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Abstract: Optimization is an important and fundamental challenge to solve optimization problems in
different scientific disciplines. In this paper, a new stochastic nature-inspired optimization algorithm
called Pelican Optimization Algorithm (POA) is introduced. The main idea in designing the proposed
POA is simulation of the natural behavior of pelicans during hunting. In POA, search agents are
pelicans that search for food sources. The mathematical model of the POA is presented for use in
solving optimization issues. The performance of POA is evaluated on twenty-three objective functions
of different unimodal and multimodal types. The optimization results of unimodal functions show
the high exploitation ability of POA to approach the optimal solution while the optimization results
of multimodal functions indicate the high ability of POA exploration to find the main optimal area
of the search space. Moreover, four engineering design issues are employed for estimating the efficacy
of the POA in optimizing real-world applications. The findings of POA are compared with eight
well-known metaheuristic algorithms to assess its competence in optimization. The simulation results
and their analysis show that POA has a better and more competitive performance via striking a
proportional balance between exploration and exploitation compared to eight competitor algorithms
in providing optimal solutions for optimization problems.

Keywords: optimization; nature inspired; swarm intelligence; optimization problem; pelican; population-
based algorithm; stochastic

1. Introduction
1.1. Motivation

Optimization is the study of selecting the optimum solution from a set of alternative
solutions to a problem [1]. In fact, a problem that has more than one feasible solution
is an optimization problem. Decision variables, constraints, and objective functions are
the three main parts of each optimization problem for modeling [2]. From a general
point of view, optimization problem-solving approaches are categorized into two groups:
deterministic methods and stochastic methods [3]. Deterministic methods have difficulty
solving complex optimization problems with discontinuous, high-dimensional, non-convex,
and non-derivative objective functions. However, stochastic methods are able to overcome
the difficulties of deterministic methods and provide appropriate solutions to optimization
issues relying on random search in the problem-solving space and without using derivative
and gradient information from the objective function of the optimization problem [4].
Population-based optimization algorithms are one of the efficient algorithms in the group
of stochastic methods. These algorithms have been inspired by various phenomena of
swarm intelligence, the natural behaviors of animals and insects, the laws of physics,
the behavior of players and rules in various games, and the laws of evolution [5]. The
process of finding the optimal solution in optimization algorithms is such that at first, a
certain number of solvable solutions based on the constraints of the problem are generated
randomly. These random solutions are then improved using the algorithm’s stages and a
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repetition-based procedure. The best recommended solution for the optimization issue is
decided when the algorithm has been fully implemented. The basic optimum solution for an
optimization issue is global optimal. However, the solutions provided by the optimization
algorithms are not necessarily the same as the global optimal. Hence, the solution obtained
by the optimization algorithms is called quasi-optimal [6]. The tendency to achieve better
quasi-optimal solutions and closer to the global optimal has motivated researchers to
develop countless optimization algorithms. Optimization algorithms are employed to
achieve suitable solutions in various fields of science including image processing [7], sensor
networks [8], engineering [9], and metric fixed-point applications [10,11].

1.2. Research Gap

Since countless optimization algorithms have been designed so far, the main question
that arises is whether there is still a need to develop newer algorithms? The No Free Lunch
(NFL) theorem answers this important question and challenge [12]. The NFL theorem
illustrates the fact that an optimization algorithm may be highly capable of solving one
set of optimization problems, but can fail to solve another set of optimization problems.
This is due to the nature and different mathematical models of one real problem over
another. Therefore, there is no guarantee that a particular optimization algorithm will be
highly efficient in solving all optimization problems. The authors of this study were also
motivated by the NFL Theorem to produce a novel optimization algorithm that can be
employed to solve and prepare eligible quasi-optimal solutions to optimization issues.

1.3. Contribiution

The novelty and contribution of this research is in the development of a new optimiza-
tion method named the Pelican Optimization Algorithm (POA), which is based on pelicans’
natural behaviors. The main idea in the design of POA is to model the behavior and strategy
of pelicans during hunting. The various steps of the proposed POA are described and
mathematically modeled. To test the effectiveness of the proposed POA in optimization,
a set of twenty-three objective functions of unimodal and multimodal types have been
used. In addition, the POA’s performance is compared with eight well-known optimization
algorithms: Particle Swarm Optimization (PSO), Teaching–Learning-Based Optimization
(TLBO), Gray Wolf Optimization (GWO), the Whale Optimization Algorithm (WOA), Ma-
rine Predators Algorithm (MPA), Tunicate Swarm Algorithm (TSA), Gravitational Search
Algorithm (GSA), and the Genetic Algorithm (GA).

1.4. Paper Organization

The rest of the paper is organized in such a way that in Section 2, a study on opti-
mization algorithms is presented. The proposed Pelican Optimization Algorithm (POA)
is introduced in Section 3. Simulation studies are presented in Section 4. The discussion
about the obtained results is provided in Section 5. The analysis of POA’s ability to solve
engineering design problems is evaluated in Section 6. Finally, in Section 7, conclusions
and recommendations for further research are stated.

2. Background

One of the most effective ways to tackle optimization issues is stochastic population-
based optimization algorithms. Optimization algorithms in a general grouping based on
the main ideas and inspiration used in their design can be grouped into four groups: swarm-
based, evolutionary-based, physics-based, and game-based optimization algorithms.

Swarm-based optimization algorithms are developed with respect to natural phe-
nomena: swarm behaviors of insects, animals, and other living things. Particle Swarm
Optimization (PSO) is one of the oldest and most popular swarm-based algorithms inspired
by the behavior of birds in search of food. In the PSO, the status of each population member
is updated under the influence of the best position experienced by that member and the best
position experienced by the total population [13]. Teaching–Learning-Based Optimization
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(TLBO) is developed from the simulation of a classroom atmosphere and the interactions
between students and the teacher. In TLBO, population members are updated under
teacher training and transfer their information to each other [14]. Gray Wolf Optimization
(GWO) is inspired by the hierarchical structure and the social behavior of gray wolves
when hunting. In GWO, four types of wolves, alpha, beta, delta, and omega, are used to
model the hierarchical leadership of gray wolves, while population members are updated
based on simulations of three main hunting stages, including the search for prey, encircling
prey, and attacking prey [15]. A Whale Optimization Algorithm (WOA) is a nature-inspired,
swarm-based optimization algorithm based on the modeling of humpback whale social
behavior and their bubble-net hunting method. In WOA, population members are updated
in three hunting phases including search for prey, encircling prey, and humpback whale
bubble-net foraging behavior [16]. A Tunicate Swarm Algorithm (TSA) is developed based
on simulation of jet propulsion and swarm behavior of tunicates during the navigation
and foraging process. In TSA, the population is updated based on four phases including
avoiding conflicts between search agents, moving towards the best neighbor, converging
towards the best search agent, and swarm behavior [17]. Marine Predators Algorithm
(MPA) is inspired by marine predators’ movement methods when capturing their prey in
the seas. Because of the differing predator and prey speeds, the population update process
in MPA has three phases: (i) predator be faster, (ii) the speed of the predator and the prey
be equal, and (iii) prey be faster [18].

Evolutionary-based optimization algorithms are introduced based on simulations of
biological sciences, genetic sciences, and other phenomena involving evolutionary pro-
cesses. The Genetic Algorithm (GA) is one of the oldest and most widely used evolutionary
algorithms, inspired by the reproductive process and Charles Darwin’s theory of natural
selection. In GA, population members are updated based on three main operators: selec-
tion, crossover, and mutation [19]. The Artificial Immune System (AIS) algorithm is an
evolutionary-based method derived from how the immune system works in the face of
microbes and viruses. In AIS, the population update process is influenced by three phases:
cognitive, activation, and effector [20].

Physics-based optimization algorithms are developed based on the modeling of the
different laws of physics. Simulated Annealing is a physics-based algorithm inspired by
the process of melting and cooling materials in metallurgy. In this physical process, the
material is heated and gently cooled under controlled conditions to reduce its defects.
Mathematical modeling of this process has been used in the design of the SA optimizer [21].
The Gravitational Search Algorithm (GSA) is inspired by the modeling of gravitational force
between objects at different distances from each other. In the GSA, population members
are updated based on the calculation of gravitational force and the modeling of Newtonian
laws of motion [22].

Game-based optimization algorithms are designed based on simulating the rules of
different individual and group games as well as the behavior of players in these games.
The Football Game-based Optimizer (FGBO) is a game-based algorithm based on the
simulation of player behavior and club interactions in the football game league. In FGBO,
the population update process is based on the four phases of league holding, training,
transfer of players between clubs, and promotion and relegation of clubs [23]. Tug of War
Optimization (TWO) is based on simulating the behavior of players in a tug of war. In
TWO, the process of updating population members is based on modeling the tensile force
between members of the population who compete with each other [24].

Numerous optimization algorithms have been developed so far to solve optimization
problems. To the best of our knowledge, however, there is no algorithm in the literature
based on simulating the behavior and strategy of pelicans when hunting. The strategy of
pelicans motivated the authors of this article to create a mathematical model of the social
behavior of pelicans and to design a new optimization technique inspired by the hunting
strategy of pelicans.
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3. Pelican Optimization Algorithm

In this section, the inspiration and mathematical model of the proposed swarm-based
Pelican Optimization Algorithm (POA) are presented.

3.1. Inspiration and Behavior of Pelican during Hunting

The pelican is large and has a long beak with a large bag in its throat that it uses to
catch and swallow prey. This bird loves group and social life and lives in groups of several
hundred pelicans [25]. The appearance of pelicans is as follows: they weigh about 2.75 to
15 kg, with a height of about 1.06 to 1.83 m, and a wingspan about 0.5 to 3 m [26]. Pelican
food consists mainly of fish and more rarely of frogs, turtles, and crustaceans; if it is very
hungry, it even eats seafood [27]. Pelicans often work together to hunt. The pelicans, after
identifying the location of the prey, dive to their prey from a height of 10–20 m. Of course,
some species also descend to their prey at lower altitudes. Then they spread their wings on
the surface of the water to force the fish to go to shallow water so that they can catch their
fish easily. When catching fish, a large amount of water enters the pelican’s beak, which
moves the head forward before swallowing the fish to remove excess water [28].

The behavior and strategy of pelicans when hunting is an intelligent process that has
made these birds skilled hunters. The main inspiration in the design of the proposed POA
is originated from the modeling of the mentioned strategy.

3.2. Mathematical Model of the Proposed POA

The proposed POA is a population-based algorithm in which pelicans are members
of this population. In population-based algorithms, each population member means a
candidate solution. Each population member proposes values for the optimization problem
variables according to their position in the search space. Initially, population members are
randomly initialized according to the lower bound and upper bound of the problem using
Equation (1).

xi,j = lj + rand·
(
uj − lj

)
, i = 1, 2, . . . , N, j = 1, 2, . . . , m, (1)

where xi,j is the value of the jth variable specified by the ith candidate solution, N is the
number of population members, m is the number of problem variables, rand is a random
number in interval [0, 1], lj is the jth lower bound, and uj is the jth upper bound of
problem variables.

The population members of pelicans in the proposed POA are identified using a
matrix called the population matrix in Equation (2). Each row of this matrix represents a
candidate solution, while the columns of this matrix represent the proposed values for the
problem variables.

X =



X1
...

Xi
...

XN


N×m

=



x1,1 · · · x1,j · · · x1,m
...

. . .
...

...
xi,1 · · · xi,j · · · xi,m

...
...

. . .
...

xN,1 · · · xN,j · · · xN,m


N×m

, (2)

where X is the population matrix of pelicans and Xi is the ith pelican.
In the proposed POA, each population member is a pelican, which is a candidate

solution to the given problem. Therefore, the objective function of the given problem can be
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evaluated based on each of the candidate solutions. The values obtained for the objective
function are determined using a vector called the objective function vector in Equation (3).

F =



F1
...
Fi
...

FN


N×1

=



F(X1)
...

F(Xi)
...

F(XN)


N×1

, (3)

where F is the objective function vector and Fi is the objective function value of the ith
candidate solution.

The proposed POA simulates the behavior and strategy of pelicans when attacking
and hunting prey to update candidate solutions. This hunting strategy is simulated in
two stages:

(i) Moving towards prey (exploration phase).
(ii) Winging on the water surface (exploitation phase).

3.2.1. Phase 1: Moving towards Prey (Exploration Phase)

In the first phase, the pelicans identify the location of the prey and then move toward
this identified area. Modeling this pelican’s strategy leads to search space scanning and
the exploration power of the proposed POA in discovering different areas of search space.
The important point in POA is that the location of the prey is generated randomly in
the search space. This increases the exploration power of POA in the exact search of the
problem-solving space. The above concepts and the pelican strategy in moving towards
the place of prey are mathematically simulated in Equation (4).

xP1
i,j =

{
xi,j + rand·

(
pj − I·xi,j

)
, Fp < Fi;

xi,j + rand·
(
xi,j − pj

)
, else,

(4)

where xP1
i,j is the new status of the ith pelican in the jth dimension based on phase 1, I is a

random number which is equal to one or two, pj is the location of prey in the jth dimension,
and Fp is its objective function value. The parameter I is a number that can be randomly
equal to 1 or 2. This parameter is randomly selected for each iteration and for each member.
When the value of this parameter is equal to two, it brings more displacement for a member,
which can lead that member to newer areas of the search space. Therefore, parameter I
affects the POA exploration power to accurately scan the search space.

In the proposed POA, the new position for a pelican is accepted if the value of the
objective function is improved in that position. In this type of updating, which is called
effective updating, the algorithm is prevented from moving to non-optimal areas. This
process is modeled using Equation (5).

Xi =

{
XP1

i , FP1
i < Fi;

Xi, else,
(5)

where XP1
i is the new status of the ith pelican and FP1

i is its objective function value based
on phase 1.

3.2.2. Phase 2: Winging on the Water Surface (Exploitation Phase)

In the second phase, after the pelicans reach the surface of the water, they spread their
wings on the surface of the water to move the fish upwards, then collect the prey in their
throat pouch. This strategy leads more fish in the attacked area to be caught by pelicans.
Modeling this behavior of pelicans causes the proposed POA to converge to better points
in the hunting area. This process increases the local search power and the exploitation
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ability of POA. From a mathematical point of view, the algorithm must examine the points
in the neighborhood of the pelican location to converge to a better solution. This behavior
of pelicans during hunting is mathematically simulated in Equation (6).

xP2
i,j = xi,j + R·

(
1− t

T

)
·(2·rand− 1)·xi,j, (6)

where xP2
i,j is the new status of the ith pelican in the jth dimension based on phase 2, R is a

constant, which is equal to 0.2, R·(1− t/T) is the neighborhood radius of xi,j while, t is the
iteration counter, and T is the maximum number of iterations. The coefficient “R·(1− t/T)”
represents the radius of the neighborhood of the population members to search locally
near each member to converge to a better solution. This coefficient is effective on the POA
exploitation power to get closer to the optimal global solution. In the initial iterations,
the value of this coefficient is large and as a result, a larger area around each member is
considered. As the algorithm replicates increases the “R·(1− t/T)” coefficient decreases,
resulting in smaller radii of neighborhoods of each member. This allows us to scan the area
around each member of the population with smaller and more accurate steps, so that the
POA can converge to solutions closer to the global (and even exactly global) optimal based
on the usage concept.

At this phase, effective updating has also been used to accept or reject the new pelican
position, which is modeled in Equation (7).

Xi =

{
XP2

i , FP2
i < Fi;

Xi, else,
(7)

where XP2
i is the new status of the ith pelican and FP2

i is its objective function value based
on phase 2.

3.2.3. Steps Repetition, Pseudo-Code, and Flowchart of the Proposed POA

After all population members have been updated based on the first and second phases,
based on the new status of the population and the values of the objective function, the
best candidate solution so far will be updated. The algorithm enters the next iteration and
the different steps of the proposed POA based on Equations (4)–(7) are repeated until the
end of the complete execution. Finally, the best candidate solution obtained during the
algorithm iterations is presented as a quasi-optimal solution to the given problem.

The various steps of the proposed POA are presented as a flowchart in Figure 1 and
its pseudo-code in Algorithm 1.

3.3. Computational Complexity of the Proposed POA

In this subsection, the computational complexity of the proposed POA is calculated.
The computational complexity of the proposed POA is based on four principles: algorithm
initialization, evaluate the fitness function, generate prey, and solution updating. The com-
putational complexity of the algorithm initialization processes is O(N). In each iteration,
each population member evaluates the objective function in each of the two phases. So,
the computational complexity of the fitness function evaluation is O(2·T·N). Given that
prey is generated and evaluated at each iteration, O(T) + O(T·m) is the computational
complexity of prey generation. In each iteration, the number of N population members that
have m dimensions must be updated in two stages. Thus, the computational complexity of
solutions updating is O(2·T·N·m). Therefore, the total computational complexity of the
proposed POA is equal to O(N + T·(1 + m)·(1 + 2·N)).
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Algorithm 1. Pseudo-code of POA.

Start POA.
1. Input the optimization problem information.
2. Determine the POA population size (N) and the number of iterations (T).
3. Initialization of the position of pelicans and calculate the objective function.
4. For t = 1:T
5. Generate the position of the prey at random.
6. For I = 1:N
7. Phase 1: Moving towards prey (exploration phase).
8. For j = 1:m
9. Calculate new status of the jth dimension using Equation (4).
10. End.
11. Update the ith population member using Equation (5).
12. Phase 2: Winging on the water surface (exploitation phase).
13. For j = 1:m.
14. Calculate new status of the jth dimension using Equation (6).
15. End.
16. Update the ith population member using Equation (7).
17. End.
18. Update best candidate solution.
19.End.
20.Output best candidate solution obtained by POA.

End POA.

4. Simulation Studies and Results

In this section, the performance of the proposed POA in solving optimization problems
is studied. For this purpose, POA is employed in solving twenty-three objective functions
of different types of unimodal, high-dimensional multimodal, and fixed-dimensional mul-
timodal. Details of the employed benchmark functions are specified in the Appendix A in
Tables A1–A3. In addition, the obtained optimization results from the proposed POA are
compared with eight well-known optimization algorithms. These competing algorithms in-
clude (i) popular methods: Genetic Algorithm (GA) [19] and Particle Swarm Optimization
(PSO) [13], (ii) popular and highly cited methods: Teaching–learning Based Optimiza-
tion (TLBO) [14], Gray Wolf Optimization (GWO) [15], Whale Optimization Algorithm
(WOA) [16], and Gravitational Search Algorithm (GSA) [22], and (iii) recently published
methods: the Tunicate Swarm Algorithm (TSA) [17] and the Marine Predators Algorithm
(MPA) [18]. Table 1 shows the values of the control parameters of these algorithms.

To evaluate the performance of the optimization algorithms, each of the competing
algorithms, as well as the proposed POA in 20 independent implementations, each inde-
pendent implementation containing 1000 iterations has been implemented on the objective
functions. The simulation results are reported using four criteria: (i) the average of the best
solutions obtained (avg), (ii) the standard deviation of the best solutions obtained (std), (iii)
the best obtained candidate solution (bsf), and the median of the best solutions obtained
(med). Two avg and std criteria are calculated using Equations (8) and (9).

avg =
1

Nr
·

Nr

∑
i=1

BCSi, (8)

std =

√√√√ 1
Nr
·

Nr

∑
i=1

(BCSi − avg)2, (9)

where Nr is the number of independent implementations and BCSi is the best candidate
solution obtained in the ith independent implementation for a given problem.
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Table 1. Parameter values for the compared algorithms.

Algorithm Parameter Value

MPA

Binary vector U = 0 or 1
Random vector R is a vector of uniform random numbers in [0, 1].
Constant number p = 0.5
Fish Aggregating Devices (FADs) FADs = 0.2

TSA
c1, c2, c3 random numbers lie in the interval [0, 1].
Pmin 1
Pmax 4

WOA
l is a random number in [−1, 1].
ris a random vector in [0, 1].
Convergence parameter (a) a: Linear reduction from 2 to 0.

GWO Convergence parameter (a) a: Linear reduction from 2 to 0.

TLBO
random number rand is a random number from interval [0, 1].
TF: teaching factor TF = round [(1 + rand)]

GSA Alpha 20
G0 100
Rnorm 2
Rnorm 1

PSO

Velocity limit 10% of dimension range
Topology Fully connected
Inertia weight Linear reduction from 0.9 to 0.1
Cognitive and social constant (C1, C2) = (2, 2)

GA

Type Real coded
Mutation Gaussian (Probability = 0.05)
Crossover Whole arithmetic (Probability = 0.8)
Selection Roulette wheel (Proportionate)

4.1. Evaluation of Unimodal Functions

The objective functions of F1 to F7 are of the unimodal type. The proposed POA and
eight competitor algorithms are implemented on these functions. Table 2 shows the results
of optimizing the F1 to F7 functions. According to this table, the proposed algorithm in
the F6 optimization converges to the global optimal of this function, i.e., zero. In addition,
the proposed POA is the first best optimizer in solving F1, F2, F3, F4, F5, and F7 functions.
The POA has produced results that are significantly more competitive and closer to the
global optimal than the rival algorithms, according to the comparison of the performance
of optimization algorithms.

4.2. Evaluation of High-Dimensional Multimodal Functions

To analyze the proposed POA and eight competitor algorithms in optimizing high-
dimensional multi-modal functions, six objective functions, F8 to F13, have been selected.
Table 3 shows the results of the implementation of POA and eight competitor algorithms on
these objective functions. The proposed POA presents the global optimal with convergence
to zero for F9 and F11. The proposed algorithm is the first best optimizer in providing
quasi-optimal solutions for F8 and F10. TLBO is the best optimizer for F12 while POA is
the sixth-best optimizer in solving this objective function. GSA is also the best optimizer
in solving F13. Analysis of the simulation results shows that the proposed POA has an
acceptable ability to solve this type of optimization problems and is competitive with eight
compared algorithms.

4.3. Evaluation of Fixed-Dimensional Multimodal Functions

F14 through F23 are ten objective functions that assess optimization algorithms’ capac-
ity to tackle fixed-dimensional multimodal issues. The results of optimizing these objective
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functions using the proposed POA and eight competitor techniques are shown in Table 4.
The proposed POA in optimizing F14 and F17 has been capable of converging to the global
optimal of these functions. POA is the first best optimizer in solving F15, F19, F20 F21, F22,
and F23. In optimizing the functions of F16, and F18 although the performance of the POA
is similar to some competitor algorithms in the avg criterion, it has a better std criterion.
Therefore, the proposed POA is more efficient to solve these objective functions. Analysis
of the simulation results shows that the proposed POA has a higher ability to solve F14
to F23 fixed-dimensional multimodal optimization problems than the eight competitor
algorithms.

The performance of the optimization algorithms and the proposed POA in solving the
objective functions F1 to F23 are presented in Figure 2 as a boxplot.

4.4. Statistical Analysis

The use of average and std indices to report the optimization results of objective
functions gives useful information about the comparison and performance of optimization
techniques. Nevertheless, even after numerous separate executions, it is always conceivable
that the superiority of one algorithm over several other algorithms be random. Therefore,
in this subsection, a statistical analysis called a Wilcoxon sum rank test [29] is presented to
show the superiority of the POA over eight competitor algorithms from a statistical point
of view. The Wilcoxon sum rank test is a non-parametric statistical test that compares the
similarity of two dependent samples. This test determines whether the difference between
the two samples is statistically significant or not.

In the Wilcoxon sum rank test, an index called a p-value has been employed to deter-
mine the statistically significant difference between the performance of the two algorithms
in optimizing different groups of objective functions. The simulation results of this test for
the proposed POA with eight competitor algorithms are presented in Table 5. In this table,
in cases where a p-value is less than 0.05, the proposed POA has a significant superiority
over the competitor algorithm in that group of objective functions.

4.5. Sensitivity Analysis

The proposed POA is a population-based algorithm that converges to a quasi-optimal
solution in an iterative process for a given optimization problem. Therefore, the values of
these two parameters affect the performance of POA. In addition, the value of the parameter
R in Equation (6) can also significantly affect the performance of the POA.

In this subsection, it has been studied the sensitivity analysis of the proposed POA
with respect to the three parameters, namely the population number N, the maximum
number of iterations T, and parameter R. There is not a general rule for setting values of
N and T, but their values choice depends on factors such as the nature of the problem,
the number of variables, constraints, and so on. Experimental knowledge and familiarity
with the given optimization problem are very influential in choosing these two parameters.
However, if there is no necessary knowledge and familiarity with the given problem, the
values of these two parameters can be adjusted based on trial and error.

To evaluate the performance sensitivity of the proposed algorithm to the parameter N,
POA for different populations of 20, 30, 50, and 80 members was implemented on the F1 to
F23 objective functions. Table 6 shows the simulation results of the sensitivity analysis of the
proposed POA to the parameter N. What can be deduced from this table is that the increase
in population members has led to an increase in the exploratory power of the algorithm in
search of search space and the discovery of more optimal areas. Therefore, as the number of
population members increases, the value of the objective function decreases. Figure 3 shows
the behavior of the convergence curves of the proposed POA in the sensitivity analysis to
the parameter N.
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Table 2. Evaluation results of unimodal functions.

GA PSO GSA TLBO GWO WOA TSA MPA POA

F1

avg 11.6208 4.1728 × 10−4 2.0259 × 10−16 3.8324 × 10−59 1.0896 × 10−57 5.37 × 10−62 5.7463 × 10−37 3.2612 × 10−20 2.87 × 10−258

std 2.6142 × 10−11 3.6142 × 10−21 6.9113 × 10−30 9.6318 × 10−72 5.1462 × 10−73 5.78 × 10−78 6.3279 × 10−20 1.5264 × 10−19 4.51 × 10−514

bsf 5.593489 2 × 10−10 8.2 × 10−18 9.36 × 10−61 7.73 × 10−61 1.61 × 10−65 1.14 × 10−62 3.41 × 10−28 7.62 × 10−264

med 11.04546 9.92 × 10−7 1.78 × 10−17 4.69 × 10−60 1.08 × 10−59 8.42 × 10−54 3.89 × 10−38 1.27 × 10−19 8.2 × 10−248

F2

avg 4.6942 0.3114 7.0605 × 10−7 4.6237 × 10−34 2.0509 × 10−33 2.51 × 10−55 4.5261 × 10−38 6.3214 × 10−11 1.43× 10−128

std 5.4318 × 10−14 4.4667 × 10−16 8.5637 × 10−23 9.3719 × 10−49 6.3195 × 10−29 5.60 × 10−58 2.6591 × 10−40 3.6249 × 10−11 2.90× 10−129

bsf 1.591137 0.001741 1.59 × 10−8 1.32 × 10−35 1.55 × 10−35 3.42 × 10−63 8.26 × 10−43 4.25 × 10−18 2.61 × 10−131

med 2.463873 0.130114 2.33 × 10−8 4.37 × 10−35 6.38 × 10−35 1.59 × 10−51 8.26 × 10−41 3.18 × 10−11 7.1 × 10−123

F3

avg 1361.2743 588.3012 280.6014 7.0772 × 10−14 4.7206 × 10−14 7.5621 × 10−9 5.6230 × 10−20 0.0819 1.88× 10−256

std 6.6096 × 10−12 9.7117 × 10−12 5.2497 × 10−12 8.9637 × 10−30 6.5225 × 10−28 1.02 × 10−18 7.0925 × 10−19 0.1370 5.16× 10−614

bsf 1014.689 1.614937 81.91242 1.21 × 10−16 4.75 × 10−20 1.9738 × 10−11 7.29 × 10−30 0.032038 7.36 × 10−262

med 1510.715 54.15445 291.4308 1.86 × 10−15 1.59 × 10−16 17085.2 9.81 × 10−21 0.378658 8.2 × 10−244

F4

avg 2.0396 4.3693 2.6319 × 10−8 8.9196 × 10−14 1.9925 × 10−13 0.0013 3.1162 × 10−22 6.3149 × 10−8 2.36× 10−133

std 4.3321× 10−14 4.2019 × 10−15 5.3017 × 10−23 1.7962 × 10−29 1.8305 × 10−28 0.0877 6.3129 × 10−21 2.3687 × 10−9 8.37× 10−134

bsf 1.389849 1.60441 2.09 × 10−09 6.41 × 10−16 3.43 × 10−16 0.0001 1.87 × 10−52 3.42 × 10−17 6.08 × 10−138

med 2.09854 3.260672 3.34 × 10−09 1.54 × 10−15 7.3 × 10−15 0.0010 3.13 × 10−27 3.03 × 10−08 2.8 × 10−123

F5

avg 308.4196 50.5412 36.01528 147.6214 27.1786 27.17543 28.8592 46.0408 27.1253

std 3.0412 × 10−12 1.8529 × 10−13 2.6091 × 10−13 6.3017 × 10−13 8.7029 × 10−14 0.393959 4.3219 × 10−3 0.4199 1.91× 10−15

bsf 160.5013 3.647051 25.83811 120.7932 25.21201 26.43249 28.53831 41.58682 26.2052

med 279.5174 28.69298 26.07475 142.8936 26.70874 26.93542 28.53913 42.49068 28.707

F6

avg 15.6231 20.2691 0 0.5531 0.6518 0.071527 5.7268 × 10−20 0.3894 0

std 7.3160 × 10−14 2.6314 0 3.1971 × 10−15 5.3096 × 10−16 0.006113 2.1163 × 10−24 0.2001 0

bsf 6 5 0 0 1.57 × 10−05 0.014645 6.74 × 10−26 0.274582 0

med 13.5 19 0 0 0.621487 0.029296 6.74 × 10−21 0.406648 0

F7

avg 8.6517 × 10−2 0.3218 0.0234 0.0011 0.0077 0.00103 8.2196 × 10−4 1.2561× 10−3 9.37× 10−6

std 8.9206 × 10−17 3.4333 × 10−16 7.1526 × 10−17 3.2610 × 10−18 7.2307 × 10−19 1.12 × 10−5 9.6304 × 10−5 9.6802× 10−3 8.03× 10−20

bsf 0.002111 0.029593 0.01006 0.001362 0.000248 4.24 × 10−5 0.000104 0.001429 7.05 × 10−07

med 0.005365 0.107872 0.016995 0.002912 0.000629 0.00215 0.000367 0.00218 4.86 × 10−05
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Table 3. Evaluation results of high-dimensional multimodal functions.

GA PSO GSA TLBO GWO WOA TSA MPA POA

F8

avg −8210.3415 −6899.9556 −2854.5207 −7410.8016 −5903.3711 −7239.1 −5737.7822 −3611.2271 −9336.7304

std 833.5126 625.4286 2641576 513.4752 467.8216 261.0117 39.5203 811.1459 2.64× 10−12

bsf −9717.68 −8501.44 −3969.23 −9103.77 −7227.05 −7568.9 −5706.3 −4419.9 −9850.21

med −8117.66 −7098.95 −2671.33 −7735.22 −5774.63 −7124.8 −5669.63 −3632.84 −8505.55

F9

avg 62.1441 57.0503 16.5714 10.1379 8.1036 × 10−14 0 6.0311 × 10−3 139.9806 0

std 2.1637 × 10−13 6.0013 × 10−14 6.1972 × 10−14 4.9631 × 10−14 4.6537 × 10−29 0 5.6146 × 10−3 25.9024 0

bsf 36.86623 27.85883 4.974795 9.873963 0 0 0.004776 128.2306 0

med 61.67858 55.22468 15.42187 10.88657 0 0 0.005871 154.6214 0

F10

avg 3.8134 2.6304 3.5438 × 10−9 0.2691 8.6234 × 10−13 3.91 × 10−15 8.6247 × 10−13 8.6291 × 10−11 8.88× 10−16

std 6.8972 × 10−15 6.9631 × 10−15 2.7054 × 10−24 6.4129 × 10−14 5.6719 × 10−28 7.01 × 10−30 1.6240 × 10−12 5.3014 × 10−11 0

bsf 2.757203 1.155151 2.64 × 10−09 0.156305 1.51 × 10−14 8.88 × 10−16 8.14 × 10−15 1.68 × 10−18 8.88 × 10−16

med 3.120322 2.170083 3.64 × 10−09 0.261541 1.51 × 10−14 4.44 × 10−15 1.1 × 10−13 1.05 × 10−11 8.88 × 10−16

F11

avg 1.1973 0.0364 3.9123 0.5912 0.0013 2.03 × 10−4 5.3614 × 10−7 0 0

std 4.8521 × 10−15 2.6398 × 10−17 4.0306 × 10−14 6.2914 × 10−15 6.1294 × 10−17 1.82 × 10−17 6.3195 × 10−7 0 0

bsf 1.140471 7.29 × 10−09 1.519288 0.310117 0 0 4.23 × 10−15 0 0

med 1.227231 0.029473 3.424268 0.582026 0 0 8.77 × 10−07 0 0

F12

avg 0.0469 0.4792 0.0341 0.0219 0.0364 0.007728 0.0372 0.0815 0.0583

std 1.7456 × 10−14 9.3071 × 10−15 2.0918 × 10−16 2.6195 × 10−14 1.3604 × 10−13 8.07E-05 8.6391 × 10−2 0.0162 2.73 × 10−16

bsf 0.018364 0.000145 5.57 × 10−20 0.002031 0.019294 0.001142 0.035428 0.077912 0.0452

med 0.04179 0.1556 1.48 × 10−19 0.015181 0.032991 0.003887 0.050935 0.082108 0.1464

F13

avg 1.2106 0.5156 0.0017 0.3306 0.5561 0.193293 2.8041 0.4875 1.42866

std 3.5630 × 10−15 4.1427 × 10−16 1.9741 × 10−13 5.6084 × 10−15 5.6219 × 10−15 0.022767 3.9514 × 10−11 0.1041 2.83× 10−15

bsf 0.49809 9.99 × 10−07 1.18 × 10−18 0.038266 0.297822 0.029662 2.63175 0.280295 1.428663

med 1.218053 0.043997 2.14 × 10−18 0.282764 0.578323 0.146503 2.66175 0.579854 2.976773
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Table 4. Evaluation results of fixed-dimensional multimodal functions.

GA PSO GSA TLBO GWO WOA TSA MPA POA

F14

avg 0.9969 2.3909 3.9505 2.4998 4.1140 1.106143 2.061 0.9980 0.9980

std 6.3124 × 10−14 8.0126 × 10−15 8.9631 × 10−15 6.3014 × 10−15 1.3679 × 10−14 0.48689 5.6213 × 10−7 1.9082 × 10−15 0

bsf 0.998004 0.998004 0.999508 0.998391 0.998004 0.998004 0.9979 0.9980 0.9980

med 0.998018 0.998004 2.986658 2.275231 2.982105 0.998004 1.912608 0.9980 0.9980

F15

avg 0.0042 0.0528 0.0027 0.0031 0.0059 0.000463 0.0005 0.0028 0.0003

std 1.6317 × 10−17 2.6159 × 10−18 3.6051 × 10−18 6.3195 × 10−16 3.0598 × 10−17 1.22 × 10−7 1.6230 × 10−5 1.2901 × 10−14 1.21× 10−19

bsf 0.000775 0.000307 0.000805 0.002206 0.000307 0.000313 0.000264 0.00027 0.0003

med 0.002074 0.000307 0.002311 0.003185 0.000308 0.000492 0.00039 0.0027 0.0003

F16

avg −1.0307 −1.0312 −1.0309 −1.0310 −1.0316 −1.0316 −1.0314 −1.0315 −1.0316

std 9.1449 × 10−15 3.2496 × 10−15 5.4162 × 10−15 1.3061 × 10−14 3.0816 × 10−15 2.38 × 10−20 6.0397 × 10−15 2.1679 × 10−15 1.93× 10−18

bsf −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.03161 −1.0316 −1.03163

med −1.0309 −1.0311 −1.0310 −1.0308 −1.0316 −1.0316 −1.0311 −1.0312 −1.03163

F17

avg 0.4401 0.7951 0.3980 0.3978 0.3981 0.39788 0.3987 0.3991 0.3978

std 1.4109 × 10−16 3.9801 × 10−5 1.0291 × 10−16 2.1021 × 10−15 6.0391 × 10−16 1.42 × 10−12 6.1472 × 10−15 5.9317 × 10−14 0

bsf 0.3978 0.3978 0.3978 0.3978 0.3978 0.397887 0.3980 0.3982 0.3978

med 0.4016 0.6521 0.3979 0.3978 0.3979 0.397887 0.3990 0.3977 0.3978

F18

avg 4.3601 3.0010 3.0016 3.0010 3.0009 3.000009 3 3.0013 3

std 2.6108 × 10−15 1.1041 × 10−14 3.7159 × 10−15 7.6013 × 10−14 5.0014 × 10−14 2.42 × 10−15 5.6148 × 10−14 2.3017 × 10−14 1.09× 10−16

bsf 3.0002 3 3 3 3 3 3 3 3

med 3.7581 3.0005 3.0008 3.0006 3.0006 3.000001 3 3.0009 3

F19

avg −3.8519 −3.8627 −3.8627 −3.8615 −3.8617 −3.86068 −3.8205 −3.8627 −3.86278

std 3.6015 × 10−14 7.0114 × 10−14 5.3419 × 10−14 1.0314 × 10−14 9.6041 × 10−14 6.55 × 10−6 6.7514 × 10−14 2.6197 × 10−14 6.45× 10−16

bsf −3.86278 −3.8627 −3.8627 −3.8625 −3.8627 −3.86278 −3.8366 −3.8627 −3.86278

med −3.8413 −3.8560 −3.8627 −3.8620 −3.8612 −3.86216 −3.8066 −3.8627 −3.86278
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Table 4. Cont.

F20

avg −2.8301 −3.2626 −3.0402 −3.1927 −3.2481 −3.22298 −3.3201 −3.3195 −3.3220

std 3.7124 × 10−15 3.4567 × 10−15 5.2179 × 10−13 5.3140 × 10−14 3.3017 × 10−14 0.008173 6.5203 × 10−14 9.8160 × 10−10 1.97× 10−16

bsf −3.31342 −3.322 −3.322 −3.26174 −3.32199 −3.32198 −3.3212 −3.3213 −3.322

med −2.96828 −3.2160 −2.9014 −3.2076 −3.26248 −3.19935 −3.3206 −3.3211 −3.322

GA PSO GSA TLBO GWO WOA TSA MPA POA

F21

avg −4.2593 −5.4236 −5.2014 −9.2049 −9.6602 −8.87635 −5.1477 −9.9561 −10.1532

std 2.3631 × 10−8 6.3014 × 10−9 5.8961 × 10−8 3.8715 × 10−14 5.3391 × 10−14 5.123359 6.1974 × 10−12 8.7195 × 10−10 1.93× 10−16

bsf −7.82781 −8.0267 −7.3506 −9.6638 −10.1532 −10.1531 −7.5020 −10.1532 −10.1532

med −4.16238 −5.10077 −3.64802 −9.1532 −10.1526 −10.1518 −5.5020 −10.1531 −10.1532

F22

avg −5.1183 −7.6351 −9.0241 −10.0399 −10.4199 −9.33732 −5.0597 −10.2859 −10.4029

std 6.1697 × 10−14 5.0610 × 10−14 5.0231 × 10−11 6.7925 × 10−13 6.1496 × 10−14 4.752577 3.1673 × 10−14 7.3596 × 10−10 3.57× 10−16

bsf −9.1106 −10.4024 −10.4026 −10.4023 −10.4021 −10.4028 −9.06249 −10.4029 −10.4029

med −5.0296 −10.4020 −10.4017 −10.1836 −10.4015 −10.4013 −5.06249 −10.4027 −10.4029

F23

avg −6.5675 −6.1653 −8.9091 −9.2916 −10.1319 −9.45231 −10.3675 −10.1409 −10.5364

std 5.6014 × 10−14 5.3917 × 10−15 8.0051 × 10−14 5.2673 × 10−14 2.6912 × 10−15 9.47 × 10−9 2.9637 × 10−12 5.0981 × 10−10 3.97× 10−16

bsf −10.2227 −10.5364 −10.5364 −10.5340 −10.5363 −10.5363 −10.3683 −10.5364 −10.5364

med −6.5629 −4.50554 −10.5360 −9.6717 −10.5361 −10.5349 −10.3613 −10.2159 −10.5364
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Table 5. p-values obtained from Wilcoxon sum rank test.

Functions
Type

Compared Algorithms

POA and
MPA

POA and
TSA

POA and
WOA

POA and
GWO

POA and
TLBO

POA and
GSA

POA and
PSO

POA and
GA

Unimodal 0.0156 0.0156 0.0156 0.0156 0.0156 0.0312 0.0156 0.0156

High-
dimensional
multimodal

0.3125 0.2187 0.1562 0.8437 0.3125 0.3125 0.1562 0.1562

Fixed-
dimensional
multimodal

0.0195 0.0039 0.0078 0.0117 0.0058 0.0195 0.0039 0.0019

To analyze the sensitivity of the proposed algorithm to the parameter T, POA is
applied to solve the objective functions F1 to F23 for the maximum number of iterations of
100, 500, 800, and 1000. The simulation results of the sensitivity of the proposed POA to
the parameter T are presented in Table 7. Based on the results of this table, it was found
that increasing the number of iterations of the algorithm gives more time to the population
members to converge towards the optimal solution. Increasing the algorithm’s maximum
number of iterations improves the algorithm’s exploitation power, allowing it to produce
better solutions. The simulation results reveal that increasing the algorithm’s maximum
number of iterations reduces the values of the goal functions. Figure 4 depicts the behavior
of convergence curves under the effect of sensitivity analysis of the proposed POA to the T.

Table 6. Sensitivity analysis of the POA to N.

Objective
Function

Number of Population Members

20 30 50 80

F1 9.3343 × 10−212 1.6451 × 10−235 2.87 × 10−258 7.3038 × 10−260

F2 1.5489 × 10−98 2.303 × 10−119 1.42 × 10−128 2.0842 × 10−132

F3 1.6656 × 10−206 9.9891 × 10−249 1.879 × 10−256 2.1553 × 10−259

F4 6.0489 × 10−112 1.4332 × 10−127 2.36 × 10−133 3.6451 × 10−136

F5 28.4440 27.1418 27.1253 25.4195

F6 0 0 0 0

F7 0.0001 8.8865 × 10−6 9.37 × 10−6 1.3305 × 10−6

F8 −7727.8678 −8924.3072 −9336.7304 −9385.8725

F9 0 0 0 0

F10 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

F11 0 0 0 0

F12 0.2944 0.0369 0.0583 0.0142

F13 2.9548 2.0214 1.4286 2.0471

F14 1.6403 1.0120 0.9980 0.9980

F15 0.0024 0.0003 0.0003 0.0003

F16 −1.0311 −1.0314 −1.0316 −1.03163

F17 0.3987 0.3983 0.3978 0.3978
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Table 6. Cont.

Objective
Function

Number of Population Members

20 30 50 80

F18 3.0003 3.0001 3.0000 3.0000

F19 −3.8615 −3.8625 −3.8628 −3.8628

F20 −3.3041 −3.3120 −3.322 −3.322

F21 −7.3492 −10.1529 −10.1532 −10.1532

F22 −8.0110 −10.4023 −10.4029 −10.4029

F23 −8.6436 −10.5357 −10.5364 −10.5364

Table 7. Sensitivity analysis of the POA to T.

Objective
Function

Maximum Number of Iterations

100 500 800 1000

F1 2.7725 × 10−19 6.2604 × 10−115 4.3539 × 10−185 2.87 × 10−258

F2 1.1541 × 10−9 3.5658 × 10−57 1.61505 × 10−94 1.42 × 10−128

F3 2.1172 × 10−19 5.0884 × 10−117 6.461 × 10−180 1.879 × 10−256

F4 5.9252 × 10−10 1.8962 × 10−56 3.1178 × 10−92 2.36 × 10−133

F5 28.9350 28.5274 28.3259 27.1253

F6 0 0 0 0

F7 0.0007 0.0001 9.0872 × 10−5 9.37 × 10−6

F8 −6753.5658 −8063.7455 −8208.3044 −9336.7304

F9 0 0 0 0
F10 1.1932 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

F11 0 0 0 0

F12 0.5768 0.2211 0.1673 0.0583

F13 2.8999 2.7595 2.7286 1.4286

F14 1.0012 0.9996 0.9980 0.9980

F15 0.0013 0.0007 0.0004 0.0003

F16 −1.0310 −1.0314 −1.0316 −1.03163

F17 0.3983 0.3972 0.3978 0.3978

F18 3.0172 3.0120 3.0001 3.0000

F19 −3.7928 −3.8598 −3.8628 −3.8628

F20 −3.2810 −3.3160 −3.3041 −3.322

F21 −9.8968 −9.6433 −9.8982 −10.1532

F22 −10.4002 −10.4018 −10.4022 −10.4029

F23 −10.5358 −10.5361 −10.5363 −10.5364
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In order to analyze the sensitivity of POA to the parameter R, it should be noted
that the coefficient “R·(1− t/T)” indicates that in each iteration, the maximum change for
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each member of the population is “R·(1− t/T)” times its current position. Therefore, the
value of the parameter R in this coefficient must be less than one. The proposed POA for
different values of R equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 is employed in
the optimization of the F1 to F23 function. The optimization results of F1 to F23 functions
for different values of parameter R are reported in Table 8. The results of this sensitivity
analysis show that the POA has a very low sensitivity to changes in the parameter R and in
most cases provides the same solution. In optimizing of the functions F6, F9, F10, F11, F14,
F15, F16, F17, F18, and F19, the different selected values for the parameter R had no effect
on POA performance. In the general analysis and comparison of the results, it was found
that POA has the best performance for the value of R equal to 0.2.
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Table 8. Sensitivity analysis of the POA to R.

OF
R Value

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1 4.84 × 10−244 2.87 × 10−258 7.98 × 10−246 3.79 × 10−244 6.25 × 10−240 6.31 × 10−235 2.32 × 10−231 4.98 × 10−227 6.44 × 10−224 1.04 × 10−221

F2 1.50 × 10−126 1.42 × 10−128 2.72 × 10−125 7.70 × 10−125 2.01 × 10−123 3.85 × 10−122 1.89 × 10−121 2.56 × 10−120 4.69 × 10−119 6.50 × 10−115

F3 6.84 × 10−256 1.879 × 10−256 3.92 × 10−251 4.90 × 10−248 1.83 × 10−244 4.39 × 10−241 8.56 × 10−236 2.83 × 10−236 8.20 × 10−235 1.96 × 10−234

F4 3.50 × 10−126 2.36 × 10−133 8.99 × 10−120 1.96 × 10−123 1.90 × 10−126 2.60 × 10−122 4.96 × 10−115 4.04 × 10−112 1.40 × 10−112 6.74 × 10−110

F5 27.5583 27.1253 27.5641 27.5912 27.8162 28.4294 28.5964 28.6237 28.6907 28.7015

F6 0 0 0 0 0 0 0 0 0 0

F7 3.43 × 10−5 9.37 × 10−6 4.86 × 10−5 7.62 × 10−5 4.31 × 10−5 2.06 × 10−4 2.71 × 10−4 4.63 × 10−4 3.66 × 10−4 5.70 × 10−4

F8 −8934.1836 −9336.7304 −8963.8127 −8898.2760 −8702.3872 −8629.6948 −8485.2713 −8212.2289 −8070.2688 −7919.3914

F9 0 0 0 0 0 0 0 0 0 0

F10 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

F11 0 0 0 0 0 0 0 0 0 0

F12 0.1542 0.0583 0.0629 0.0701 0.0821 0.08659 0.08826 0.09184 0.09633 0.097571

F13 2.8516 1.4286 2.1295 2.5203 2.591 2.6314 2.4736 2.3871 2.7630 2.8532

F14 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980

F15 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

F16 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

F17 0.3978 0.3978 0.3978 0.3978 0.3978 0.3978 0.3978 0.3978 0.3978 0.3978

F18 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

F19 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628

F20 −3.322 −3.322 −3.322 −3.3219 −3.3218 −3.3218 −3.1984 −3.1821 −3.1167 −3.0126

F21 −10.1532 −10.1532 −10.1531 −10.1531 −10.1529 −10.1527 −9.8965 −9.9623 −9.2196 −9.1637

F22 −10.4029 −10.4029 −10.4027 −10.4027 −10.3827 −10.3561 −10.0032 −9.7304 −9.1931 −9.0157

F23 −10.5364 −10.5364 −10.5363 −10.5363 −10.2195 −10.0412 −9.6318 −9.2305 −9.1027 −10.0081
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5. Discussion

Exploration power and exploitation power are two key and influential indicators of
optimization algorithms’ success in obtaining solutions to optimization issues.

Exploitation power demonstrates the ability of the algorithm to search locally and
converge as much as possible towards the global optimal. According to this concept,
a good optimization algorithm should be able to accurately scan the space around the
identified optimal area to provide a suitable quasi-optimal solution. Therefore it can be
said that, compared to the performance of several optimization algorithms, the algorithm
that converges to a better solution has a higher exploitation power. The F1 to F7 objective
functions, which are of the unimodal type, have only one main peak and are therefore
suitable for evaluating the exploitation power. The simulation results of these objective
functions reported in Table 2 indicate the high exploitation ability of the proposed POA
in local search and suitable convergence towards the global optimal. Analysis of the
optimization results of these objective functions indicates very competitive and significant
superiority of the proposed POA in the exploitation power and in providing a quasi-optimal
solution over eight competing algorithms.

Exploration power demonstrates the ability of an algorithm to global search in
problem-solving space and cross local optimal areas to discover the main optimal area.
Accordingly, in comparing several optimization algorithms, an algorithm that scans the
search space more accurately and is able to identify the area containing the global optimal
has a higher exploration power. Exploration power is especially important in optimizing
problems that have several local optimal in addition to the global optimal. F8 to 23 multi-
modal objective functions have this feature and are therefore suitable for evaluating the
exploration power of optimization algorithms. The optimization results of these objective
functions presented in Tables 3 and 4 show that the proposed POA has a high exploration
power for the global search in the problem-solving space and has been able to identify the
optimal local area. Comparison and analysis of simulation results of F8 to F23 functions
indicate the high exploration ability of POA compared to eight competing algorithms.

6. POA for Real-World Applications

In order to assess the effectiveness of POA in real-world purposes, this optimizer has
been utilized to solve four engineering problems: pressure vessel design, speed reducer
design, welded beam design, and tension/compression spring design.

6.1. Pressure Vessel Design

Pressure vessel design [30] is a minimization problem whose schematic is shown in
Figure 5. The mathematical model of this problem is as follows:

Consider X = [x1, x2, x3, x4] = [Ts, Th, R, L].
Minimize f (x) = 0.6224x1x3x4 + 1.778x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3.
Subject to:

g1 (x) = −x1 + 0.0193x3 ≤ 0,

g2 (x) = −x2 + 0.00954x3 ≤ 0,

g3 (x) = −πx2
3x4 −

4
3

πx3
3 + 1296000 ≤ 0,

g4 (x) = x4 − 240 ≤ 0.

With
0 ≤ x1, x2 ≤ 100, and 10 ≤ x3, x4 ≤ 200.



Sensors 2022, 22, 855 24 of 34

Sensors 2022, 22, x FOR PEER REVIEW 20 of 30 
 

 

𝑔ଵ (𝑥) =  −𝑥ଵ + 0.0193𝑥ଷ  ≤  0, 𝑔ଶ (𝑥) = −𝑥ଶ + 0.00954𝑥ଷ ≤  0, 𝑔ଷ (𝑥) = −𝜋𝑥ଷଶ𝑥ସ − 43 𝜋𝑥ଷଷ + 1296000 ≤  0, 𝑔ସ (𝑥) = 𝑥ସ − 240 ≤  0. 
With 0 ≤ 𝑥ଵ, 𝑥ଶ ≤ 100, 𝑎𝑛𝑑 10 ≤ 𝑥ଷ, 𝑥ସ ≤ 200. 

 
Figure 5. Schematic of pressure vessel design. 

The optimization results of this problem are presented in Table 9. POA provides the 
optimal solution with the values of the variables equal to (0.778035, 0.384607, 40.31261, 
and 199.9972) and the value of the objective function (5883.0278). The statistical results of 
the performance of competing and POA algorithms are reported in Table 10. Based on 
these results, POA, with better statistical indicators, has outperformed competing algo-
rithms. Figure 6 shows the POA convergence curve in the pressure vessel design solution. 

Table 9. Comparison results for pressure vessel design problem. 

Algorithm  Optimum Variables  Optimum Cost 
 Ts Th R L  
POA 0.778035 0.384607 40.31261 199.9972 5883.0278 
MPA 0.782101 0.386813 40.51662 200 5915.005 
TSA 0.78293 0.386583 40.52943 200 5918.816 
WOA 0.782856 0.386606 40.52252 200 5920.845 
GWO 0.849948 0.420657 44.03535 157.1635 6041.572 
TLBO 0.821665 0.420022 41.95814 184.4906 6168.059 
GSA 1.091229 0.954362 49.59196 170.3348 11608.05 
PSO 0.756124 0.401538 40.65478 198.9927 5919.78 
GA 1.105021 0.911112 44.67868 180.5572 6582.773 
  

Figure 5. Schematic of pressure vessel design.

The optimization results of this problem are presented in Table 9. POA provides the
optimal solution with the values of the variables equal to (0.778035, 0.384607, 40.31261, and
199.9972) and the value of the objective function (5883.0278). The statistical results of the
performance of competing and POA algorithms are reported in Table 10. Based on these
results, POA, with better statistical indicators, has outperformed competing algorithms.
Figure 6 shows the POA convergence curve in the pressure vessel design solution.

Table 9. Comparison results for pressure vessel design problem.

Algorithm Optimum Variables Optimum
Cost

Ts Th R L

POA 0.778035 0.384607 40.31261 199.9972 5883.0278
MPA 0.782101 0.386813 40.51662 200 5915.005
TSA 0.78293 0.386583 40.52943 200 5918.816
WOA 0.782856 0.386606 40.52252 200 5920.845
GWO 0.849948 0.420657 44.03535 157.1635 6041.572
TLBO 0.821665 0.420022 41.95814 184.4906 6168.059
GSA 1.091229 0.954362 49.59196 170.3348 11608.05
PSO 0.756124 0.401538 40.65478 198.9927 5919.78
GA 1.105021 0.911112 44.67868 180.5572 6582.773

Table 10. Statistical results for a pressure vessel design problem.

Algorithm Best Mean Worst Std. Dev. Median

POA 5883.0278 5887.082 5894.256 24.35317 5886.457
MPA 5915.005 5890.388 5895.267 2.894447 5889.171
TSA 5918.816 5894.47 5897.571 13.91696 5893.595
WOA 5920.845 6534.769 7398.285 534.3861 6419.322
GWO 6041.572 6480.544 7254.542 327.1705 6400.679
TLBO 6168.059 6329.924 6515.61 126.6723 6321.477
GSA 11608.05 6843.963 7162.87 5793.52 6841.052
PSO 5919.78 6267.137 7009.253 496.3761 6115.746
GA 6582.773 6647.309 8009.442 657.8518 7589.802
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6.2. Speed Reducer Design Problem

Speed reducer design [31,32] is a weight minimization problem for a speed reducer.
The schematic of this problem is shown in Figure 7 and the mathematical model of this
problem is as follows:

Consider X = [x1, x2, x3, x4, x5, x6, x7] = [b, m, p, l1, l2, d1, d2].
Minimize f (x) = 0.7854x1x2

2
(
3.3333x2

3 + 14.9334x3 − 43.0934
)
− 1.508x1

(
x2

6 + x2
7
)
+

7.4777
(

x3
6 + x3

7
)
+ 0.7854

(
x4x2

6 + x5x2
7
)
.

Subject to:

g1 (x) =
27

x1x2
2x3
− 1 ≤ 0,

g2 (x) =
397.5

x1x2
2x3
− 1 ≤ 0,

g3 (x) =
1.93x3

4
x2x3x4

6
− 1 ≤ 0,

g4 (x) =
1.93x3

5

x2x3x4
7
− 1 ≤ 0,

g5(x) =
1

110x3
6

√(
745x4

x2x3

)2
+ 16.9× 106 − 1 ≤ 0,

g6(x) =
1

85x3
7

√(
745x5

x2x3

)2
+ 157.5× 106 − 1 ≤ 0,

g7 (x) =
x2x3

40
− 1 ≤ 0,

g8 (x) =
5x2

x1
− 1 ≤ 0,

g9 (x) =
x1

12x2
− 1 ≤ 0,

g10 (x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11 (x) =
1.1x7 + 1.9

x5
− 1 ≤ 0.

With

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and 5 ≤ x7 ≤ 5.5.
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Figure 7. Schematic of speed reducer design.

The values obtained from different algorithms are reported in Table 11. Based on these
results, it is clear that POA has provided the optimal solution to this problem with the
values of the variables equal to (3.5, 0.7, 17, 7.3, 7.88, 3.350215, and 5.286683) and the value of
the objective function (2996.3482). The statistical results obtained from the implementation
of competitor algorithms and POA on the speed reducer design problem are presented
in Table 12. The analysis of these results indicates the superiority of POA in the effective
solution of this problem due to having better values for statistical indicators. The POA
convergence curve during speed reducer design optimization is shown in Figure 8.

Table 11. Comparison results for speed reducer design problem.

Algorithm Optimum Variables Optimum Cost

b m p l1 l2 d1 d2

POA 3.5 0.7 17 7.3 7.8 3.350215 5.286683 2996.3482
MPA 3.503341 0.7 17 7.3 7.8 3.352946 5.291384 3000.05
TSA 3.508443 0.7 17 7.381059 7.815726 3.359526 5.289411 3002.789
WOA 3.501769 0.7 17 8.3 7.8 3.354088 5.289358 3007.266
GWO 3.510256 0.7 17 7.410236 7.816034 3.359752 5.28942 3004.429
TLBO 3.510509 0.7 17 7.3 7.8 3.462751 5.291858 3032.078
GSA 3.6018 0.7 17 8.3 7.8 3.371343 5.291869 3052.646
PSO 3.512008 0.7 17 8.35 7.8 3.363882 5.290367 3069.095
GA 3.521884 0.7 17 8.37 7.8 3.368653 5.291363 3030.517

Table 12. Statistical results for speed reducer design problem.

Algorithm Best Mean Worst Std. Dev. Median

POA 2996.3482 2999.88 3001.491 1.782335 2998.715
MPA 3000.05 3002.04 3006.292 1.933476 3001.586
TSA 3002.789 3008.25 3011.159 5.84261 3006.923
WOA 3007.266 3107.736 3213.743 79.70181 3107.736
GWO 3004.429 3031.264 3063.407 13.02901 3029.453
TLBO 3032.078 3068.37 3107.263 18.08866 3068.061
GSA 3052.646 3172.87 3366.564 92.64666 3159.277
PSO 3069.095 3189.072 3315.85 17.13229 3200.746
GA 3030.517 3297.965 3622.361 57.06912 3291.288



Sensors 2022, 22, 855 27 of 34

Sensors 2022, 22, x FOR PEER REVIEW 23 of 30 
 

 

Table 12. Statistical results for speed reducer design problem. 

Algorithm Best Mean Worst Std. Dev. Median 
POA 2996.3482 2999.88 3001.491 1.782335 2998.715 
MPA 3000.05 3002.04 3006.292 1.933476 3001.586 
TSA 3002.789 3008.25 3011.159 5.84261 3006.923 
WOA 3007.266 3107.736 3213.743 79.70181 3107.736 
GWO 3004.429 3031.264 3063.407 13.02901 3029.453 
TLBO 3032.078 3068.37 3107.263 18.08866 3068.061 
GSA 3052.646 3172.87 3366.564 92.64666 3159.277 
PSO 3069.095 3189.072 3315.85 17.13229 3200.746 
GA 3030.517 3297.965 3622.361 57.06912 3291.288 

 
Figure 8. POA’s performance convergence curve on speed reducer design. 

6.3. Welded Beam Design 
Welded beam design [16] is a minimizing problem of the fabrication cost of welded 

beam which the schematic of this problem is shown in Figure 9. The mathematical model 
of this problem is as follows: 

Consider 𝑋 = [𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ] = [ℎ, 𝑙, 𝑡, 𝑏]. 
Minimize 𝑓 (𝑥) = 1.10471𝑥ଵଶ𝑥ଶ + 0.04811𝑥ଷ𝑥ସ (14.0 + 𝑥ଶ). 
Subject to: 𝑔ଵ (𝑥) =  𝜏(𝑥) − 13600 ≤  0, 𝑔ଶ (𝑥) =  𝜎(𝑥) − 30000 ≤  0, 𝑔ଷ (𝑥) =  𝑥ଵ − 𝑥ସ ≤  0, 𝑔ସ (𝑥)  =  0.10471𝑥ଵଶ + 0.04811𝑥ଷ𝑥ସ (14 + 𝑥ଶ) − 5.0 ≤  0, 𝑔ହ(𝑥)  =  0.125 − 𝑥ଵ ≤  0, 𝑔଺(𝑥)  =  𝛿 (𝑥)  −  0.25 ≤  0, 𝑔଻ (𝑥)  =  6000 − 𝑝௖ (𝑥)  ≤  0. 
Where 𝜏(𝑥) = ට𝜏ᇱ + (2𝜏𝜏ᇱ) 𝑥ଶ2𝑅 + (𝜏”)ଶ, 𝜏ᇱ = 6000√2𝑥ଵ𝑥ଶ, 𝜏” = 𝑀𝑅𝐽 , 𝑀 = 6000 ቀ14 + 𝑥ଶ2 ቁ, 

Figure 8. POA’s performance convergence curve on speed reducer design.

6.3. Welded Beam Design

Welded beam design [16] is a minimizing problem of the fabrication cost of welded
beam which the schematic of this problem is shown in Figure 9. The mathematical model
of this problem is as follows:

Consider X = [x1, x2, x3, x4] = [h, l, t, b].
Minimize f (x) = 1.10471x2

1x2 + 0.04811x3x4 (14.0 + x2).
Subject to:

g1 (x) = τ(x)− 13600 ≤ 0,

g2 (x) = σ(x)− 30000 ≤ 0,

g3 (x) = x1 − x4 ≤ 0,

g4 (x) = 0.10471x2
1 + 0.04811x3x4 (14 + x2)− 5.0 ≤ 0,

g5(x) = 0.125− x1 ≤ 0,

g6(x) = δ (x)− 0.25 ≤ 0,

g7 (x) = 6000− pc (x) ≤ 0.

Where

τ(x) =
√

τ′ + (2ττ′)
x2

2R
+ (τ′′)2,

τ′ =
6000√
2x1x2

,

τ′′ =
MR

J
,

M = 6000
(

14 +
x2

2

)
,

R =

√
x2

2
4

+

(
x1 + x3

2

)2
,

J = 2

{
x1x2
√

2

[
x2

2
12

+

(
x1 + x3

2

)2
]}

,

σ(x) =
504000

x4x2
3

δ (x) =
65856000

(30·106)x4x3
3

,
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pc (x) =
4.013

(
30·106)√ x2

3x6
4

36
196

(
1− x3

28

√
30·106

4(12·106)

)
.

With
0.1 ≤ x1, x4 ≤ 2 and 0.1 ≤ x2, x3 ≤ 10.
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The optimization results of the welded beam design problem are presented in Table 13.
The POA provides the optimal solution to this problem by assigning the values of the
variables equal to (0.205719, 3.470104, 9.038353, and 0.205722) and the value of the objective
function (1.725021). The statistical results of performance of POA and eight competitor
algorithms in optimizing this problem are reported in Table 14. Comparison of the results
shows that POA has the superior ability to introduce optimal values of variables over eight
competitor algorithms. The POA convergence curve to the optimal solution of the welded
beam design problem is shown in Figure 10.

Table 13. Comparison results for welded beam design problem.

Algorithm Optimum Variables Optimum Cost

h l T b

POA 0.205719 3.470104 9.038353 0.205722 1.725021
MPA 0.205604 3.475541 9.037606 0.205852 1.726006
TSA 0.205719 3.476098 9.038771 0.20627 1.72734
WOA 0.19745 3.315724 10.000 0.201435 1.820759
GWO 0.205652 3.472797 9.042739 0.20575 1.725817
TLBO 0.204736 3.536998 9.006091 0.210067 1.759525
GSA 0.147127 5.491842 10.000 0.217769 2.173293
PSO 0.164204 4.033348 10.000 0.223692 1.874346
GA 0.206528 3.636599 10.000 0.20329 1.836617
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Table 14. Statistical results for welded beam design problem.

Algorithm Best Mean Worst Std. Dev. Median

POA 1.724968 1.726504 1.728593 0.004328 1.725779
MPA 1.726006 1.727209 1.727445 0.000287 1.727168
TSA 1.72734 1.72851 1.728946 0.001158 1.728469
WOA 1.820759 2.232094 3.05067 0.324785 2.246459
GWO 1.725817 1.731064 1.743044 0.00487 1.728802
TLBO 1.759525 1.819111 1.874907 0.027565 1.821584
GSA 2.173293 2.546274 3.00606 0.256064 2.49711
PSO 1.874346 2.120935 2.321981 0.034848 2.098726
GA 1.836617 1.364618 2.036875 0.139597 1.937297
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6.4. Tension/Compression Spring Design Problem

Tension/compression spring design [16] is a weight minimization problem, a schematic
of which is shown in Figure 11. The mathematical model of this problem is as follows:

Consider X = [x1, x2, x3 ] = [d, D, P].
Minimize f (x) = (x3 + 2)x2x2

1.
Subject to:

g1 (x) = 1−
x3

2x3

71785x4
1
≤ 0,

g2 (x) =
4x2

2 − x1x2

12566
(
x2x3

1
) + 1

5108x2
1
− 1 ≤ 0,

g3 (x) = 1− 140.45x1

x2
2x3

≤ 0,

g4 (x) =
x1 + x2

1.5
− 1 ≤ 0.

With
0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 and 2 ≤ x3 ≤ 15.
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The implementation results of POA and eight competitor algorithms on solving
tension/compression spring design are reported in Table 15. Based on the results, it is clear
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that POA has provided the optimal solution by presenting the values of the variables equal
to (0.051892, 0.361608, and 11.00793) and the value of the objective function (0.012666). The
statistical results of the performance of the employed algorithms are presented in Table 16.
What can be deduced from this table is that POA is a more effective optimizer for solving
the tension/compression spring design problem against eight competitor algorithms by
providing better statistical indicators. The convergence curve of POA during convergence
to the optimal solution of this problem is shown in Figure 12.

Table 15. Comparison results for tension/compression spring design problem.

Algorithm Optimum Variables Optimum Cost

d D p

POA 0.051892 0.361608 11.00793 0.012666
MPA 0.051154 0.34382 12.09792 0.012677
TSA 0.050188 0.341609 12.0759 0.012681
WOA 0.05001 0.310476 15.003 0.013195
GWO 0.05001 0.316019 14.22908 0.012819
TLBO 0.05079 0.334846 12.72523 0.012712
GSA 0.05001 0.317375 14.23152 0.012876
PSO 0.05011 0.310173 14.0028 0.013039
GA 0.05026 0.316414 15.24265 0.012779

Table 16. Statistical results for tension/compression spring design problem.

Algorithm Best Mean Worst Std. Dev. Median

POA 0.012666 0.012688 0.012677 0.001022 0.012685
MPA 0.012677 0.012693 0.012724 0.005623 0.012696
TSA 0.012681 0.012706 0.01273 0.004157 0.012709
WOA 0.013195 0.014828 0.017875 0.002274 0.013202
GWO 0.012819 0.014474 0.017852 0.001623 0.014031
TLBO 0.012712 0.012849 0.013008 7.81E-05 0.012854
GSA 0.012876 0.013448 0.014222 0.000287 0.013377
PSO 0.013039 0.014046 0.016263 0.002074 0.013011
GA 0.012779 0.013079 0.015225 0.000375 0.012961

Sensors 2022, 22, x FOR PEER REVIEW 27 of 30 
 

 

 
Figure 12. POA’s performance convergence curve on tension/compression spring. 

6.5. The POA’s Applicability in Image Processing and Sensor Networks 
Interconnected sensors collect huge amounts of data which are frequently useful in a 

variety of contexts. In today’s digital transformation era, numerous sorts of sensors and 
networks reinforce the usage of artificial intelligence and big data science. These data are 
primarily unstructured and well specified within the context of artificial intelligence, ma-
chine learning, data science, and big data. Data from medical images, traceability of in-
fected patients, environmental monitoring, mobility in public transport, etc., usually 
georeferenced, are very interesting for the above research. These huge amounts of data 
come from a variety of sources, ranging from social media to IoT sensors. For these sorts 
of observations, classical methods for structured data analysis are insufficient and inade-
quate for discovering relevant knowledge and obtaining information. As a result, artificial 
intelligence approaches, such as the use of the proposed POA for various applications in 
sensor and image processing networks, are becoming increasingly important. In general, 
the application of the proposed POA in solving optimization problems might enable a 
broad range of future tasks in image processing, wireless sensor networks, signal de-
noising, machine learning, power systems, artificial intelligence, big data, COVID-19 
modeling, data mining, feature selection, and other benchmark functions. 

7. Conclusions and Future Works 
In this paper, a new swarm-based optimization algorithm called the Pelican Optimi-

zation Algorithm (POA) was presented. The fundamental inspiration of the proposed 
POA is the strategy and behavior of pelicans during hunting. These behaviors include 
diving towards their prey and fluttering wings on the surface of the water. The various 
steps of POA were described and then its mathematical modeling was presented for use 
in solving optimization problems. The proposed algorithm was tested by solving twenty-
three objective functions belonging to unimodal, high-dimensional multimodal, and 
fixed-dimensional multimodal. Additionally, to further analyze the capabilities of the pro-
posed algorithm, the optimization results obtained from POA are compared with the per-
formance of eight well-known algorithms, including WOA, TSA, GWO, MPA, GSA, GA, 
TLBO, and PSO. The optimization results of unimodal functions indicated the high ex-
ploitation power of the proposed POA in converging towards the global optimal solution. 
The simulation results of these functions showed that POA has significant superiority 
over eight competitor algorithms in solving unimodal problems. The simulation outcomes 
of multimodal functions demonstrated the suggested POA’s high exploration power in 
effective checking of the search space and finding of the optimal area. The simulation re-
sults demonstrated that the POA approach outperformed eight competitor algorithms in 
handling multimodal optimization issues. Based on the simulation results, it is possible to 
infer that the suggested POA is highly efficient in addressing optimization issues and is 
far more competitive and superior to similar methods. In addition, POA was employed 

Figure 12. POA’s performance convergence curve on tension/compression spring.

6.5. The POA’s Applicability in Image Processing and Sensor Networks

Interconnected sensors collect huge amounts of data which are frequently useful in a
variety of contexts. In today’s digital transformation era, numerous sorts of sensors and
networks reinforce the usage of artificial intelligence and big data science. These data
are primarily unstructured and well specified within the context of artificial intelligence,
machine learning, data science, and big data. Data from medical images, traceability of
infected patients, environmental monitoring, mobility in public transport, etc., usually
georeferenced, are very interesting for the above research. These huge amounts of data
come from a variety of sources, ranging from social media to IoT sensors. For these sorts of
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observations, classical methods for structured data analysis are insufficient and inadequate
for discovering relevant knowledge and obtaining information. As a result, artificial
intelligence approaches, such as the use of the proposed POA for various applications in
sensor and image processing networks, are becoming increasingly important. In general,
the application of the proposed POA in solving optimization problems might enable a
broad range of future tasks in image processing, wireless sensor networks, signal denoising,
machine learning, power systems, artificial intelligence, big data, COVID-19 modeling,
data mining, feature selection, and other benchmark functions.

7. Conclusions and Future Works

In this paper, a new swarm-based optimization algorithm called the Pelican Opti-
mization Algorithm (POA) was presented. The fundamental inspiration of the proposed
POA is the strategy and behavior of pelicans during hunting. These behaviors include
diving towards their prey and fluttering wings on the surface of the water. The vari-
ous steps of POA were described and then its mathematical modeling was presented for
use in solving optimization problems. The proposed algorithm was tested by solving
twenty-three objective functions belonging to unimodal, high-dimensional multimodal,
and fixed-dimensional multimodal. Additionally, to further analyze the capabilities of the
proposed algorithm, the optimization results obtained from POA are compared with the
performance of eight well-known algorithms, including WOA, TSA, GWO, MPA, GSA,
GA, TLBO, and PSO. The optimization results of unimodal functions indicated the high
exploitation power of the proposed POA in converging towards the global optimal solution.
The simulation results of these functions showed that POA has significant superiority
over eight competitor algorithms in solving unimodal problems. The simulation outcomes
of multimodal functions demonstrated the suggested POA’s high exploration power in
effective checking of the search space and finding of the optimal area. The simulation
results demonstrated that the POA approach outperformed eight competitor algorithms in
handling multimodal optimization issues. Based on the simulation results, it is possible to
infer that the suggested POA is highly efficient in addressing optimization issues and is
far more competitive and superior to similar methods. In addition, POA was employed
for solving four engineering design problems, including pressure vessel design, speed
reducer design, welded beam design, and tension/compression spring design. The simula-
tion results showed that POA has a satisfactory performance in effectively solving design
problems in real-world applications.

The authors provide several research directions for future studies with respect to this
paper. Among the specific research potentials of the proposed method are the development
of binary and multi-objective versions of POA. Furthermore, the authors’ ideas for future
research include the application of the POA in tackling optimization issues in various
science fields and real-world challenges. Note that the proposed POA might enable a broad
range of future tasks. This includes applying this algorithm in numerous applications such
as, e.g., image processing, wireless sensor networks, signal denoising, machine learning,
power systems, artificial intelligence, big data, COVID-19 modeling, data mining, feature
selection, and other benchmark functions. Like all stochastic optimization techniques, one
of the limitations of the proposed POA is that new optimizers may be developed in the
future that will perform better than POA in some real applications. Additionally, due to the
stochastic nature of the POA solution method, it cannot be guaranteed that the solutions
obtained using POA for optimization problems are exactly equal to the global optimum for
all optimization problems.
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Appendix A

The information of the objective functions used in the simulation section is presented
in Tables A1–A3.

Table A1. Unimodal functions.

Objective Function Range Dimensions Fmin

F1(x) =
m
∑

i=1
x2

i
[−100, 100] 30 0

F2(x) =
m
∑

i=1
|xi |+

m
∏
i=1
|xi | [−10, 10] 30 0

F3(x) =
m
∑

i=1

(
i

∑
j=1

xi

)2
[−100, 100] 30 0

F4(x) = max{|xi |, 1 ≤ i ≤ m } [−100, 100] 30 0

F5(x) =
m−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2)
]

[−30, 30] 30 0

F6(x) =
m
∑

i=1
([xi + 0.5])2 [−100, 100] 30 0

F7(x) =
m
∑

i=1
ix4

i + random(0, 1) [−1.28, 1.28] 30 0

Table A2. High-dimensional multimodal functions.

Objective Function Range Dimensions Fmin

F8(x) =
m
∑

i=1
−xi sin

(√
|xi |
)

[−500, 500] 30 −12,569

F9(x) =
m
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12] 30 0

F10(x) =

−20 exp

(
−0.2

√
1
m

m
∑

i=1
x2

i

)
− exp

(
1
m

m
∑

i=1
cos(2πxi)

)
+ 20 + e

[−32, 32] 30 0

F11(x) = 1
4000

m
∑

i=1
x2

i −
m
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600] 30 0

F12(x) =
π
m

{
10 sin(πy1) +

m
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

m
∑

i=1
u(xi , 10, 100, 4), where

u(xi , a, i, n) =

 k(xi − a)n, xi > −a;
0, −a ≤ xi ≤ a

k(−xi − a)n, xi < −a.
;

[−50, 50] 30 0

F13(x) = 0.1{ sin2(3πx1)

+
m
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2

[
1 + sin2(2πxm)

]
}+

m
∑

i=1
u(xi , 5, 100, 4), [−50, 50] 30 0
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Table A3. Fixed-dimensional multimodal functions.

Objective Function Range Dimensions Fmin

F14(x) =

(
1

500 +
25
∑

j=1

1
j+∑2

i=1(xi−aij)
6

)−1
[−65.53, 65.53] 2 0.998

F15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
[−5, 5] 4 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5] 2 −1.0316

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 [-5, 10] × [0, 15] 2 0.398

F18(x) =[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]
·[

30 + (2x1 − 3x2)
2·
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)]

[−5, 5] 2 3

F19(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij
(

xj − Pij
)2

)
[0, 1] 3 −3.86

F20(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij
(

xj − Pij
)2

)
[0, 1] 6 −3.22

F21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10] 4 −10.1532

F22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10] 4 −10.4029

F23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10] 4 −10.5364
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