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Abstract: In this paper, an assessment of the uncertainty affecting a hybrid procedure (experimen-
tal/numerical) is carried out to validate it for industrial applications, at the least. The procedure
in question serves to depict 3D incompressible flow fields by using 2D measurements of it and
computing the third velocity component by means of the continuity equation. A quasi-3D test case of
an incompressible flow has been inspected in the wake of a NACA 0012 airfoil immersed in a forced
flow of water running in a rectangular open channel. Specifically, starting from a 2D measurement
data in planes orthogonal to the stream-wise direction, the computational approach can predict the
third flow velocity component. A 3D ADV instrument has been utilized to measure the flow field,
but only two velocity components have been considered as measured quantities, while the third
one has been considered as reference with which to compare the computed component from the
continuity equation to check the accuracy and validity of the hybrid procedure. At this aim, the
uncertainties of the quantities have been evaluated, according to the GUM, to assess the agreement
between experiments and predictions, in addition to other metrics. This aspect of uncertainty is not
a technical sophistication but a substantial way to bring to the use of a 1D and 2D measurement
system in lieu of a 3D one, which is costly in terms of maintenance, calibration, and economic issues.
Moreover, the magnitude of the most relevant flow indicators by means of experimental data and
predictions have been estimated and compared, for further confirmation by means of a supervised
learning classification. Further, the sensed data have been processed, by means of a machine learning
algorithm, to express them in a 3D way along with accuracy and epoch metrics. Two additional
metrics have been included in the effort to show paramount interest, which are a geostatistical
estimator and Sobol sensitivity. The statements of this paper can be used to design and test several
devices for industrial purposes more easily.

Keywords: fluid dynamics measurements; uncertainty evaluation; hybrid procedure; 3D flow velocity
reconstruction; sensor signal processing; machine learning; Kriging; Sobol sensitivity

1. Introduction

The characterization of the coherent structures populating the flow domain (such as the
trailing wake behind bluff body, low-speed streaks in channel flows, large scale circulation
in bounded heat transfer flows, convective boundary layer), is crucial in theoretical and
applied fluid dynamics. In the literature, the coherent structures have been depicted by
means of vorticity and stress tensors that are based on the spatial distribution of the flow
velocity. The velocity field evaluation shows a crucial relevance for the design of devices
in engineering applications [1]. Among others, the flow field surrounding an airfoil is
appealing for the improvement in aerospace, automotive, marine challenging applications,
as well as for wind turbines design and/or operation. Its evaluation has always required
many efforts to be accurately measured or computed.
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In the last decade, algorithms and data logging capabilities have strongly increased
the accuracy and the user-friendly management of the experimental facilities and com-
putational techniques. For instance, high resolution measurements in space and in time
about the three components of the velocity of turbulent flows have been obtained by means
of 3D laser or acoustic instrumentation, as well as by DNS or LES numerical techniques
from a computational point of view. If such experimental technologies are still expensive,
the cited numerical techniques are, instead, time consuming and require massive compu-
tational equipment. In both cases, the worse drawback consists of the difficulty to have
their availability in real industrial framework, where more traditional instrumentation is
used for experimental acquisitions (hot wire, Pitot tube, cylindrical probe, and similar), or
commercial software and equipment for computations.

The aim of this paper is to show that it is possible to numerically reconstruct a real
3D flow field without losing significant accuracy in industrial applications, by means of
simpler plane acquisitions through 2D experimental equipment, thus reducing the costs
of the equipment for the experimental activities, with the subsequent lowering of the
calibration and maintenance problems.

In this work, the 3D ADV (acoustic Doppler velocimetry) experimental technology
has been utilized to validate the approach, because the only accurate instrumentation
available is intrusive as well as expensive [2]. Although this probe might be taken into
consideration for measuring three-dimensional flow velocities in both laboratory and field
applications [3–6], for which other more performing 3D measurement techniques such as
laser Doppler anemometers or PIV are much less common due to their cost, it suffers from
some typical error sources in measurements such as: Doppler ambiguity, spatial averaging,
mean flow shear, phase distortion, sampling errors, and air concentration [7–9], besides
the insertion error. In order to deal with these biases in the measurements of the velocity
components, the density of particles seeded into the flow and other control parameters
should be set preliminarily via a calibration procedure [10], which has been opportunely
set here before the campaign of acquisitions.

The authors here intend to validate the hybrid approach for reconstructing a 3D
flow field from 2D measurement acquisitions and the solution of the local continuity
equation [11] to determine the third velocity component by assessing the efficiency of
the procedure by the accuracy estimation. The flow field velocity acquisitions have been
made by means of the 3D instrumentation, taking only two of them as measured and using
the third one as a reference value for evaluating the goodness of the numerical approach.
Specifically, we have made the velocity measurements in an open channel, where an airfoil
was already immersed for other aims, utilizing its wake region as a work area. The third
velocity component, evaluated by the dedicated algorithm, has been compared with the
experimental value given by the instrument itself. The uncertainty analysis has been carried
out in order to assess the accuracy of the hybrid procedure.

This paper is further organized into seven sections, besides the Introduction: Section 2
is devoted to the experimental procedure and presents results useful to demonstrating the
validity of the mixed procedure by means of the uncertainty analysis, thus pondering the
accuracy of the methodology.

In the Section 3, we describe the algorithm and the numerical analysis. From the finite
difference discretization of the continuity equation, the value of the stream-wise velocity
component is computed as a function of the measured values of the other two. Further, in
Section 4, the results from the experiment and computations are presented and compared,
while Section 5 treats the uncertainty evaluations for the computed quantities. Section 6
deals with the use of dedicated metrics and clustering for better expressing the results under
another lens, in particular, with machine learning, in an effort to carry out a clustering of
data components related to the searched third axis. This clustering is important, being able
to make the relationship coherent among the recovered data. For further understanding, we
have promoted, as illustrated in Section 7, the use of geostatistics (variogram, and Kriging
estimator), and the Sobol-based sensitivity analysis. It is the first to use both indicators
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regarding the issues of this topic. The last section is devoted to the discussion about some
evaluable parameters from the computations performed to better characterize the flow
under the study and conclusions derived.

The numerical analysis is accurate to the first order for simplicity of computations
since the artificial fluctuations in the velocity field are smoothed. The method can be easily
developed with a higher order discretization scheme (by using more planes of measurement
with finer spacing) without changing the main core of the procedure, in order to obtain
better accuracy.

2. Experimental Setup and Procedure

The measurements are carried out in a channel with a rectangular section h = 45 cm
heigh and w = 40 cm wide (Figure 1). The wet area of the flow section is 36 cm high and
40 cm wide.
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(a) 

Figure 1. Water channel for experiments (left) and its cross-section (right).

In the volume domain of observation, an airfoil is placed at 15 cm from the bottom
of the duct (see Figure 2a). Its chord is 5 cm long and it has 20◦ angle of attack in order
to increase the turbulence in the wake downstream. Additional details of the channel are
encompassed in Figure 2b, where one can see the main reasons of experimentally locating
the 3D instrument. Certainly, it is difficult to populate an infrastructure based on a channel,
especially for long distances, with a 3D instrument, depending on if we need sectional
measurements. It could be appropriate to mount a 3D instrument at one section, even in
a provisional way, and locate conventional instruments base on 1D/2D measurements in
other points.
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Figure 2. (a) NACA 0012 airfoil profile: acquisition probe Vectrino ADV 3D placed in the wake
(left), and its cross-section (right). (b) Longitudinal view (left), and cross-view of the channel (right):
channel chassis/skeleton keeping the glass side (1), channel inner part allowing the flow (2), 3D
instrument rail (3), head bringing the 3D instrument directed to the channel for measurement (4),
vertical rail allowing an up-and-down displacement of the 3D instrument (5).

The goal of the experiment is to acquire the velocity components of the flow in planes
orthogonal to the stream-wise direction to obtain the stream-wise component u by using
a numerical algorithm. The values of u computed in each cell point have been compared
with the respective values measured by the ADV at the same point.

The (y, z) planes with their 25 equally spaced measuring points, as depicted in Figure 3,
are located at three different positions in x, and the total points in the volume investigated
are equal to 75; starting at about 5 cm from the bottom of the channel, measurements are
taken up to 30 cm high, where the velocity is considered to be free stream. The inflow
plane of the considered control volume (here consisting of three planes only) is located
5 cm downstream the airfoil trailing edge. Only for the last two planes, the u components
have been computed, as the inflow plane has been considered as a known boundary from
the measurements.

The boundary conditions have been imposed at the inflow plane points and opportune
contour points of the computational planes, where the velocity components were known
from ADV measurements (see Figure 3) according to the discretization scheme adopted for
the solution of the continuity equation.

The measured set of velocity values are sampled at each cell point of the chosen control
volume at a fixed sampling frequency for a given time lapse and then averaged in time,
according to the following relationship:

ui,j,k =
1

Nsample
t

tend

∑
t=0

ui,j,k(t); vi,j,k =
1

Nsample

tend

∑
t=0

vi,j,k(t); wi,j,k =
1

Nsample

tend

∑
t=0

wi,j,k(t) (1)

where Nsample are the acquired values of each velocity component in the chosen recording
time. As the acquisition of a signal, representing the time trend of a physical quantity can
be designated as a random process, its stationarity is proved if the statistics computed for it
are time invariant. A criterion to be satisfied to confirm such a property, justifying the use
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of the above relations for the time-average value evaluations, is given by the respect of the
WWS (Wise Sense Stationary) condition [12,13], which imposes that:

- The mean value of the signal is time-invariant.
- The signal variance is time-invariant.
- The signal auto-correlation function depends only on the time-lag used for its

computation.
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Figure 3. Subdivision of the fluid domain in 3 measuring grids of 25 points each with equal spacing
steps ∆x = ∆y = ∆z = 5 cm. The colored blue points, different from the red ones, are considered
boundary points for the numerical integration of the continuity equation.

All these positions have been verified for each acquired signal by replicating the
acquisition three times at least.

The sampling frequency has been fixed equal to 0.1 kHz with a recording time of 60 s
for each grid node.

The instrumentation consists of the 3D Vectrino ADV (Figure 2), whose main charac-
teristics have been summarized in Table 1, and a high precision 3D system of graduation
scales to determine the locations of the measurement points, Figure 4.

Table 1. Vectrino ADV technical specifications [14] used in the experiment.

Water Velocity Measurements
Maximum profiling range 0.05 m, 0.01 m (field probe)

Distance from probe 6 mm
Sampling volume diameter 3 ÷ 15 mm

Velocity range ±0.03, 0.1, 0.3, 1, 2.5, 4 m/s (software
selectable)

Accuracy ±0.5% of measured value ±1 mm/s
Sampling rate 1 ÷ 200 Hz

Echo Intensity
Acoustic frequency 10 MHz

Resolution Linear scale
Dynamic range 25 dB
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3. Numerical Procedure

In the case of incompressible steady flow, the density does not change in time (as well
as in space). The continuity equation in the Eulerian frame reads as follow:

ρ(∇·V) = ρ

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
= 0. (2)

The variation of the velocity components in the space (x, y, z) are coupled by the
continuity equation. Thus, if we suppose that the derivatives of the two components (v, w)
are computable from their measurements, we can estimate the third component (u) using
the continuity equation in discrete form. We refer to backward (or forward) finite difference
approaches for which the space derivative can be approximated at the first order as follows:

f ′(tn ) =
f (tn)− f (tn−1 )

∆s
∨ f ′(tn ) =

f (tn+1)− f (tn )

∆s
, (3)

where f is the function defined in
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can be used as well). 

∈ Ck [(a, b)] that has been derived on a step ∆s.
The numerical scheme is first order backward for the stream-wise component, while

first order forward finite differences have been used for the other two derivative terms of the
continuity equations, according to the numbering of the cell points of Figure 3, computed in
the two planes along the x direction. The experimental data are indicated with the overbar,
whereas the theoretical prediction is indicated without the overbar. The subscription (i, j, k)
defines the indices in the discrete space corresponding to the continuous space (x, y, z). For
all the grid points (i, j, k) of the computational domain, the theoretical velocity ui,j,k, can
be calculated by the average (in time) velocities w and v, measured at the appropriate cell
points. The value ui,j,k is then compared with the measured value ui, j, k.

The derivative of the velocities v and w are computed for all the point i, j, k using the
first order finite difference discretization of the derivative terms as,

∂vi,j,k

∂y
=

vi,j+1,k − vi,j,k

∆y
;

∂wi,j,k

∂z
=

wij,k+1 − wi,j,k

∆z
, (4)

(depending on the number of the planes of measurement, higher orders of approximation
can be used as well).
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The value of the unknown component u can thus be computed from the continuity
equation by expressing the first order finite difference of the relative derivative term ∂u/∂x
evaluated in (i, j, k) generic point as, from Equation (2):

ui,j,k = ui−1,j,k −
(

∂v
∂y

+
∂w
∂z

)
∆x, (5)

where the derivative terms are computed according to Equation (4) from the experimental
data of the v and w velocity components respectively.

The space control volume is discretized by a three-dimensional grid, where the cell
points are spaced by equal displacements ∆x, ∆y and ∆z in the three orthogonal directions,
as indicated in Figure 5, and they coincide with the measuring points of the experimen-
tal procedure.
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Figure 5. As an example in the central plane, the red cell means that the u component is computed
from the continuity equation in function of the v and w components measured in the necessary grid
points of the plane, according to the numerical scheme adopted.

4. Experimental Results

In this section, we report the average (in time) values of the velocities measured by
the campaign carried out in the cell points of the whole domain. The mean velocity in each
point is obtained after despiking the acquired signals, processed on the MATLAB platform.

We define U1, V1, W1 as the matrix of the average velocity components located at
the grid points P(x, y, z) in the inflow plane 1, similarly, U2, V2, W2 at the midplane and
U3, V3, W3 at the outflow plane of the experimented control volume.

Their evaluations, from the acquired data, are summarized in Table 2, according to the
row and column numberings of Figure 5.

As an example of results, the predicted u velocities at the middle plane are shown in
the Table 3.

The last row in Table 3, corresponding to the height of 5 cm from the bottom, shows
the stream-wise velocity components of the same order of magnitude of the other higher
lines, although less precise, because those points are out of the boundary layer, but greatly
influenced by this as well as by the noise on the v values, close to zero.

Defining the percentage error as (u2−calc − u2−meas)/u2−meas the following errors
Table 4 is obtained.
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Table 2. Measured velocities.

U1 (cm/s) V1 (cm/s) W1 (cm/s)
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

16.9 16.9 17.3 17.7 16.3 5.10 × 10−1 5.80 × 10−1 1.70 × 10−1 2.80 × 10−1 4.60 × 10−1 −1.82 × 10−1 −3.20 × 10−1 1.90 × 10−1 −5.00 × 10−1 9.10 × 10−1

17.7 17 17.9 18.0 16.4 3.00 × 10−1 3.90 × 10−1 3.00 × 10−1 5.00 × 10−1 3.00 × 10−1 1.30 × 10 2.40 × 10−1 1.50 × 10−1 −1.90 × 10−1 1.40 × 10−1

15.6 16 16.6 17.1 16.0 6.80 × 10−1 2.10 × 10−1 3.80 × 10−1 9.10 × 10−1 2.70 × 10−1 1.10 × 10 4.70 × 10−1 −4.00 × 10−1 3.70 × 10−1 1.70 × 10−1

15.5 15.4 15.4 17.0 16.3 2.00 × 10−1 1.20 × 10−1 4.20 × 10−1 3.10 × 10−1 0.120 −5.30 × 10−1 −3.60 × 10−1 4.00 × 10−1 4.30 × 10−1 3.80 × 10−1

16.5 18 18 17.1 14.1 1.00 × 10−1 4.30 × 10−1 4.30 × 10−1 6.80 × 10−1 7.00 × 10−2 3.50 × 10−1 6.20 × 10−1 1.40 × 10−1 3.70 × 10−1 1.00 × 10−1

U2 (cm/s) V2 (cm/s) W2 (cm/s)
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

16.8 16.6 17.4 15.9 16.5 −1.80 × 10−2 −3.10 × 10−2 2.00 × 10−2 −4.90 × 10−2 9.00 × 10−2 2.70 × 10−1 −1.30 × 10−1 1.30 × 10−1 5.50 × 10−1 3.20 × 10−2

16.4 16.3 17.0 17.6 17.7 1.00 × 10−1 2.40 × 10−2 1.50 × 10−2 −1.90 × 10−2 1.40 × 10−2 8.00 × 10−3 1.90 × 10−1 −2.40 × 10−1 1.80 × 10−1 −8.70 × 10−2

16 16.6 16.5 15.5 14.9 1.20 × 10−1 4.70 × 10−2 −4.80 × 10−2 3.30 × 10−2 1.70 × 10−2 6.20 × 10−2 −2.70 × 10−1 2.50 × 10−1 3.30 × 10−1 2.30 × 10−1

13.3 13.3 13.6 13.9 14.1 −5.40 × 10−2 −3.40 × 10−2 3.80 × 10−2 4.30 × 10−2 3.80 × 10−2 9.60 × 10−2 −8.80 × 10−1 −2.10 × 10−1 −2.60 × 10−1 1.20 × 10
14.4 13.6 14.7 13.5 14.7 3.50 × 10−2 6.30 × 10−2 1.40 × 10−2 3.70 × 10−2 1.00 × 10−1 5.50 × 10−1 6.60 × 10−1 −2.10 × 10−1 2.00 × 10 9.20 × 10−3

U3 (cm/s) V3 (cm/s) W3 (cm/s)
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

14.1 14.9 16.1 16.6 15.9 −2.90 × 10−3 7.80 × 10−3 2.50 × 10−3 2.80 × 10−3 −4.40 × 10−3 3.00 × 10−2 −1.80 × 10−2 2.50 × 10−2 1.80 × 10−2 3.40 × 10−2

16.2 16.5 16.3 16.1 16.6 2.50 × 10−3 2.50 × 10−3 3.30 × 10−3 1.60 × 10−3 6.70 × 10−3 2.50 × 10−2 2.50 × 10−2 3.30 × 10−2 1.60 × 10−2 6.70 × 10−2

14.1 16.0 17.6 15.7 15.2 7.00 × 10−3 8.60 × 10−3 −4.70 × 10−3 6.50 × 10−3 −3.00 × 10−4 5.00 × 10−2 8.60 × 10−2 −4.30 × 10−2 −2.50 × 10−2 −1.10 × 10−3

13.6 13.2 14.4 13.9 13.0 2.70 × 10−3 4.40 × 10−3 6.40 × 10−3 1.80 × 10−3 9.90 × 10−3 3.70 × 10−2 6.30 × 10−2 5.40 × 10−2 1.80 × 10−2 1.00 × 10−3

14.8 13.1 15.3 15.4 15.5 7.80 × 10−3 8.10 × 10−3 1.10 × 10−2 6.30 × 10−3 2.20 × 10−3 6.60 × 10−2 7.00 × 10−2 1.30 × 10−1 4.30 × 10−2 1.20 × 10−2
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Table 3. Velocity component u2−calculated from the continuity equation.

u2−calculated (cm/s)

1 2 3 4 5

1 16.6 16.7 17.3 17.5 16.5
2 17.4 17.6 18.1 18.5 16.7
3 15.9 16.6 16.0 17.1 16.8
4 14.9 15.4 15.7 15.9 16.0
5 16.2 17.1 18.9 16.9 13.3

Table 4. Computed % errors between u2i,j−calc and u2i,j−meas.

1 2 3 4 5

1 −0.01 0.01 −0.01 0.10 0
2 0.06 0.08 0.06 0.05 −0.06
3 −0.01 0 −0.03 0.10 0.13
4 0.12 0.16 0.15 0.14 0.13
5 0.13 0.26 0.29 0.25 −0.10

5. Uncertainty Evaluation

The uncertainty evaluation of the computed mean velocity u2 is governed by the
propagation law applied to Equation (5) [15].

The velocity can be estimated plugging in the previous equation the finite differences
of the spatial derivatives of the velocities v2 and w2 as:

ui,j,k = ui,−1j,k −


(

vi,j+1,k − vi,j,k

)
∆y

+

(
wi,j,k+1 − wi,j,k

)
∆z

∆x, (6)

with i = 2, j = 1.4 and k = 2.5.
The contributions to the uncertainty of u, v and w − components depend on the

repeatability errors (deriving from the acquisitions) and accuracy and spatial resolution
of the instrumentation (type B uncertainty evaluation by rectangular distribution). In the
proposed analysis, we neglect the resolution of the graduation scales and the bias due to the
algorithm used, because the first is less significant with respect to the other contributions
and the second, here a 1% order of magnitude, and minifying it through higher order
numerical discretization.

As an example, we report, in Table 5, the matrix of the u mean square errors relative to
the measures at the inflow control plane along z-direction, Su1 .

Table 5. Mean square errors of the measured u at the inflow plane.

Su1 (cm/s)

1 2 3 4 5

1 0.020 0.021 0.021 0.021 0.021
2 0.022 0.020 0.021 0.019 0.019
3 0.030 0.022 0.022 0.022 0.024
4 0.029 0.034 0.037 0.032 0.040
5 0.024 0.017 0.019 0.023 0.030

Considering the Vectrino accuracy of ±(0.5% · v± 1) mm/s, the accuracy values of
the u2−calc from Equation (5) are reported in Table 6.
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Table 6. Computed uj,k component in the middle plane and its conservative uncertainty (rounded to
the 2nd decimal digit).

1 2 3 4 5

±

1 2 3 4 5

cm/s

1 16.6 16.7 17.3 17.5 16.5 1 0.19 0.19 0.19 0.19 0.19
2 17.4 17.6 18.1 18.5 16.7 2 0.19 0.19 0.19 0.20 0.19
3 15.9 16.6 16.0 17.1 16.8 3 0.19 0.19 0.19 0.19 0.19
4 14.9 15.4 15.7 15.9 16.0 4 0.18 0.19 0.19 0.19 0.20
5 16.2 17.1 18.9 16.9 13.3 5 0.19 0.19 0.20 0.19 0.18

6. Machine Learning-Based Metrics

The machine learning approach, connected to classification learner, is based on a
decision tree involving all quantities encompassed in Table 2. The classification techniques,
within the artificial intelligence methods, are generally the following: (i) decision trees, here
used; (ii) neural networks, a subset of machine learning; (iii) k-NN, k-Nearest Neighbor,
and (iv) Genetic Algorithms [16].

In these tree structures, as per the flowchart reported in Figure 6, the sheets represent
the values of the target-variable, and the branches correspond to combinations of input
variables that lead to these values. In decision analysis, a decision tree can be used to
explicitly represent the decisions made and the processes that lead to them. In learning and
in data mining, a decision tree describes the data but not the decisions themselves, and the
tree would be used as a starting point for the decision process [17].
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Figure 6. Proposed supervised learning classification algorithm.

The purpose of classification trees is to predict or explain the responses of a categorical
dependent variable, which is why the techniques in this module are quite similar to the
more traditional methods of Discriminant Analysis, Classification, Non-Parametric Tests
and of Non-Linear Estimation. The flexibility of classification trees makes them an attractive
analytical option, but one that should not completely replace more traditional methods.
The training data are flow velocities along the three directions, x, y, z, that is

(U1, U2, U3) = (u11, u12, . . . u1n; u21, u22 . . . u2n; u31, u32, . . . u3n) (7)

where U1, U2, and U3 are the velocities along the three axes as reported in Table 2.
The adopted classification is based on the decision due to the resubstituting estima-

tor [18], with one of the classifiers along with the test sample estimator and the V-fold. It
represents the proportion of observations misclassified by the classification model con-
structed from the entire sample. It is calculated as follows:

Rd =
1
N

N

∑
i−1

X(d(xn) 6= jn) (8)

where U represents the function of the indicator:
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X = 1, if the X(d(xn) 6= jn) condition is verified;
X = 0, if the X(d(xn) 6= jn) is not verified;
and d(x) represents the classification model, as depicted in Figure 6.

The resubstituting estimator is calculated using the same dataset that is used for the
construction of the classification model d. The above data, along with the previous algo-
rithm have yielded to the results plotted in Figure 7. This latter describes a cluster of direct
measurements (sheet 1), and a cluster with more sparsity including measurement error
(sheet 2). Neither cluster degenerates into a sphere, both show more or less sparsity. Sheet
1 displays less sparsity because the uncertainty propagation is limited by the instrumen-
tation used to perform the measurement, while Sheet 2 illustrates major sparsity due to
the calculation of measurement error that introduces a further uncertainty due to indirect
measurements needing propagation connected to the computation.
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Figure 7. Processing data of Table 2 as measured velocities/flow. The plots display the clustering
process related to electrical and flow quantities. Sheet 1 (left) depicts a major clustering versus sheet 2
(right). Major clustering indicates a less turbulent flow. The conditions reported on the right indicate
major turbulence.

In any case, a perfect sphere or quadric cannot be obtained because of the turbulence of
the flow, which means that all 3D measurements do not belong to the same spatial positions
(or spindles). That is, a fortiori, a confirmation of the conventional approach illustrated
in this paper where turbulences have been reported. It is also necessary to validate the
clusters using an appropriate indicator. The connection between accuracy and loss could
help accordingly. The accuracy is generally defined in artificial intelligence and in machine
learning, as reported in Equation (9).

Accuracy =
number of correct predictions

total number of predictions
=

TP + TN
TP + TN + FP + FN

(9)

in which TP stands for true positive, TN is true negative, FP is false positive, and FN
denotes false negative.

Instead, the loss is an indicator for characterizing the “loss in classification” and
regression loss. In this paper, we work on the classification loss [19] to better predict
the class of output. Figure 8 shows both accuracy and loss trends versus the number of
iterations; analogously, both parameters are illustrated in Figure 9 for the second set of data.
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To minimize the variance of the error, it is necessary to introduce other parameters 

by adding the Lagrange parameter. By computing the partial derivative and placing it 

equal to zero, we obtain the set of weights that minimizes the error variance of a quantity 

through the Kriging method, which depends, however, on the covariance model [22].  
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Figure 9. Proposed supervised leaning classification algorithm for sheet 2.

In the first plot, shown in Figure 8, the accuracy is attained after around 400 iterations,
with a step-rise around 250 iterations (75%), and a loss around 300 iterations with a loss
at 0.6. While the second plot, Figure 9, displays high accuracy at the first step-rise versus
the first. It also exhibits a low loss of classification, certainly due to the use of calculated
measurement error. We can state that both results shown in Figure 7 are accurate.

7. Expanded Metrics for Comparison: Geostatistics and Sobol-Based Sensitivity

Finding the third component is an issue that regards the “missing data” topic, which is
a controversial theme. The geostatistics can come to help, given the spatial dimension of the
component to be retrieved, by taking into account a specific uncertainty. As is mentioned
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in the abstract and summary, we need to find the spatial distribution in terms of prediction,
that is, the Best Linear Unbiased Estimator called as the Ordinary Kriging [20]. The latter
exhibits, as an estimator, the following features:

- it calculates the variance necessary for accuracy;
- it is denoted as an exact estimator because it delivers, in the points where we have the

space information, its true value;
- it is based on a model of probabilities by considering error and deviation.

The Kriging estimator [21] is an anticipatory method that is different from the other
one because it produces a set of estimates with minimum error variance. The error variance,
σ2

R, of a set of k estimates can be written as:

σ2
R =

1
k

k

∑
i=1

[v̂i − vi −
1
k

k

∑
i=1

(v̂i − vi)]
2 (10)

where vi are the real values and v̂i the esteemed values. Assuming an average error equal
to zero, the previous equation is set as:

σ2
R =

1
k

k

∑
i=1

(ri − 0)2 =
1
k

k

∑
i=1

[v̂i − vi]
2 (11)

To minimize the variance of the error, it is necessary to introduce other parameters by
adding the Lagrange parameter. By computing the partial derivative and placing it equal to
zero, we obtain the set of weights that minimizes the error variance of a quantity through
the Kriging method, which depends, however, on the covariance model [22].

σ̃2
R = σ̃2 −W · D (12)

Under the practical point of view, the model chosen for the random function is
bound to be the space continuity of the sampled data set. The above representation
has been applied to flow measurement [23,24], particularly to detect the third component
of Table 2. We can say that the approach adopted in this paper is correct, given the fact
that the velocities represented in Figure 10 (+symbols) fall within the range of uncertainty
designated in the paper.
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The second indicator of this section is the Sobol-sensitivity analysis [25], which is also
another way to express the results. This can be accomplished with aid of the Sobol’ indices,
which are considered as a variance-based statistical technique for global sensitivity analysis:
it allows one to measure the individual importance of each parameter, as well as their joint
effect on the model output. Since the 3D flow measurement is complex, the sensitivity
analysis permits one to recover the most sensitive and significant parameters encompassed
in the measured data. Sobol’s method points out the interactions between the different
velocities included in Table 2. Each velocity displays five measurements; let us consider,
for instance, U1 with five measurements at different conditions. Figure 11 indicates all
velocities reported on the left side according to the Sobol’s global description, and on the
right, we can see the example for one case. The global interpolation encompasses all five
curves related to the considered velocity. The sensitivity here demonstrated is close to the
Chauvenet’s criterion. Hence, all measurement values are globally coherent, and they are
from the same instrument.
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8. Discussion and Conclusions

In this work, we have validated a hybrid procedure, which is experimental and
computational and apt to reconstruct a 3D incompressible flow field starting from only 2D
measurements of the flow coupled to the numerical solution of the continuity equation,
which is also useful in industrial applications to reduce the instrumentation cost weight
on the global experimentation costs. The validation of the procedure has been based on
the evaluation of the uncertainty of the computed quantity, in this case, the stream-wise
velocity component as a function of the other two velocity components, measured in the
transversal planes, of a forced flow of water in the wake of a NACA 0012 airfoil immersed
in a straight rectangular channel.

To this aim, 3D and accurate experimental equipment was utilized, consisting of a
3D Vectrino ADV, available in the applied hydraulics laboratory at the Politecnico di Bari-
University, and a high precision 3D system of graduation scales to determine the locations of
the measurement points. The stream-wise velocity component measured by the instrument
was used as reference quantity, which compared the corresponding computed quantity to
evaluate the order of magnitude of the errors derived from the hybrid procedure.

While the accuracy of the numerical model used for the discretization of the continuity
equation was limited, here, only a first order scheme was applied for the simplicity of
treatment. The obtained results have proven the goodness and efficiency of the technique,
which can eventually be improved by the use of higher order numerical discretization
schemes, in the event of complex hydraulic configurations dealing with high turbulences.

The numerical prediction of the whole velocity field based on partial experimental
data has been suitable for describing the main coherent structures populating the flow
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behind the airfoil. To discuss the agreement between the theoretical prediction and the
physics governing the vortices generation in the wake, we estimated their main spatial
and temporal scales. We refer to the Kolmogorov theory of the isotropic and homogeneous
turbulence that can be applied in the core region of the channel in which the boundary
effects can be neglected.

The Kolmogorov theory makes an energy budget among the large, inertial, and
dissipative scales. The large and inertial scales are dominated by the transport of the
mechanical energy, epsilon, which is dissipated at the smallest scale because of its viscosity.

The large scales are defined by the mainstream velocity U, being the length scale L
in the proposed set-up of the transversal section width. Similarly, the dissipative smallest
vortices are characterized by the length scale r, the time scale Tr, and the velocity scale Ur,
according to the following equation:

ε =
U3

L
; (13)

r =
(

ν3

ε

) 1
4

; (14)

Tr =
(ν

ε

) 1
2 ; (15)

Ur = (ν ∗ ε)
1
4 . (16)

The previous dynamics coexist with the vortices induced by the airfoil, in which a
similar analysis can be carried out by using the length scales of the airfoil, NACA 0012,
and the chord itself, which is 0.05 m long and the angle attack of 20◦; if we refer to the
mean undisturbed flow velocity U = 0.16 m/s (corresponding to the flow rate running in
the channel) and assume the kinematic viscosity ν = 0.892× 10−6 m2/s for the water, the
following values can be estimated for these parameters:

ε = 8.2× 10−2 m2

s3 ; r = 5.4× 10−5 m; Tr = 3.3× 10−3 s; Ur = 1.6× 10−2 m/s .

These estimations are far from the real topology and dynamics of the coherent struc-
tures; nevertheless, they depict the limits that the theoretical model proposed in this paper
can be applied in. We can see that the sampling time for the data acquisition is of the same
order of the smallest time scale of turbulence Tr. For this reason, the dynamical system is
fully predicted in time over all the vertical scales. The spatial distance between the measure-
ment locations is significantly larger than the smallest vortex dimension developed into the
flow. Thus, only large scales are resolved in spaces, whereas the smaller ones are filtered
by the sampling procedure. This point can be useful for the industrial purposes in design
since only the spatial average velocity is taken into account and the velocity fluctuations
are neglected. The machine learning-based metrics have added a further contribution in
terms of data clustering and accuracy. It could be another opportunity for a new paper on
the use of machine learning for this kind of measurement. Additional metrics such as the
Kriging estimator and Sobol sensitivity have been used to strengthen the work results.

As indicated in the paper and the aforementioned general considerations, the cost and
the maintenance difficulties of a 3D sensor/transducer, to be located in an open channel
or a pipe, is not always sustainable, and we need to find an alternate way to obtain the
same results with less uncertainty. This method is carried out in this paper. In general, it
is possible to reconstruct the 3D representation and thus the missing axis by means of a
normal sensor, mostly pressure sensors and video-sensors. In [26], for instance, the authors
illustrate how to retrieve the spatial data by means of bi-spectra using a pressure sensor for
leak detection in the pipeline.
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We know that experiment as well as confutations are affected by errors, influencing
the main structures of the flow. of the main structures in the flow. It is understood that the
probable accuracy of such flow parameters is easily assessed, propagating the uncertainties
of the independent quantities of which they are a function. The estimate obtained is more
than sufficient for practical purposes. The statements of this paper can be used to easily
design several devices for industrial aims.
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