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Abstract: Cloud computing has emerged as the most favorable computing platform for researchers
and industry. The load balanced task scheduling has emerged as an important and challenging
research problem in the Cloud computing. Swarm intelligence-based meta-heuristic algorithms are
considered more suitable for Cloud scheduling and load balancing. The optimization procedure
of swarm intelligence-based meta-heuristics consists of two major components that are the local
and global search. These algorithms find the best position through the local and global search. To
achieve an optimized mapping strategy for tasks to the resources, a balance between local and global
search plays an effective role. The inertia weight is an important control attribute to effectively
adjust the local and global search process. There are many inertia weight strategies; however, the
existing approaches still require fine-tuning to achieve optimum scheduling. The selection of a
suitable inertia weight strategy is also an important factor. This paper contributed an adaptive
Particle Swarm Optimisation (PSO) based task scheduling approach that reduces the task execution
time, and increases throughput and Average Resource Utilization Ratio (ARUR). Moreover, an
adaptive inertia weight strategy namely Linearly Descending and Adaptive Inertia Weight (LDAIW) is
introduced. The proposed scheduling approach provides a better balance between local and global
search leading to an optimized task scheduling. The performance of the proposed approach has
been evaluated and compared against five renown PSO based inertia weight strategies concerning
makespan and throughput. The experiments are then extended and compared the proposed approach
against the other four renowned meta-heuristic scheduling approaches. Analysis of the simulated
experimentation reveals that the proposed approach attained up to 10%, 12% and 60% improvement
for makespan, throughput and ARUR respectively.

Keywords: meta-heuristic; PSO; inertia-weight; cloud; task scheduling; makespan; throughput

1. Introduction

Cloud Computing has revolutionized computing technology, where computing re-
sources are accessed globally through the Internet [1]. These resources are provided in
the form of services that can be easily and dynamically scaled-up and scaled-down by the
Cloud users according to their needs [2,3]. The Cloud services are provided on a pay-as-go
basis [4] to the users. The Cloud service model consists of Cloud service provider [5–7],
Cloud user, and datacenter. A Cloud service provider acquires Cloud resources and
provides these resources to the Cloud users according to their requirements. A Cloud
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data center represents the computing power of a Cloud which may contain hundreds of
thousands of host machines. Each host on the data center may have one or more Virtual
Machines (VMs) [8].

VM is considered an essential component of the Cloud environment. It enables the
optimal use of the host machines in the Cloud computing environment [9]. VM provides
flexibility to the Cloud operator to increase or decrease the number of CPUs, computation
power of CPU, memory, and bandwidth according to its need. To select the most suitable
resource among the resource pool for user’s jobs, task schedulers plays a key role. Tasks
scheduling [4,7,10] is a principal component of the Cloud environment and the most
challenging issue that needs to be optimized which is termed as an NP-hard problem [11].

Task scheduling approaches are categorized as heuristics, meta-heuristic algorithms,
and hybrid of meta-heuristics and others approaches like heuristics and Machine learning
among others. Heuristic-based algorithms provide near to optimal solutions for a specific
problem. However, the meta-heuristics approaches are specifically designed for generalized
optimal solutions that can be applied to multiple domains. Hybrid approaches are the
combination of meta-heuristics, heuristics or machine learning based techniques for solving
load-balanced task scheduling in Cloud computing [12–14]. This research focuses on
meta-heuristics task scheduling algorithms.

The meta-heuristic based task scheduling schemes are divided into categories that
are evolutionary-based like Genetic Algorithm (GA) [15], bio-meta-heuristics (swarm
Intelligence-based), and non-bio-meta-heuristics like Simulation-Based Optimization (SBO)
and Simulated Annealing (SA) [16]. Swarm Intelligence (SI) [17] is a sub-domain of com-
putational intelligence and first used this concept by [18]. SI aims to solve computational
problems by modeling self-organized populations of agents that can interact with each
other. Agents can share their experiences by exchanging information. The interactions and
movements of agents represent the population performance [19].

SI was first used by [18] for robotic intelligence in cellular robotic systems. After that,
the definition of SI is expanded by [20] for algorithms and solving distributed problems.
Currently SI is used for solving problems in various domains like health care, diagnosing
diseases [21], stock analysis [22], academics [5], fraud and intrusion detection, feature
selection [23], solving real-world engineering problems [24], pipe and road problems [25],
data classification [26], Recommender Systems [12,13], and distributed computing and
Cloud computing [27–29].

SI algorithms are broadly categorized into two sub-categories [30] i.e., (1) Sign based
SI that is Bee Colony Optimization (BCO) and Ant Colony Optimization (ACO) [31], (2)
Imitation based SI algorithms comprise of Cat Swarm Optimization (CSO) [32], Raven
Roosting Optimization (RRO) [33], Improved RRO (IRRO) [30], Particle Swarm Opti-
mization (PSO) [27,34,35], and Chicken Swarm optimization (CSO) [36] algorithms among
others. The literature study shows that PSO is the most adopted optimization algorithm [19]
for Cloud task scheduling.

Genetic Algorithm (GA) [15], SA [16], ACO [31], and PSO are the renowned meta-
heuristic techniques use for cloud task scheduling. The meta-heuristic approach like ACO
perform better at the early stage of optimization but converge slowly at later stage. PSO
based schedulers perform better optimization than GA, has more natural computation
background, fast convergence, and easy implementation as compared to GA.

One of the key factors in Cloud task scheduling is their computation time. Being a
dynamic computation platform, Cloud schedulers should be fast and adoptable to the real
Cloud platform. These scheduling schemes should have fast convergence and provide
optimized solution. Therefore, this research focuses on optimizing tasks execution time,
ARUR, and throughput [11] using PSO.

PSO can be applied to both discrete and continuous problems and is more efficient for
global search in the problem space. PSO converges globally and tries to find a comparatively
better fitness value. However, PSO is weak for local search and cannot pay more attention
to the search in the local subspace. This increase the chances of trapping to the local optima
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which may have a lower convergence in the later stages. To overcome these limitations
of PSO algorithms, inertia weights play a significant role. Inertia weight is an important
control parameter for effectively adjusting the local and global search capability of the PSO
scheduler. A small value of the inertia weight improves the local search while a bigger
value of weight facilitates the global search. The literature study shows that there are five
prominent and most commonly used inertia weights strategies out of a total of 15 inertia
weights.

In this research, we contributed an adaptive meta-heuristic-based task scheduling
approach which minimizes tasks execution time, enhances Cloud resource utilization, and
throughput. The proposed approach favors the compute-intensive and independent Cloud
tasks [37]. Moreover, a novel Inertia weight strategy i.e., Leaner Descending and Adaptive
Inertia Weight (LDAIW) for PSO-based algorithms have been proposed. The proposed
inertia weight strategy improves the performance of the PSO approach concerning the
makespan [11], ARUR, and throughput. This is because the proposed technique provides a
better integration of local and global search. The performance of the proposed approach has
been investigated and compared against five inertia weight strategies. These weights are
evaluated for optimizing the makespan, ARUR, and throughput in Cloud task scheduling.
The major contribution of this research includes:

• In-depth study and critical analysis of state-of-the-art meta-heuristics based cloud task
scheduling schemes to ascertain their application types, scheduling objectives, and
limitations of these algorithms.

• Empirical evaluation of the most prominent and state-of-the-art inertia strategies for
PSO-based algorithms.

• A adaptive PSO-based meta-heuristic task scheduling approach is proposed that
reduces makespan, improves the resource utilization and throughput.

• A novel inertia weight strategy named Leaner Descending and Adaptive Inertia Weight
(LDAIW) is designed and developed that improves the performance of PSO-based
algorithms concerning makespan, throughput and ASRUR.

• A comparative experimental performance evaluation of AdPSO has been performed
against their counterparts.

The rest of the paper is structured as follows: Section 2 presents the details concerning
the related task scheduling work followed by Section 3 that delineates the details of
the proposed approach. This section discuss the SWARM intelligence-based algorithms,
PSO model, System model, Inertia weight strategy, proposed Inertia weight strategy, and
proposed Task scheduler. The experimental configuration setup, dataset details and results
and discussions are presented in Section 4. Section 5 discuss the conclusion and future
work.

2. Related Work

The discussion concerning the state-of-the-art meta-heuristic task scheduling ap-
proaches is presented as follows. In [38] a hybrid load-balancing approach is proposed that
combines Teaching Learning Based Optimization (TLBO) algorithms with the Grey Wolves
Optimization (GWO) approach. The proposed approach combines the strengths of GWO
and TLBO algorithms to effectively balance the load based on the time and related cost.
This approach also reduces task waiting time in the tasks queue. However, throughput is
not considered.

The authors in [39] have designed and developed a deadline aware task scheduling
approach for Cloud Computing. The scheduling scheme has used the GA algorithm to
enhance the execution time and cost of resources by considering variation in VM perfor-
mance and acquisition delay. However, GA faces scalability issues for a large and complex
problem.

Look-Ahead Genetic Algorithm (LAGA) is a modified form of the Genetic Algorithm
(GA) that has been proposed by [1] for large-scale distributed systems such as Cloud and
Grid computing environments. LAGA is considered suitable for run-time based scheduling
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of compute-intensive tasks and reliability. This approach identifies task orders based on
the completion time of resources in every generation and chooses the resource that has a
minimum failure rate during the mutation step. The reliability and task failure rate are
the scheduling objectives of this approach. However, this approach does not consider
makespan and throughput as scheduling criteria.

The authors have proposed a Node duplication-based Genetic Algorithm (NGA) is a
GA-based algorithm designed for multi-processor heterogeneous systems [8]. The focus of
NGA is on communication delay time and application completion time of the resources.
The fitness function of this algorithm evolves in two steps. (1) Fitness of tasks that provided
information regarding all other tasks to the system is scheduled for the legal order. Here
the legal system schedules a pair of independent tasks on a single processor. (2) In this
step, NGA looks at the processor fitness that tries to execute the task in minimum time.
NGA inherits core issues of scalability for large and complex problems from the genetic
algorithm.

The author in [40] has performed a comparison between the GA and PSO algorithms
by using several test cases. It has been observed that in the majority of test cases, the
PSO algorithm provides a better quality solution in a faster way than GA. Based on their
experiments, it is claimed that for distributed systems the performance of the PSO algorithm
is better than GA.

Author in [9] has proposed a task scheduling approach that combines Gravitational
Emulation Local Search (GELS) and PSO. This approach aims to improve the makespan
and tasks meeting their deadlines. However, throughput is not considered

In [41] authors have analyzed the PSO-based task scheduling algorithms in Cloud.
The authors have classified the current PSO-based research work on the basis of the no
of objectives that need to be optimized. This categorization of PSO algorithms includes
a single objective or multiple objectives. To improve the solution quality, most of the re-
searchers have applied basic PSO or updated PSO. The author has concluded that balanced
scheduling and meeting Quality of Service (QoS) requirements (i.e., makespan, throughput,
and resource utilization, etc.) required more focus and improvement. Inertia weight has
not been considered for evaluation and analysis.

Authors in [30] has proposed IRRO and CSO based meta-heuristic algorithms. The
proposed technique combines the strengths of CSO and IRRO algorithms that help in
balancing the global and local search process. This approach has also proposed a dynamic
scheduling framework named IRRO-CSO based Dynamic Scheduling Framework (ICDSF).
Response time, premature convergence, makespan, and throughput have been used as
evaluation parameters. However, ARUR is not considered as an evaluation parameter.

RTPSO-B a Rang and Tune based PSO with Bat technique has been proposed in [42].
RTPSO-B is an enhanced PSO-based algorithm that improves the efficiency of task schedul-
ing in the Cloud. This algorithm solves the inertia weight issue of the existing PSO by
introducing the data locality technique. The small inertia weight assists local search and
the large inertia weight assists the global search process. For better optimization, the
PSO approach has been combined with the Bat algorithm. Utilization of Cloud resources,
makespan, cost are the key evaluation parameters however, throughput is not considered
for evaluating scheduling algorithms.

Integer-PSO [43] is a discrete version of PSO based tasks scheduling algorithms in
Cloud. Integer-PSO can be used for both single and multiple objectives optimization-based
task scheduling in Cloud. The Integer-PSO has considered a bi-objective optimization
problem. These objectives include task execution time and computation and management
costs. However, the Integer-PSO does not consider throughput as a task scheduling
objective and a fixed value is used for inertia weight.

In [44] authors have proposed a honey bee and improvement detection operator
based load balancing algorithm named Hyper-heuristic. The proposed approach has
the capability to distribute the cloud-based workload among the virtual machines with
minimized makespan time. Hyper-heuristic scheduling scheme is evaluated against state-
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of-the-art in terms of makespan time, processing time, degree of imbalance. However,
the Hyper-heuristic algorithm does not consider throughput and ARUR as scheduling
objectives.

Authors have proposed a PSO based Task oriented Load Balancing (TBSLB-PSO)
in [45]. TBSLB-PSO improves the load-balancing by migrating tasks from overload VMs to
under-loaded VMs using the task migration technique. The proposed scheduling technique
reduces the load balancing tasks by migrating tasks without stopping the overloaded VMs.

An adaptive Particle Swarm Optimization (APSO) based scheduling technique for
Resource Constrained Project Scheduling Problems (RPSP) has been proposed in [46].
This technique aims to issue invalid particle generation. For this purpose, the authors
have proposed a Valid Particle Generator (VPG) operator that is embedded with the PSO
algorithm. The VPG convert the invalid particles to the valid one by in-degree and out-
degree of activities in the directed acyclic graph. Moreover, the author has also proposed
an adaptive inertia weight strategy using parameters like previous inertia weight, current
iteration number, fitness value. Performance of the APSO is evaluated in terms of Makespan.
However, throughput and ARUR are not used for evaluation.

Author in [28] has proposed a cloud task scheduling framework using a modified PSO
(PSO-BOOST) based meta-heuristic algorithm. The proposed approach finds an optimized
solution for conflicting objectives. This approach considers time, acceptance ratio, cost, and
throughput as evaluation parameters. However, in this approach, the role and selection
criteria of inertia weight have not been explicitly discussed. Moreover, a new compromise-
optimized solution for conflicting metrics has been proposed using the principle of Pareto
Optimal Theory (POT). ARUR is also not considered as an evaluation parameter.

Author in [24] has proposed an adaptive inertia weight approach based enhanced
version of PSO. A set of ten (10) well-known test problems for optimization were used to
evaluate and test their presented scheduling technique and four (4) other variants of PSO.
The reason is that the performance of the PSO-based algorithms mostly depends on the
selection of inertia weight strategy and optimal parameter setting. The proposed approach
has also been evaluated for real-world engineering problems. This approach has been
evaluated in terms of solution accuracy and convergence speed. Makespan and throughput
are not considered as evaluation parameters.

Author in [47] has presented a review of different inertia weight strategies used by
various researchers in their work. The author has classified these inertia weights into
three groups includes time-varying, constant, and adaptive inertia weights strategies. The
scheduling objective of this approach is the average makespan. However, throughput and
ARUR are not considered.

Author in [48] has evaluated and compared five different inertia weights for the PSO
algorithm. Makespan is considered as an objective function for the evaluation of inertia
weights. The author has suggested that Linear Descending Inertia Weight (LDIW) per-
formed better than other inertia weight strategies. However, throughput is not considered
for evaluation. Table 1 presents a comparison of the existing task scheduling approaching
highlighting the application type, strengths and weaknesses of each of the approach.
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Table 1. Summary of the related work.

Aproach Application Type Strengths Weaknesses

GWO-TLBO [38] 11 benchmark
functions

Consider Time and cost Throughput not considered

GA [39] Independent tasks considering variation in VM
performance and acquisition
delay

Scalability issue and Throughput not
considered

LAGA [1] Independent tasks Reduces the failure rate Makespan and throughput not
considered

NGA [8] Workflow-based
tasks

Support for communication delay
and application completion time

scalability issue and Throughput not
considered

GA vs PSO [40] Test cases Compared the performance of
both PSO and GA

Makespan and throughput not
considered

GELS-PSO [9] 10 well-known test
problems

Improve makespan and
maximize meeting task deadline

Throughput and ARUR not
considered

PSO [41] independent and
workflow-based
tasks

Consider both independent and
workflow based workload for
load balancing

Inertia weight strategy has not
considered for analysis

ICDSF [30] Independent tasks Makespan, throughput and
response time

ARUR not considered

RTPSO-B [42] Independent tasks ARUR, makespan, and cost Throughput not considered
Integer-PSO [43] Independent tasks Support for makespan and cost Throughput and ARUR is not

considered and a constant value is
used for inertia weight

PSO-BOOST [28] independent tasks considered throughput and
conflicting parameters like
makespan and cost

Role and selection criteria of inertia
weight has not explicitly discussed,
ARUR not considered

AIWPSO [24] 10 set of benchmark
problems

Accuracy and convergence speed Makespan and throughput not
considered

PSO [47] Workflow based
tasks

Average makespan Throughput and ARUR not
considered

MIPSO [48] Independent tasks Makespan Throughput and ARUR not
considered

The in-depth investigation of the related literature shows that majority of the existing
task scheduling approaches are evaluated using small datasets which is not enough to
prove the scalability of these approaches. This is because scalability is an important factor
in scheduling algorithms. Moreover, the inertia weight strategy is an important control
parameter for PSO-based algorithms to balance the local and global search of particles.
However, most of the existing scheduling techniques either used a constant value for Inertia
weight or were not discussed explicitly. Similarly, the majority of the existing approach
has not considered a makespan, ARUR, and throughput as scheduling objectives. To
overcome these limitations, a novel and adaptive inertia weight strategy for PSO-based task
scheduling algorithm has been proposed and compared with five most prominent inertia
weight strategies and other PSO-based state-of-the-art task scheduling algorithms. The
proposed approach uses four instances of a renowned HCSP based scientific benchmark
dataset using makespan and throughput as scheduling objectives.

3. Proposed Approach

This Section delineates the methodology of our proposed task scheduling algorithm.
The proposed methodology comprises the proposed inertia weight strategy and the pro-
posed task scheduler. This section also describes the background knowledge of swarm
based PSO algorithm.
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3.1. PSO Model

PSO algorithm is a global search-based self-adaptive optimization approach [34]. This
approach is population-based scheduling technique that relies on the social behavior of
the particles. This is a swarm intelligence based approach that is inspired by the social
behavior of the fish school and birds flock. The swarm population consists of generations
and particles. Generations show the total number of iterations that need to be performed
to get an optimized solution. Each generation has several particles and every particle in a
generation shows a single solution. The number of generations and particles varies from
case to case and is adjusted to get a more optimal solution. Every particle has a position,
velocity, local/personal best (pBest), and global best (gBest). Personal best shows the most
optimal solution of a particle while gBest shows the best solution among all particles. The
velocity and position of all particles are updated in each iteration based on inertia weight,
pBest, and gBest of the particle. Suppose D represents the dimension of solution space,
where Xi is a vector that represents positions of particles in a search space i.e.,

Xi = (xi1, xi2, xi3, ..., xid) (1)

In every iteration, particles constantly change their position and search for a more
suitable solution.

Pbi = (pbi1, pbi2, pbi3, ..., pbid) (2)

The Pbi represents the best solution for each particle (as depicted in Equation (2)). Vi
shows the velocity of particles(as shown in Equation (3)).

Vi = (vi1, vi2, vi3, ..., vid) (3)

Equation (4) is used by the PSO to the updated velocity of each particle

vk+1
id = w ∗ vk

id + c1r1(pbk
id − xk

id) + c2r2(Gbk
d − xk

id) (4)

where i = 1, 2, 3, ..., n (shows the no of particles), k = 1,2,3, ..., itrmax (max. no of iterations
that is 200 iterations in this article), D shows the number of dimensions or the no of tasks
that need to be assigned to the VMs in an optimized manner. xk

id is the current position
and vk

id is the current velocity of the ith particle of kth iteration in d dimensional space. The
parameter w is the inertia weight that balances the global and local search of the particles,
c2 and c1 are the constant acceleration factors. r1 and r2 are random values between 0 and
1. Equation (5) depicts the updated position of particles.

xk+1
id = (vk+1

id + xk
id) (5)

The best value of every individual element (personal best) is computed by the fitness
function which is based on maximization or minimization problem. The fittest element of
all the individuals is termed as global best.

FitnessFunction = Minimization(Objective) (6)

The pBest value of each individual element is updated for each particle in all iterations
if the new value is better than the current value. The PSO based heuristics computes and
records the best value among all individuals (i.e., gBest shown in the Equation (7)) in the
swarms.

gBest = max(pBest1, pBest2, pBest3, ..., pBestn) (7)

To resolve the task scheduling issue using PSO-based heuristics and to enter a schedule
as a search solution, identify suitable maps among PSO particles and problem solution [49].
Every particle of PSO indicates the possible solution for tasks to VM mapping. Tables 2–4
are used to illustrate mapping among PSO particles and problem solutions. Table 4 shows
the tasks to VM mapping using PSO-based swarm intelligence. For this mapping, five VMs
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with different processing power (in Million Instruction Per Second (MIPS)) are used. VM1
has computation power of 50 MIPS, 100, 200, 350 and 500 MIPS that represents computation
capability of VM2, VM3, VM4 and VM5 respectively (as shown in Table 2).

Table 2. Computation power of VMs.

VMs VM1 VM2 VM3 VM4 VM5

VMs Computation power(in MIPs) 50 100 200 350 500

Table 3 shows 15 tasks with different computation requirements in term of Million
Instructions (MIs) that need to be mapped on five VMs (Table 2).

Table 3. Computation requirements of Tasks.

Task Tsk1 Tsk2 Tsk3 Tsk4 Tsk5 Tsk6 Tsk7 Tsk8 Tsk9 Tsk10 Tsk11 Tsk12 Tsk13 Tsk14 Tsk15

MIs 50 100 150 200 300 450 500 600 700 900 1200 1500 2000 3000 4000

Table 4 depicts the mapping of 15 tasks to 5 VMs, P11 (particle 1, iteration 1) represents
the first possible solution, where Tsk5, Tsk10, Tsk15 are allocated to VM1; Tsk4, Tsk9, Tsk14 to
VM2, Tsk6; Tsk13 to VM3, Tsk3, Tsk7, and Tsk12 to VM4; Tsk1, Tsk2, Tsk8, Tsk11 are assigned
to VM5 respectively.

Table 4. Tasks to VM mapping.

Task Tsk1 Tsk2 Tsk3 Tsk4 Tsk5 Tsk6 Tsk7 Tsk8 Tsk9 Tsk10 Tsk11 Tsk12 Tsk13 Tsk14 Tsk15

P11 VM5 VM5 VM4 VM2 VM1 VM3 VM4 VM5 VM2 VM1 VM5 VM4 VM3 VM2 VM1
P12 VM1 VM5 VM3 VM2 VM1 VM5 VM3 VM4 VM4 VM5 VM1 VM3 VM2 VM5 VM4
P13 VM2 VM1 VM3 VM3 VM5 VM4 VM5 VM3 VM1 VM4 VM2 VM5 VM4 VM2 VM3
P14 VM3 VM2 VM5 VM4 VM4 VM1 VM1 VM5 VM2 VM3 VM5 VM1 VM2 VM4 VM2
— — — — — — — — — — — — — — — —
P44 VM2 VM4 VM5 VM1 VM3 VM1 VM2 VM4 VM5 VM2 VM3 VM1 VM4 VM3 VM5

3.2. System Model

The objective of the task scheduling scheme is to choose the optimized task mapping
strategy on the Cloud resources that can reduce the task execution time and improve
ARUR, and the Cloud throughput. Considering user’s applications that consists of a set of
D independent and compute-intensive tasks i.e., Tsks = Tsk1, Tsk2, Tsk3, ..., Tskd that need
to be scheduled on a set of M VMs i.e., Ts = T1, T2, T3, ..., Td that need to be scheduled on a
set of M VMs, i.e., VMs = V1, V2, V3, ..., Vm where D >> M. For instance, Table 2 shows
VMs (M = 5) with their computation power in MIPS that needs to execute 15 tasks (i.e.,
D = 15) with their computation requirements in MI. When task TD are mapped to VMj,
the Expected Completion Time (ETC) of the assigned task is calculated using Equation (8):

ETCdj = RTj + EETdj (8)

where RTj is the ready time of VMj, i.e., the time needed for VM to complete already
assigned workload. EETdj is the Expected Execution Time (EET) of task TskD on VMj which
is obtained by dividing task computation requirements (in MI) by computation power of
VMs (in MIPS) and is described by formula given in Equation (9).

EETDj =
TD size

VMj computation power
(9)
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Equation (10) computes the total time taken by VMj to execute all of the assigned tasks
denoted by CTj.

CTj =

Sj

∑
D=1

(ETCDj) (10)

where Sj is the number of scheduled (assigned) tasks to VMj.
Makespan is the maximum completion time among all the VMs and is computed as

shown in Equation (11). Minimized makespan shows better performance in terms of early
execution of the workload.

Makespan = max(CT1, CT2, CT3, ..., CTm) (11)

where m is the number of VMs.
Throughput is another important evaluation metric in Cloud computing. Throughput

is the ratio between the total number of tasks executed per unit time [11]. In our case,
throughput of the whole Cloud datacenter is defined as the ratio between total number of
tasks executed on a datacenter and makespan (shown in Equation (12)). Higher throughput
represents better performance i.e., executing more tasks in a unit time.

Throughput =
D

Makespan
(12)

where D represents the total number of tasks executed in the Cloud data center.
The objective function of the proposed approach is based on the maximization problem

and is computed using Equation (13).

ObjectiveFunction = max(throughput + (1/makespan)) (13)

where makespan [11] represents the maximum execution time of the data center i.e., the
execution time of VM that completes execution of the assigned task at the last of all other
VMs and throughput in our case is the ratio between the total number of tasks executed
by the Cloud and makespan. Higher throughput and reduced makespan give maximum
value for our objective function.

3.3. Inertia Weight Strategies for PSO Model

The optimization procedure of all the swarm intelligence-based meta-heuristics con-
sists of two major phases. These phases include local and global searches. The balance of
global and local search has a key role in finding optimal solutions. For the ideal situation, at
the start of the search procedure, the espousal of global search space should be more than a
local search space [47]. It allows population-based meta-heuristics to explore more search
space at the beginning and then finding the global optimal position with more care. Inertia
weight is the strongest control factor to maintain local and global search in a balanced
way [48].

The literature study show that various researchers have worked on the inertia weight
selection strategy to balance the local and global search of particles. However, there is still
need to improve this balance. Researchers have proposed several inertia weight strategies,
however, some of these inertia weights are popular among the research community. These
inertia weights strategies includes Simple Random Inertia Weight (SRIW) [50], Chaotic Iner-
tia Weight (CIW) [47,51], Chaotic Random Inertia Weight (CRIW) [51], Linear Descending
Inertia Weight (LDIW) [47,52], and Adaptive Inertia Weight (AIW) [53].

SRIW inertia weight was proposed by [50] represented by the formula (shown in
Equation (14)).

WSRIW = 0.5 + (0.5 ∗ rand()) (14)

where rand() represents random values between 0 and 1.
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The formula (shown in Equation (15)) shows CRIW that is proposed in[51]

WCRIW = (0.5 ∗ z) + (0.5 ∗ rand()) (15)

where z represents any value between 0 and 1, rand() represents random value between 0
and 1.

Equation (16) depicts the CDIW strategy that has proposed by [47,51,51]

WCDIW = (w1 − w2) ∗ (
MAXitr− Itr

MAXitr
) + (w2 ∗ z) (16)

where w2 and w1 represents initial and final inertia weight and z is a random value between
0 and 1. MAXitr represents maximum iterations and Itr shows current iteration.

LDIW has been proposed by [47,52] which is represented by formula (depicted by
Equation (17))

WLDIW = (w1 − w2) ∗ (
MAXitr− Itr

MAXitr
) + (w2) (17)

where w1 and w2 are the initial and final values of inertia weight.
Author has proposed Adaptive Inertia Weight (AIW) strategies in [53] (shown in

Equation (18)). AIW approach adjusts the weight value after each iteration using feedback
received from the previous iteration. The feedback provides the success rate (i.e., Ps) of
particles in their previous iterations. The success rate of the particle shows that how many
times a particular particle improves local best values as compared to the previous one and
the inertia weight is computed in Equation (18).

WAIW = ((w1 − w2) ∗ Ps) + w2 (18)

where WAIW is the inertia weight calculated using AIW strategy, w1 shows initial value, w2
denotes the final value and Ps is the particles success rate from previous iterations and is
computed using Equation (20).

3.4. Proposed Inertia Weight Strategy

The performance of the PSO algorithm depends on optimal parameters setting and
inertia weight. Searching for an optimal solution within the search region, the inertia
weights bring a balance between exploration and exploitation [24]. In this paper, a novel
inertia weight strategy “Linearly Decreasing Adaptive Inertia Weight (LDAIW)” has been
proposed (shown in Equation (19)).

WPA = (
(w1 − w2)

Ps
+ (

(MAXitr− Itr)
MAXitr

) ∗ ( (w1 − (w1 − w2))

Ps
)) (19)

The proposed approach, exploits strengths of both LDIW [47,52] and AIW [53] strate-
gies.

In LDIW, the weight value is set to the maximum in the start based on the assumption
that global search is favored in the initial stage to explore more search space. The weight
value of LDIW is decreasing gradually to decrease the search space gradually in local
search at the end which leads to better performance than other state-of-the-art inertia
weight strategies [48]. This is a widely used inertia weight strategy due to its simplicity
and fast convergence; however, the state of the environment is not checked for adopting
the inertia weight.

The AIW technique monitors the search space and adjusts weight value based on the
feedback from one or more parameters. This method uses the success rate of the particles
as a feedback parameter and adjusts the inertia weight strategy according to the state of the
environment. It has been observed that AIW works well for smaller datasets as compared
to larger one.
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Based on these observations, a novel inertia weight strategy has been proposed that
combines the strength of LDIW and AIW inertia weight strategies. The proposed strategy
LDAIW has characteristic of linear decreasing behavior from LDIW (not in AIW) and adjust
weight values based on feedback behavior from AIW (which not exist in LDIW). Being
linearly decreasing and adaptive, LDAIW out perform in terms of Makespan, throughput,
and ARUR than other state-of-art approaches.

In Equation (19), the value of Ps is calculated using Equation (20). The value of Ps can
also approach to zero when there is no improvement in particle position (Pos) as given in
Algorithm 1 line 3. If the value of Ps becomes zero then it is assigned a default value of
1 as given in Algorithm 1 line no 35–37. In Equation (19), w1 is the maximum value and
w2 is the minimum value. MAXitr represents the total number of iterations which is set
to 200 in this research after fine-tuning, Itr shows the current iteration, and Ps represents
article success rate which is used as feedback for adjusting inertia weight as shown in
Equation (20).

Ps = (

n

∑
i=1

(SSi)

N
) (20)

Particle success rate (Ps) is computed using Equation (20), where N represents the
total number of particles, and SSi is the success status of particles and is defined using
Equation (21), and n represent index of particle i.e., i = 1 to n. The proposed weight strategy
provides a better balance between global and local searches.

SSi =

{
1 pBesti > pBesti−1
0 otherwise

(21)

3.5. Proposed Scheduler

This section presents and discuss the proposed scheduling algorithm. A set of tasks
with their computation requirements in Million Instructions (MI) and a set of VMs with
their computation power in Million Instructions Per Second (MIPS) has been used as the
input parameters. The output of the proposed approach includes the tasks to VM mapping.

At Line 1–2 (Algorithm 1), VM list (vmList) and task list (taskList) is obtained. The total
number of tasks (taskCount) and total number VMs (vmCount) are computed (Line 3–4,
Algorithm 1). Line 5-10 (Algorithm 1) presents the necessary initialization of the proposed
approach. The initialization step of the particles has been performed and their results have
been stored in pbMap (Line 11, Algorithm 1). The while loop (Line 12–39, Algorithm 1)
executes according to a fixed number of times i.e., MaxItr which is 200 in our case. The
Inertia weight has been computed (Line 13, Algorithm 1) based on Equations (19)–(21). The
for loop (Line 14–37, Algorithm 1) repeats according to the number of particles which is
20 in this work. Each particle represents a complete mapping of tasks to VMs. The nested
for loop (Line 15–28, Algorithm 1) iterates for each task to be mapped to the VM, where r1
and r2 are two random numbers between 0 and 1 (Line 17, Algorithm 1). The c1 and c2 are
constant acceleration factors whose values are initialized at 2 and 1.49455 respectively [48].
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Algorithm 1: Proposed PSO scheduler.
Input : taskMap: Set of tasks with their length in MI and

vmMap: Set of VMs with their processing capacity(MIPS)
Output : gbFMap: global best based final mapping of tasks to VMs
vmList = getVmList(vmMap)
taskList = gettaskList(taskMap)
taskCount = taskList.size()
vmCount= vmlist.size()
pos = 0, v = Randnbr(0, 1), w = 0.0, SS = 0
noParticles = 20, itr = 1, MaxItr = 200
c1 = 2, c2 = 1.49455, w1 = 0.9, w2 = 0.4
pbMap<Integer, Double> = Null
vRTMap <Integer, Double> = Null
pMap<task, Vm> = Null
prtsMap<Integer, Map<task, Vm>> = Null
pbMap = initializeParticles(taskCount, vmCount, pbMap, pMap, gbFMap,

noParticles)
while (itr <= MaxItr) do

w = ((w1 - w2)/Ps)+((MAXitr - Itr)/MAXitr)*(w1 - (w1 - w2))/Ps)
for (p = 1 to noParticles) do

for (c = 1 to taskCount) do
r1 = Randnbr(0, 1), r2 = Randnbr(0, 1)
v = (w * v) + (c1 * r1 * (pbMap.get(p) - pos)) + (c2 * r2 * (gBValue - pos))
pos = pos + V
if pos >= taskCount || pos < 0 then

pos = RandPos(0, taskCount-1)
end
Vm vm = getVm(pMap);
execTime = getCltExecTime(taskList, c, vm)
execTime += getVmReadyTime(vRTMap, vm, c)
updateVRTMap(vRTMap, vm, c, execTime)
updatepMap(vRTMap, pMap, pos, c);

end
pBestValue = getpbMap(vRTMap)
if (pBestValue > pbMap.get(p)) then

pbMap.put(p, pBestValue)
SS++
if pBestValue > gBValue then

gBValue = pBestValue
gbFMap.put(0, pMap)

end
end

end
Ps = SS/noParticles
if (Ps ≤ 0 ) then

Ps = 1
end
itr++

end

The velocity and position are updated (Line 18–19, Algorithm 1) using Equation (4) and
(5) respectively. The i f condition (Line 20–22, Algorithm 1) restricts the particle positions
within the lower and upper bound of the search space. In case the particle position value
exceeds the total count of tasks or less than zero (Line 20, Algorithm 1), a new random
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position is assigned to the particles (Line 21, Algorithm 1). The VM is identified in Line 23
of Algorithm 1 and the execution time of the task is computed (Line 24, Algorithm 1) using
Equation (9). The completion time of the task is computed by adding the execution time
and ready time of the VM (that is stored in vRTMap) to start task execution as represented
in Equation (10) (Line 25, Algorithm 1). The VM ready time is updated in the vRTMap (Line
26, Algorithm 1) and particle is added to the map (Line 27, Algorithm 1). The Personal best
value (pBestValue) is computed (Line 29, Algorithm 1) and current pBestValue is compared
with the previous pBestValue (Line 30, Algorithm 1).

In case the current best value is greater than the previous one then the previous value
is replaced with new pBestValue and stored in pbMap (Line 31, Algorithm 1). At line 32
(Algorithm 1), pBestValue is compared with the global best value (gBValue). When the
i f condition (Line 32, Algorithm 1) becomes true then gBValue is updated and mapping
based on global best is updated in the global best based final mapping (gbFMap)(Line
33-34, Algorithm 1). This process continues until all tasks of single–particle are mapped to
the VMs. In each iteration, the Itr is incremented by 1 (Line 38, Algorithm 1) which is used
as a condition in the while loop at (Line 12, Algorithm 1).

4. Experimental Setup and Simulation Results

To evaluate and compare the proposed approach, we have implemented PSO al-
gorithm with five different inertia weights proposed in [50–53]. These inertia weights
strategies includes SRIW [50], CRIW [51], CIW [51], LDIW [52], and AIW [53]. The exper-
iments simulate the optimized solution using makespan, ARUR, and throughput. The
results of the proposed approach have been validated by comparing results generated
using PSO with the other five prominent inertia weight strategies.

4.1. Dataset Analysis

Experiments have been performed using four different instances of HCSP bench-
mark dataset [11,54–56]. Based on our supposition that in real Cloud environment D»M,
each of the HCSP instances used has 8132 heterogeneous tasks and 16 heterogeneous
VMs.Heterogeneous means that VMs in the VMs set are heterogeneous in terms of their
processing capability (in MIPS) and tasks in the task set are heterogeneous in terms of tasks
computation requirement (in MI). These instances include i_hilo, c_hilo, i_lohi, and c_lohi
that represent different heterogeneity and consistency level in terms of VM computation ca-
pability (in MIPS) and tasks computation requirement (in Million Instructions(MI)) [54,55].
By consistent means, the variations in VMs MIPS and tasks MIs are uniform. However,
inconsistent behavior shows that the variations in VM MIPS and tasks MI are not uniform.
The c and i are used for the consistent and inconsistent nature of tasks and VMs respectively.
Similarly, lo represents low and hi represents a high level of heterogeneity. The lohi shows
a low level of heterogeneity for VMs and a high level of heterogeneity of tasks. High
heterogeneity means that there are more variations in the sizes of tasks (i.e., there is a big
difference between the smallest and largest task). Similarly, low heterogeneity represents a
smaller difference between the largest and smallest tasks. The sizes of tasks in different
HCSP instances are different like i.e., the sizes of tasks in i_hilo and c_hilo are smaller than
that of i_lohi and c_lohi instances of the HCSP dataset and is considered as a bit lighter
datasets than others.

4.2. Parameter Initialization

At the start of the search process, particles are initialized to some random positions as
shown in the table Table 5. For the task to VM mapping, tasks are randomly assigned to
VMs at this stage.
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Table 5. Initialization parameters.

Parameters Values

Totaliterations 200

Totalparticles 20

Minposition 0

Maxposition No of VMs-1

w1 0.4 [47,48]

w2 0.9 [28,47,48]

Accelerationfactor c1 2 [48]

Accelerationfactor c2 1.49455 [48]

Stopping Criteria MaxItr

The maximum number of iterations and particles is fixed (200 iterations and 20 par-
ticles) after comprehensive fine-tuning by setting different values for maximum itera-
tions and particle size. The lower bound and upper bound are set to zero and no of
VMs-1 (VMCount-1) respectively. The values of w1 and w2 are set to 0.4 and 0.9, respec-
tively [47,48]. The value of Acceleration factors c1 and c2 are initialized to 2 and 1.49455,
respectively [48]. The stopping criteria are the maximum number of iterations (MaxItr),
which equals 200.

4.3. Simulation Environment

This section presents the computational environment used for simulation. To perform
experiments and evaluate the proposed scheduling technique, a simulation environment
was used. This is because, in the simulation environment, any number and types of
resources with various heterogeneity levels can be used for performing experiments. More-
over, experiments can be performed as many times as needed without any restriction of
time and execution cost. The experimental setup for performing experiments consists of
a PC equipped with a CPU (Intel core i5 T8500 3.0 GHz, Memory (20.00 GB)) HD 2 TB,
implemented in Java-based Eclipse IDE 3.0 and Cloudsim 3.0.3 [11,57] simulation tool.
Table 6 summarizes the experimental setup used for experimentation.

Table 6. Summary of simulation environment configuration.

Parameters Values

Simulator Cloudsim version 3.0.3

processor Intel cor i5-8500 3.00 GHz

RAM 20 GB

Hard drive 2 TB

Total host machines 10

Host machines Power 15,000 MBs each

VMs 16

Total tasks 8132
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4.4. Experimental Execution and Results

Being stochastic optimization approaches, meta-heuristic-based algorithms need to
be run multiple times to achieve meaningful and more realistic statistical evaluation [47].
In this research, every approach is executed 5 times for each instance of the HCSP dataset,
and the average of these runs is computed and presented for the comparison.

Makespan is the key performance evaluation parameter and ultimate demand of the
cloud user. The results concerning the makespan for the AdPSO and available state-of-
the-art approaches are plotted in Figure 1 for i_hilo, c_hilo, c_lohi, and i_lohi instances
of the HCSP benchmark dataset. These results shows that SRIW, CRIW approaches has
shown poor makespan performance for all the four instances of HCSP dataset. The CDIW,
and LDIW approaches have shown improved behavior for c_hilo and i_hilo instances
and slightly poor performance for c_lohi and i_lohi instances of HCSP dataset. The AIW
approach has better performed for c_hilo and i_hilo instances as compared to c_lohi and
i_lohi instances of HCSP dataset. This is because, the sizes of tasks in the c_hilo and i_hilo
is smaller as compared to the tasks sizes in c_lohi and i_lohi HCSP instances. Moreover,
LDIW strategy has shown consistent performance for all instance of the HCSP dataset due
to its linearly decreasing mode. The AdPSO technique is capable to lower the makespan
for all instances of HCSP dataset and improved by 1–7 % on i_hilo, 2–11% on c_hilo, 1–5%
on i_lohi, and 1–4% on c_lohi instance of HCSP benchmark dataset as compared to AIW,
SRIW, CRIW, CDIW, and LDIW state-of-the-art inertia weight strategies. This shows that
the proposed approach maintain better balance between local and global search process.

Figure 1. Makespan Comparison.

Another key parameter to compare the performance of the AdPSO is throughput.
Figure 2 shows the throughput results for the AdPSO technique and compared contempo-
rary approaches considering the c_hilo, i_hilo, c_lohi, and i_lohi instance of HCSP dataset.
Likewise the makespan results, similar behavior is observed for the throughput results for
all of the compared approaches. Figure 2 reveals that the proposed scheduler has achieved
higher throughput up to 1–7% for the execution of c_hilo, 2–12% for i_hilo, 1–6% for c_lohi,
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and 1–4% for the execution of i_lohi instance of HCSP dataset as compared to PSO with
AIW, SRIW, CRIW, CDIW, and LDIW inertia weight strategies.

Figure 2. Throughput Comparison.

To perform evaluation of AdPSO, the ARUR results are obtained and compared
against the AIW, SRIW, CRIW, CDIW, and LDIW approaches as shown in Figure 3. For the
c_hilo instance, the AIW, SRIW and proposed approach have shown almost similar ARUR
performance. The rest of the three approaches resulted in 60% less ARUR as compared to
the AIW, SRIW, and proposed approaches. For the c_lohi and i_lohi datasets, the proposed
approach dominated the rest of the contemporary approaches followed by SRIW and CRIW
approaches. The AIW approach has shown poor ARUR performance for the i_lohi dataset
instance whereas the LDIW approach has shown the lowest ARUR performance for the
c_lohi dataset. However, for the i_hilo dataset, the proposed approach dominated all the
approaches by almost 2 times against the other approaches.

The comparison results reveal that the proposed approach outperforms AIW, SRIW,
CRIW, CDIW, and LDIW approaches for all four instances (i_hilo, c_hilo, i_lohi, and c_lohi)
of the HCSP benchmark dataset. The reason is that the inertia weight strategy of the
proposed approach is more effective in keeping a balance between local and global search.



Sensors 2022, 22, 920 17 of 22

Figure 3. ARUR Comparison.

The evaluation is then extended and proposed PSO approach is compared against PSO-
Boost, APSO, PSO, and Hyper-heuristic approaches using same HCSP benchmark datasets.
The best and worst case results concerning the makespan for the compared approaches
are shown in Figure 4. For the c_hilo dataset, the AdPSO has better performed the other
three approaches by an improvement of 14–27%. The PSO-BOOST and Hyper-heuristic
approaches have shown similar behavior for the i_hilo dataset instance while negligible
degradation is observed for the c_lohi and i_lohi instances. The PSO approach has shown
poor makespan performance whereas the APSO approach shown steady behavior. All
these results advocates the effectiveness of the proposed approach.

The results shown in Figure 5 show the throughput achieved for all the compared
approaches. The empirical results (depicted in Figure 5) reveal that the proposed scheduling
algorithm has improved the throughput by 6–22.32% against the compared approaches.
Again the PSO-BOOST and Hyper-heuristic approaches attained second best throughput
results and dominated the other compared approaches.

Another important metric to evaluate the efficiency of the task scheduling approaches
is the Average Resource Utilization Ratio (ARUR). To evaluate the AdPSO technique against
their counterparts, the experiments are performed using the same HCSP benchmark dataset
instances. The experimental results shown in Figure 6 show that the proposed technique
has gained 3.23%, 8.63%, 10.66% and 25% higher ARUR than PSO-Boost, APSO, Hyper-
heuristic and PSO respectively for the c_hilo instance of the HCSP dataset. When the i_hilo
dataset is used for the performance evaluation, almost same behavior is revealed for the
approaches similar to that for c_hilo instance. similarly, the proposed approach attained 7%
and 25% improved ARUR than APSO and PSO using c_lohi instance and 2.6%, 5.2%, 3.34%
and 18.3% higher ARUR as compared to PSO-Boost, APSO, Hyper-heuristic and PSO for
the i_lohi instance of HCSP benchmark dataset.
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Figure 4. Makespan Comparison on HCSP dataset instances.

Figure 5. Throughput Comparison on HCSP dataset instances.
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Figure 6. ARUR Comparison on HCSP dataset instances.

Experimental results show that AIW has acquired minimum overall execution time
(makespan) and higher throughput as compared to SRIW, CRIW, CDIW, and LDIW for
the execution of i_hilo and c_hilo instances of the HCSP dataset. This reveals that the
performance of AIW is better in terms of makespan and throughput for comparatively
smaller datasets than the larger one. This is because the size of i_hilo and c_hilo instances
based workload are smaller in terms of total MI as compared to workload of i_lohi and
c_lohi instances of HCSP dataset.

Experimental results show that the proposed approach has achieved 5.20 and 3.53% re-
duced makespan than AIW for i_lohi and c_lohi instances of the HCSP dataset respectively.
These results also reveal that the proposed scheduling scheme has gained 5.35 and 4.09%
higher throughput as compared to AIW for the execution of i_lohi and c_lohi instances of
the HCSP dataset respectively. For the execution of i_hilo and c_hilo dataset, the proposed
approach attained 1.58 and 1.25% reduced makespan and 1.59, 1.28% improved throughput
as compared to AIW.

Our experimental results exhibit that LDIW results in reduced makespan and im-
proved throughput as compared to AIW, SRIW, CRIW, and CDIW for the execution of
i_lohi and c_lohi instances of HCSP benchmark datasets respectively. This shows that LDIW
performs better in terms of makespan and throughput for larger datasets than smaller size
datasets.

Experimental results show that the proposed scheduling scheme has achieved 4.19
and 3.15% reduced makespan than LDIW for the execution of i_hilo and c_hilo benchmark
datasets respectively. These results also exhibit that the proposed scheduling approach has
gained 4.34 and 3.28% improved throughput as compared to LDIW for i_hilo and c_hilo
datasets respectively. Our experimental results show that the proposed approach achieved
1.27% minimized makespan than LDIW for the i_lohi dataset and 0.62% better makespan
for the c_lohi dataset. These results show that the proposed approach has gained 1.38%
higher throughput as compared to LDIW for i_lohi and 1.25% for c_lohi dataset.
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The experimental results reveal that the proposed scheduling algorithm showed up to
26.84% lower makespan, 22.32% higher throughput, and 30% improved ARUR than PSO
for the c_hilo, c_lohi, and i_lohi instances, respectively. Moreover, the proposed scheduling
approach has achieved up to 20.12, 11.69, and 8.64% higher throughput as compared to the
APSO algorithm. Similarly, the proposed scheduling algorithm has gained up to 14.97%
lower makespan, 5.5% higher throughput, and 3.23% higher ARUR than the PSO-Boost
scheduling algorithm. This is because of the proposed approach use of a novel inertia
weight strategy to keep a balance between the local and global search. The proposed
approach also exhibits stable performance for heterogeneous dataset. This is because
the proposed approach inherent strengths of both AIW (better performance for smaller
dataset) and LDIW (better performance for larger dataset) inertia weight strategies. The
overall results reveal that the proposed approach outperforms concerning the makespan,
throughput, and ARUR and is more stable and scalable than existing approaches. This
research mainly focuses on the selection of inertia weight strategy to balance the global and
local search using the makespan and throughput.

5. Conclusions and Future Work

PSO task scheduling approach is considered a more suitable approach for a load
balanced scheduling of tasks due to its fast convergence and easy to implement nature.
However, the PSO approach suffers from a pre-mature convergence issue. The inertia
weight is a key attribute to keep a balance between global and local search space. In
this paper, five inertia weight strategies have been investigated comprehensively using a
PSO-based scheduler. This work contributed an adaptive inertia weight approach for Cloud-
based task scheduling. The performance of the proposed approach has been evaluated and
compared against five renown PSO based inertia weight strategies concerning makespan,
throughput and ARUR. The results evaluation reveal that the proposed approach attained
up to 10%, 12%, and 30% improvement concerning throughput and ARUR respectively
against the compare approaches.

Most IoT applications [58,59] require real-time responses for accurate decision-making.
As a future task it is intended to optimize the response time and employ scheduling to
provide real-time or near to real-time response for delay-sensitive applications.
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