented for the
threefold cross-validation. The mean accuracy, sensitivity, specificity, and AUC were 70.32%, 0.68,
0.72, and 0.70, respectively. “1” indicates AD patients and “0” indicates Control. (a) 1st part; (b) 2nd
part; (c) 3rd part of the threefold cross-validation.

The correlations found in the testing results between the prediction probability (using
AD patients and Control as training data) and the MMSE scores for the community and
young subjects are shown in Figure 5. There was a significant negative correlation for
these testing subjects (R2 = 0.36, p < 0.05 by F-test). When the young group was excluded
to minimize the possible interference effects of different ages, there was still a significant
negative correlation for the community subjects (R2 = 0.31, p < 0.05 by F-test).
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Figure 5. Correlation between the prediction probability and MMSE score. Group AD and Control
were used as training data. Community subjects at Sites A and B, and Group Young were used as
test subjects. (a), There was a significant negative correlation for the testing community subjects
(R2 = 0.36, p < 0.05 by F-test). (b), When the young group was excluded, there was still a significant
negative correlation (R2 = 0.31, p < 0.05 by F-test).

Table 4. Results of the machine-learning analyses comparing BPW indices between AD patients and
Control. Results are presented for the threefold cross-validation.

Accuracy
(%) SVM MLP GNB DT RF LR LDA KNN

1 70.61 72.50 61.34 63.57 64.26 71.47 76.80 64.94
2 56.35 71.64 55.84 64.77 69.41 62.37 71.64 62.37
3 60.30 66.83 60.48 59.79 63.40 62.71 56.87 63.91

average 62.42 70.32 59.22 62.71 65.69 65.52 68.44 63.74

Sensitivity SVM MLP GNB DT RF LR LDA KNN
1 0.66 0.66 0.38 0.61 0.72 0.61 0.64 0.60
2 0.46 0.63 0.21 0.62 0.71 0.47 0.61 0.51
3 0.78 0.76 0.75 0.81 0.91 0.77 0.68 0.78

average 0.63 0.68 0.45 0.68 0.78 0.62 0.64 0.63

Specificity SVM MLP GNB DT RF LR LDA KNN
1 0.74 0.78 0.84 0.65 0.56 0.81 0.89 0.69
2 0.66 0.80 0.90 0.66 0.67 0.77 0.81 0.73
3 0.41 0.57 0.45 0.37 0.35 0.48 0.45 0.49

average 0.60 0.72 0.73 0.56 0.53 0.69 0.72 0.64

AUC SVM MLP GNB DT RF LR LDA KNN
1 0.70 0.72 0.61 0.63 0.64 0.71 0.76 0.64
2 0.56 0.71 0.55 0.64 0.69 0.62 0.71 0.62
3 0.60 0.66 0.60 0.59 0.63 0.62 0.56 0.63

average 0.62 0.70 0.59 0.62 0.65 0.65 0.68 0.63

4. Discussion

The present study found significant differences in BPW spectral indices between AD
patients and control subjects. Using AD patients and control subjects as training data,
a significant correlation was found between the prediction probability of the test data
(comparing community subjects at two sites and young subjects) and the MMSE score.
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4.1. Differences in the Spectral Indices of the Pulse Waveform

Differences in the BPW spectral indices between AD patients and control subjects
were similar to those noted in our previous study [11]. Figure 3 reveals that C5–C10 were
significantly larger for AD patients than controls. Similarly for the subjects at the two
community sites, Cn values were larger in Site-A subjects than in Site-B subjects (significant
for C8 and C10). Site B is located in the educational area of the city, whereas Site A is located
in the countryside, and so Site-B subjects are probably more likely to experience diverse
kinds of cognitive stimulation, therefore leading differences in cognitive function between
the subjects at the two sites. This conjecture is supported by the difference in the MMSE
scores between the two sites: although not statistically significant, the MMSE score was
slightly lower in Site-A subjects (21.84 ± 5.19) than in Site-B subjects (23.95 ± 4.39).

It has been demonstrated previously that dementia can occur in association with an
increase in the arterial stiffness [4,5]. This implies that it is possible for dementia to be
accompanied with changes in the arterial pulse transmission condition outside the cere-
brovascular vascular system, and hence measuring and analyzing the pulse waveform
acquired at some distal site could be used to aid the evaluation of dementia-induced vascu-
lar changes in the pulse waveform. It has also been suggested that the larger Cn values of
dementia patients can be partly attributed to the increased transmission efficiency for the
higher-frequency components of the pulse spectrum [11]. The present findings of cognitive
function differing between subjects at different community sites suggest that this is associ-
ated with changes in the vascular stiffness that affect the arterial pulse wave transmission
and hence change the Cn values. The MMSE scores of AD patients (12.16 ± 5.52) were
closer to those of Site-A subjects than Site-B subjects, which may therefore be associated
with larger Cn values for several higher-frequency components of the pulse spectrum.

Regarding variability indices, Figure 3 indicates that AD patients had the largest
values of all CVn indices (all significant compared with Control) and many Pn_SDn indices
(significant for Pn_SD1 to Pn_SD9 compared with Control). Variability indices such as HR
and BP variability have been used in many studies to aid the monitoring of cardiovascular
regulatory activities [21]. Variability indices of the pulse waveform in AD patients have
previously been suggested to illustrate the presence of larger regulatory activities acting on
vascular elastic properties [11]. This could be related to the greater effort needed to address
the changes in the blood-flow perfusion condition when facing AD-induced changes in
vascular stiffness.

Similar to the situation for Cn indices, since the values of many of the analyzed pulse
variability indices were significantly larger for AD patients, comparison between Site-A
and Site-B subjects revealed that those at Site A had larger values of all CVn indices (some
of them were significant) and Pn_SD indices (significant for Pn_SD2 to Pn_SD10). Based
on the above-mentioned conjecture, the differences in the cognitive function of subjects
between the two sites may induce different vascular regulatory activities, and hence may
partly account for the observed differences in the CVn and Pn_SDn indices.

Another finding supporting this conjecture is that Group Young had the smallest
values of all Pn_SD indices (significant for Pn_SD2 to Pn_SD10 compared with AD patients).
The MMSE scores of these young subjects were higher than those of Site-A and Site-B
subjects. Based on the above-mentioned conjecture, the regulatory efforts may be smallest
due to the high cognitive function of the young subjects. The vascular regulatory activities
of Group Young may therefore be smallest, hence leading to the smallest values of Pn_SD
indices.

Regarding phase-angle indices of BPW signals, Group AD had the largest values of
P2–P9 (significant for P8 and P9 compared with Control). The phase angle is related to the
starting time point for each frequency component. A larger Pn value can therefore be partly
attributed to faster propagation of that specific frequency component of the arterial pulse,
and hence related to the spectral distribution of the vascular elasticity (increased vascular
elasticity for some specific frequency components).
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4.2. Correlation between Prediction Probability and MMSE Score

Further important support for the above-mentioned conjecture comes from the corre-
lation between the MMSE score and the prediction probability identified in the machine-
learning analysis using spectral pulse indices as features. While there have been advances
in detecting early neuropathology, it may be necessary to consider a shift in the diagnostic
paradigm so that milder dementia can be detected earlier in order to obtain greater benefits
from interventions [22,23]. Identifying the symptoms of the early stages of dementia is
often difficult among older adults living in residential care [24]. It has been reported that
more than 10% of community-dwelling subjects older than 70 years suffer from very mild
or mild dementia [22]. Data-informed decision-making strategies to identify individuals
at high risk of dementia could be essential to facilitating large-scale prevention and early
intervention [25]. Triage tests such as the MMSE are used in clinical practice to rapidly
assess the cognitive condition [2]. We therefore used the MMSE in comparisons with the
results of machine-learning pulse analysis in the present study.

In previous community studies, the diagnostic accuracy of MMSE was indicated by a
sensitivity of 0.85 (95% CI = 0.74–0.92) and a specificity of around 0.90 (95% CI = 0.82–0.95) [1].
A previous study that applied machine-learning algorithms used the MMSE, the Montreal
Cognitive Assessment, and the Korean Dementia Screening Questionnaire to evaluate
participants, and achieved an overall screening accuracy of >90% for mild cognitive im-
pairment, dementia, and cognitive dysfunction [26]. Although the MMSE has the largest
body of evidence to support its use and has adequate test accuracy, its utility is limited by
the relatively long administration time (10–15 min) and high cost [2]. The present results
(Figure 4) indicated an AUC of 0.70 in the threefold cross-validation when using MLP,
which represents acceptable discrimination performance.

The significant correlation between the prediction probability and the MMSE score
noted in the present study provides further support for possible application in community
subjects. Figure 5 indicates that a higher MMSE score was associated with a lower prediction
probability. This illustrates that there could be a physiological connection between the
MMSE evaluation and the pulse indices; that is, when the MMSE score is lower (which
indicates worse cognition), the prediction probability is higher (indicating greater similarity
of the pulse waveforms between the subject and the average of the AD group), and vice
versa.

The young group was included in the test subjects for the data shown in Figure 5a.
Subjects of different ages may exhibit different levels of vascular stiffness [27], which could
interfere with arterial pulse transmission and hence the pulse indices. To elucidate the
relationship between the prediction probability and the MMSE score, the young group was
excluded in Figure 5b to minimize the possible effects of different ages in the comparisons.
After removing these data points of the young group, there was still a significant correlation
(with R2 changing from 0.36 to 0.31). This illustrated that even when the age varied between
groups of testing data, the correlation between the prediction probability and the MMSE
score remained statistically significant.

Since the MMSE is a widely used tool for evaluating cognitive function in community
subjects, the present finding of a significant correlation illustrates a possible connection of
underlying physiological mechanisms between arterial pulse transmission and the MMSE
score. Other efforts have been made to identify possible connections between physiological
measurements and cognition evaluation indices. For example, one previous study focused
on the activities of daily living of adults in a smart-home setting to monitor potential
cognitive anomalies using a public data set, and achieved a 90.74% accuracy in detecting
the onset of dementia by applying machine-learning analysis [24]. In the present study,
the pulse data took only 3 min to acquire; this shorter administration time enhances the
user-friendliness of the present method of pulse-wave measurements for discriminating
cognitive conditions, and hence represents a potential method for the early screening of
dementia.
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This study was limited by the relatively small sample in the machine-learning analysis
(although cross-validation was used). Future efforts could focus on accumulating more
patients and community subjects in order to verify the present conjectures.

5. Conclusions

The findings of this study and the related conclusions to be drawn can be summarized
as follows:
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The threefold cross-validation results indicated an AUC of 0.70 in the threefold cross-
validation when using MLP, which indicated acceptable discrimination performance.
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Using AD patients and control subjects as training data, a significant correlation was
found between the prediction probability of the test data (comprising community
subjects at two sites and young subjects) and the MMSE score. Although significant,
the correlation in Figure 5 was modestly correlated. Further collection of subject data
in future work is necessary to strengthen the present conjecture.
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The young group was included in the test subjects for the data shown in Figure 5a. 
Subjects of different ages may exhibit different levels of vascular stiffness [27], which 
could interfere with arterial pulse transmission and hence the pulse indices. To elucidate 
the relationship between the prediction probability and the MMSE score, the young group 
was excluded in Figure 5b to minimize the possible effects of different ages in the com-
parisons. After removing these data points of the young group, there was still a significant 
correlation (with R2 changing from 0.36 to 0.31). This illustrated that even when the age 
varied between groups of testing data, the correlation between the prediction probability 
and the MMSE score remained statistically significant. 

Since the MMSE is a widely used tool for evaluating cognitive function in community 
subjects, the present finding of a significant correlation illustrates a possible connection of 
underlying physiological mechanisms between arterial pulse transmission and the MMSE 
score. Other efforts have been made to identify possible connections between physiologi-
cal measurements and cognition evaluation indices. For example, one previous study fo-
cused on the activities of daily living of adults in a smart-home setting to monitor potential 
cognitive anomalies using a public data set, and achieved a 90.74% accuracy in detecting 
the onset of dementia by applying machine-learning analysis [24]. In the present study, 
the pulse data took only 3 min to acquire; this shorter administration time enhances the 
user-friendliness of the present method of pulse-wave measurements for discriminating 
cognitive conditions, and hence represents a potential method for the early screening of 
dementia. 

This study was limited by the relatively small sample in the machine-learning anal-
ysis (although cross-validation was used). Future efforts could focus on accumulating 
more patients and community subjects in order to verify the present conjectures. 

5. Conclusions 
The findings of this study and the related conclusions to be drawn can be summa-

rized as follows: 
 Significant differences in spectral indices of the BPW were found between the AD 

patients and control subjects. 
 The threefold cross-validation results indicated an AUC of 0.70 in the threefold cross-

validation when using MLP, which indicated acceptable discrimination perfor-
mance. 

 Using AD patients and control subjects as training data, a significant correlation was 
found between the prediction probability of the test data (comprising community 
subjects at two sites and young subjects) and the MMSE score. Although significant, 

Age did not markedly interfere with the identified correlation between the prediction
probability and the MMSE score.
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The findings of this study and the related conclusions to be drawn can be summa-

rized as follows: 
 Significant differences in spectral indices of the BPW were found between the AD 

patients and control subjects. 
 The threefold cross-validation results indicated an AUC of 0.70 in the threefold cross-

validation when using MLP, which indicated acceptable discrimination perfor-
mance. 

 Using AD patients and control subjects as training data, a significant correlation was 
found between the prediction probability of the test data (comprising community 
subjects at two sites and young subjects) and the MMSE score. Although significant, 

The present findings based on pulse waveform measurements and machine-learning
analysis may be meaningful for the development of a noninvasive, rapid, and objective
method for monitoring the cognitive condition.
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