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Abstract: This paper presents a method to classify flow regime and vapor quality in vertical two-phase
(vapor-liquid) flow, using a video of the flow as the input; this represents the first high-performing
and entirely camera image-based method for the classification of a vertical flow regime (which is
effective across a wide range of regimes) and the first image-based tool for estimating vapor quality.
The approach makes use of computer vision techniques and deep learning to train a convolutional
neural network (CNN), which is used for individual frame classification and image feature extraction,
and a deep long short-term memory (LSTM) network, used to capture temporal information present
in a sequence of image feature sets and to make a final vapor quality or flow regime classification.
This novel architecture for two-phase flow studies achieves accurate flow regime and vapor quality
classifications in a practical application to two-phase CO2 flow in vertical tubes, based on offline
data and an online prototype implementation, developed as a proof of concept for the use of these
models within a feedback control loop. The use of automatically selected image features, produced
by a CNN architecture in three distinct tasks comprising flow-image classification, flow-regime
classification, and vapor quality prediction, confirms that these features are robust and useful, and
offer a viable alternative to manually extracting image features for image-based flow studies. The
successful application of the LSTM network reveals the significance of temporal information for
image-based studies of two-phase flow.

Keywords: flow regime; vapor quality; computer vision; machine learning

1. Introduction

A flow regime describes the spatial distribution between the vapor and liquid phases
in a two-phase flow, with the different regimes being identified by the gas bubble character-
istics inherent to each regime [1]. The classification of flow regimes for multiphase flow
is essential in many industrial sectors, such as the energy, metallurgical, and processing
industries. The study of flow regime is important because it reveals essential information
about flow behavior, as well as the physical flow parameters of the two-phase flow under
investigation [2]. Different flow regimes can be observed across different flow channel
shapes, orientations, and operating conditions, with different flow regimes also arising
because of properties of the flow itself, including phase velocity and vapor quality [2].
Much of the literature aims to relate flow regime classes to the measured physical character-
istics of the flow and to define the regimes and their transitions in terms of these physical
characteristics, for a given set of experimental conditions [2–5].

The physical parameters or features used in the classification of flow regimes are classi-
cally extracted from the flow by direct measurement, using a variety of instruments [6–15].
Some of these instruments require direct contact with the flow [6–10], while other methods
read flow data in a non-intrusive manner [11–15]. Image-processing techniques represent a
non-intrusive method by which to extract flow features for the purpose of flow regime study.
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In most incarnations of these methodologies, the useful image features are selected and
extracted manually [16–24], with any flow classification being made in terms of groupings
of these features.

Modern computer-vision architectures allow for the automatic extraction and utiliza-
tion of image features to solve classification problems. These image-based classifiers are
implemented most using convolutional neural networks (CNNs) within their architec-
tures [25–27]. CNNs have been implemented to analyze two-phase flow in some limited
cases; they have been used to study bubbly flow [28,29] and as a tool for the analysis of
complex flow characteristics [30], but the use of these networks as image-based classifiers
of flow regime has been limited. Branston et al. [31] achieved good results in image-based
vertical flow regime classification by using a CNN to classify cross-sectional images of
the flow channel, produced by an advanced wire-mesh sensor. A study by Du et al. [32]
compared three CNN-based architectures for their ability to classify the vertical flow regime
of a given input image, captured from the observation section of a flow channel using
a camera. Seal et al. [33] also achieved good results in the image-based classification of
vertical flow across four vertical regimes using a CNN; however, their study made use of a
small dataset of under 4000 images, which most likely led to biases in the data. Although
both Du et al. [32] and Seal et al. [33] trained classifiers using a small number of visually
distinct flow regime classes, the successes in their results point to the possibility of more
complex flow regime classification using CNNs.

The novel contributions found in this work, and their corresponding benefits, include:

• The development of a high-performing CNN-based flow regime classifier for vertical
flow, which is applicable to a wide range of flow regimes (with some being visually
similar); the classifier is trained using a large dataset, one where the only inputs are
images captured by a camera.

• The detailing of the first published deep learning and image-based method (with mass
flow rate and pressure also included as inputs) for vapor quality estimation.

• The fact that these methods make use of only camera images (and static flow parame-
ters for vapor quality estimation) leads to them being more accessible, as they require
less technical or domain-specific knowledge for deployment.

• The use of only camera images also allows for the real-time deployment of these
classifiers. The real-time deployment (at a prototype level) of a flow regime and vapor
quality classifier is a novel achievement that is presented in this paper. These real-time
implementations are advantageous in that they allow the above models to be utilized
within a control feedback loop.

• Both these methods have CNN + LSTM [34–37] architectures, allowing them to make
use of a sequence of images, rather than a single one, when making a classification.
This design has not been applied to the study of multi-phase flow before.

• The LSTM’s use of image sequences to account for temporal flow characteristics will
be shown to be useful in image-based two-phase flow studies.

• By utilizing image features extracted by a CNN network for these distinct tasks, this
method is shown to be a viable alternative to manual image feature extraction in
analyzing two-phase flow.

In Section 2.1, the experimental environment used to generate two-phase flow video
recordings and real-time data is described. Section 2.2 provides a detailed description of
the model architectures used. In Section 2.3, the data and classes used for the training of
the models are defined, as well as the training process itself. The results are presented
for offline and real-time testing in Section 3, followed by a discussion in Section 4 and a
conclusion in Section 5.
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2. Materials and Methods
2.1. Experimental Setup
2.1.1. Two-Phase Flow Data Generation

The details of the experimental rig used to generate the two-phase flow can be found
in Schmid et al. [3]. For the results presented here, two-phase fluid is recorded, flowing
in an upward direction through an 8 mm-diameter circular channel to generate the video
data. For each set of video data captured, constant mass flow rates and fluid-specific
enthalpies, ranging from 0.005 to 0.023 kg/s—resulting in mass velocities in the order of
100 to 450 kg m−2 s−1 within the test rig used—and 115 to 445 kJ/kg, respectively, were
used. The pressure of the channel ranged from 1683 to 3970 kPa. The combination of
mass flow rates and specific enthalpies at the inlet of the test section produced video data
representing the full range of possible vapor qualities (from 0 to 1) and flow regimes in the
test section.

2.1.2. Image Acquisition for Offline Testing and Model Training

To capture flow footage for initial off-line evaluation and for use as model training data,
a Photron FastCam Mini AX100 camera was used. Images were captured at a resolution of
512 × 512 pixels.

For the flow-regime classifier and vapor quality estimator, videos were recorded at
frame rates of 30 FPS and 10 FPS respectively, with these values arising as the optimal
frame rates for their specific tasks from a hyperparameter search. The results of this search
for the flow-regime classifier are depicted in Figure 1. Lower frame rates allow a longer
video clip in the temporal dimension to be processed over a smaller number of frames, but
if these rates are too low (as seen for the flow regime classifier, at rates below 20 FPS in
Figure 1), temporal aliasing might make it difficult for the LSTM network to extract useful
temporal features between frames. If the frame rate is too high (as is the case for the regime
classifier for rates above 40 FPS), the time between frames is too short for useful temporal
features to be learned by the network.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 15 
 

 

2. Materials and Methods 

2.1. Experimental Setup 

2.1.1. Two-Phase Flow Data Generation 

The details of the experimental rig used to generate the two-phase flow can be found 

in Schmid et al. [3]. For the results presented here, two-phase fluid is recorded, flowing in 

an upward direction through an 8 mm-diameter circular channel to generate the video 

data. For each set of video data captured, constant mass flow rates and fluid-specific 

enthalpies, ranging from 0.005 to 0.023 kg/s – resulting in mass velocities in the order of 

100 to 450 kg m−2 s−1 within the test rig used – and 115 to 445 kJ/kg, respectively, were 

used. The pressure of the channel ranged from 1683 to 3970 kPa. The combination of mass 

flow rates and specific enthalpies at the inlet of the test section produced video data 

representing the full range of possible vapor qualities (from 0 to 1) and flow regimes in 

the test section. 

2.1.2. Image Acquisition for Offline Testing and Model Training 

To capture flow footage for initial off-line evaluation and for use as model training 

data, a Photron FastCam Mini AX100 camera was used. Images were captured at a 

resolution of 512 × 512 pixels. 

For the flow-regime classifier and vapor quality estimator, videos were recorded at 

frame rates of 30 FPS and 10 FPS respectively, with these values arising as the optimal 

frame rates for their specific tasks from a hyperparameter search. The results of this search 

for the flow-regime classifier are depicted in Figure 1. Lower frame rates allow a longer 

video clip in the temporal dimension to be processed over a smaller number of frames, 

but if these rates are too low (as seen for the flow regime classifier, at rates below 20 FPS 

in Figure 1), temporal aliasing might make it difficult for the LSTM network to extract 

useful temporal features between frames. If the frame rate is too high (as is the case for 

the regime classifier for rates above 40 FPS), the time between frames is too short for useful 

temporal features to be learned by the network. 

 

Figure 1. Accuracy vs. frame rate for the flow regime classifier (FlowNet). Depicted here are the 

results of the hyperparameter searches run during the training of the networks used for offline 

(using ResNet101) and online (using ResNet18) testing. These results are generated with offline data 

from the FastCam; as such, performance is expected to degrade in online testing, where data 

generated by the ArduCam is used. 

Figure 1. Accuracy vs. frame rate for the flow regime classifier (FlowNet). Depicted here are the
results of the hyperparameter searches run during the training of the networks used for offline (using
ResNet101) and online (using ResNet18) testing. These results are generated with offline data from
the FastCam; as such, performance is expected to degrade in online testing, where data generated by
the ArduCam is used.
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Shutter speed for this camera presented no constraint in terms of minimizing motion
artifacts within the videos. Consistent backlighting was applied to the test section to retain
consistency in the image intensity, seen across the video data captured.

2.1.3. Laboratory Prototype and Real-Time Image Acquisition

A laboratory prototype for real-time data acquisition and processing was developed
using a Jetson Nano micro-computer with an ArduCam OV9281 camera, as shown in
Figure 2c. The Jetson Nano has a 128-core GPU, allowing it to process images (using the
architectures described in Section 2.2) at frame rates that are acceptable to demonstrate the
principle at low cost. The data captured during real-time testing was generated in the same
experimental environment as the offline data.
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Figure 2. The experimental setup: (a) the FastCam (2) deployed to collect data from the observation
section of the test rig (1) for training and offline testing; (b) The prototype (2) deployed to capture
and process live video footage from the observation section of the test rig (1); (c) the prototype.

2.2. Model Architecture

A key aspect of the architecture is its use of separate classes for image frames and frame
sequences. It was observed that images with highly similar features occur across multiple
flow regimes. When training a network that classifies frames based upon flow regime
classes, the inter-class confusion is high because of these similarities. It is also observed
that an individual’s perception and definition of flow regime is not only characterized by
the spatial distribution of the gas and liquid within the two-phase flow but also by the
way in which it changes over time. For instance, a transitional flow regime might appear
distinctly as one flow regime in a single frame, but it is defined as transitional on the basis
of how the flow behaves across multiple frames. This means that temporal information
must be key for image-based flow regime classification. Combining these two observations,
a novel method to achieve flow regime classification is developed, where a sequence of
frame features is used to predict the flow regime. Similar network architectures have been
implemented in other tasks related to image sequence analysis [35–37].

The network architecture of the flow regime classifier (FlowNet), as described in
Figure 3, is made up of three components, with the data path for the network flowing
downwards. The input to the system is an image from a sequence of frames, and the
output is a flow regime class prediction. A vapor quality regression network (VaporNet) is
implemented by adjusting the classification layers of FlowNet.

The first component of the system is the image feature-extraction component. This
operation is performed by the frame classifier (FrameNet). Each image in the sequence
is passed through FrameNet to extract the image features for further processing. This
component of the network transforms individual image frames into a set of image features,
as seen in Figure 4. A sequence of image feature sets is used as the input to the recurrent
layer, which is made up of LSTM units. These LSTM units are utilized to capture temporal
information across the feature sequence. The data at the output of the recurrent layer is
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then passed into a set of dense layers making up the classification layer, which, in turn,
outputs a final classification (for FlowNet) or regression value (for VaporNet). These three
components are further detailed below.
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Figure 4. Image feature reduction: FrameNet passes an input image through a series of convolu-
tional layers to identify the reduced image features in the form of a set of single values, useful for
frame classification.

2.2.1. Image Feature Extraction

The architecture selected for the frame classifier was that of ResNet101 [25]. This
architecture was chosen for its state-of-the-art classification accuracy. ResNet101 was
modified to have an output layer of seven nodes, so as to correspond to the frame classes
for which it is trained. The features extracted from FrameNet for the other two models
are obtained from the 2048 inputs to the dense output layer of FrameNet. These features
represent a reduction in the image data to a set of sparse features that are useful for flow-
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image classification. These feature sets are fed directly into a dense layer for classification
within their FrameNet classes or, in the case of VaporNet and FlowNet, passed into the
recurrent layer to be analyzed within a sequence of feature sets.

2.2.2. Recurrent Layer

The analysis of the sequences of feature sets, with each element of a sequence being
made up of 2048 features corresponding to an input frame, is performed by LSTM units [34].
LSTMs are a form of Recurrent Neural Network (RNN) [38]. RNNs can make predictions
based upon past contextual information, allowing them to interpret temporal information
that is present in a sequence. This layer makes use of two stacked LSTM networks to
form a deep LSTM; this structure allows for greater levels of abstraction in terms of the
temporal input information to the LSTM [39]. The chosen deep LSTM depth of two was
determined through optimization by hyperparameter search. For FlowNet, the sequence
length is 20 frames, while for VaporNet, this sequence is 50 frames long. The LSTM units
have a hidden state (a vector updated at each timestep, which encodes past contextual
information) of 256 nodes in length, a value which, along with the sequence lengths, was
determined through a hyperparameter search. The hidden state of the final LSTM unit
in the second layer of the deep LSTM network is then passed into the classification layer.
This state is informed by past information, derived from the outputs of the previous LSTM
units, which are used to analyze earlier frames. Although bidirectional LSTMs have been
shown to produce better results than unidirectional LSTMs for similar problems [35,40], a
unidirectional design allows for the possibility of real-time sequence analysis.

2.2.3. Classification Layer

The features extracted in the previous layers are processed by a set of dense layers
to make a final prediction. FlowNet uses one dense layer made up of 256 nodes, which
takes the output from the LSTM network at its input and outputs to eight nodes with
soft-max activation functions (one node for each class of flow regime). The soft-max function
was selected because it is an appropriate output function for use with the cross-entropy
loss function employed during classification training. The first of VaporNet’s two dense
layers contains one node that takes in the hidden state from the recurrent layer. The mass
flow rate and saturation temperature (which relate to the pressure of the system), used in
generating the sequence of frames, are passed into the second dense layer, containing 256
units, along with the output from the single node. The second dense layer connects to a
single node, with a linear activation function to output the final vapor quality prediction.
The number of units and depth of the classification layer were determined through a
hyperparameter search.

2.3. Class Definitions and Data Preparation

The flow regime classes used to classify a sequence of frames were those found in the
literature for vertical up-flow [41]. In addition to these classic regimes, classes that represent
transitional zones between these regimes are included to achieve a higher resolution in the
regime classification. The flow regime classes used to classify sequences of frames in order
of ascending vapor quality for fixed flow conditions, with all transitional classes being
hyphenated, are as follows: liquid-bubbly, bubbly, bubbly-slug, slug, slug-churn, churn,
annular and mist flow.

FrameNet is trained to classify two-phase flow images within image classes that exist
across multiple flow regimes (for instance, the first four classes listed below would be
common in bubbly and slug regimes but might be observed transiently in other regimes).
By training the network for this task, a robust and well-generalized set of image features
(for two-phase flow images) is encoded within the convolutional layers of FrameNet, with
these features also being useful for FlowNet and VaporNet. The flow image classes, used to
define individual frames of the flow, can be determined through the qualitative analysis of
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an image set that includes frames from video clips of each flow regime. From this analysis,
frame classes are shown in Figure 5, and can be described as follows:

1. Liquid/tiny bubbles: A small number of tiny, discrete gas bubbles flow in a continuous
liquid phase.

2. Small bubbles: A few small, discrete gas bubbles flow in a continuous liquid phase.
3. Big bubbles: A few small, discrete gas bubbles, with some large spherical bubbles and

slug-like bubbles within the fluid, flow in a continuous liquid phase.
4. Dense bubbles/Taylor bubbles: Many small- to medium-sized discrete bubbles flow in

a continuous liquid phase. The bubbles are distributed more consistently and densely
across the image, with more than half the viewing section of the tube being taken up
by bubbles. Taylor bubbles are also found in this frame class.

5. Churn: A mix of gas and liquid that flows chaotically, with no visible bubbles.
6. Annular: A gas core forms from the center of the pipe. A wavy liquid film flows along

the walls of the pipe, and liquid droplets are dispersed within the gas core.
7. Mist/vapor: No liquid is visible, as a continuous gas phase flows through the channel.
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Figure 5. Frame classes (left to right): liquid/tiny bubbles, small bubbles, big bubbles, dense
bubbles/Taylor bubbles, churn, annular, and mist/vapor.

A balanced dataset made up of 39,261 frames, labeled with the above frame classes,
was generated by extracting and manually classifying a set of image frames from the videos
of two-phase flow, generated by the test rig and used for training FrameNet. These images
were standardized and cropped in such a way that the edges of the flow channel are on the
borders of the image. The images are then resized to 256 × 256 pixels, as is required for
inputs to FrameNet [25].

A second dataset used for the training, validating, and offline testing of FlowNet was
generated by using FrameNet to extract features for each frame in a 20-frame sequence.
These 20-frame clips are extracted from flow videos generated by the test rig, captured at
30 FPS. Each data point for FlowNet is therefore a sequence of 20 feature sets, corresponding
to the 20-frame clip that is being classified in terms of its flow regime. The label of each clip
is assigned based on the flow regime label of the video from which it is partitioned.

A third dataset is required for VaporNet, also made up of image features extracted
by FrameNet. Features from 50-frame clips were used (from video captured at 10 FPS),
with each clip being labeled for training with an experimentally derived vapor-quality
value, describing the video from which the clip was taken. Additionally, VaporNet requires
information on the saturation temperature and mass flow rate of the flow at the time that
the clips were taken as two additional input channels. Both this dataset and FlowNet’s
dataset are balanced and are made up of 35,232 data points.

The use of balanced datasets for all models ensures that the networks learn data
characteristics that are well-generalized across the training data. Additionally, by using
balanced datasets, poorly classified classes are highlighted as having difficult features or
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characteristics for the model to learn, rather than as having an insufficient training subset.
This response is true because if the subset size is sufficient for a model to accurately learn
the features of another class, poor performance is not a result of the sample size but rather
a result of the specific features of the poorly classified class.

2.4. Model Training

Each of the three neural networks was trained using the methods of gradient descent
and backpropagation. A cross-entropy loss function was used for training, with this loss
function selected because of its excellent performance in classification tasks [42], and a
stochastic gradient descent (SGD) optimizer was employed because of its good generaliza-
tion [43]. A cross-entropy loss function was used for FlowNet, but an Adam [44] optimization
function was deployed for faster convergence. For VaporNet, a Mean Square Error (MSE)
loss function was implemented and optimized using Adam. The detailed hyperparameters
used for training can be seen in Table 1.

Table 1. The training hyperparameters.

Network FrameNet FlowNet VaporNet

Optimizer SGD Adam Adam
Learning Rate 1 × 10−3 1 × 10−4 1 × 10−4

Batch Size 10 256 256
Training Epochs 30 60 100
Momentum 0.9 Adaptive Adaptive

FrameNet was trained first, separately from the other two networks, as it is used to
generate the training and offline testing data for the other two networks. The recurrent and
classification layers of FlowNet and VaporNet were then trained using sets of this feature
data generated by FrameNet.

Training of the models was carried out using a workstation with a 2.3 GHz Intel®

Xeon® E5-2630 CPU, 128 GB RAM, and an NVIDIA® Kepler™ K40 M GPU with 12 GB
of GPU accelerator memory. All networks were implemented using the PyTorch frame-
work [45]. A FrameNet model takes approximately 4 h to train, with VaporNet and FlowNet
models being trained in under one hour.

3. Results
3.1. Model Performance

To evaluate the offline performance of the three network types on their respective
datasets, k-fold cross-validation [46,47] was implemented for each network. This method
was implemented in lieu of the option to test the networks on multiple datasets. This
method provides an estimate of a model’s prediction performance and sensitivity to varia-
tions in training data. k was chosen to be 5, as 5-fold cross-validation has been shown to
offer an acceptable balance between bias and variance in its results [47]. By performing
5-fold cross-validation, five unique sets of model parameters are produced for each of the
three network types, with the performance of the networks being evaluated based on the
results across their models. Network-specific test sets (generated using the FastCam) that
were not used for the training of the models were used to evaluate the performance of each
model. Testing the models on unseen data ensures that the results reflect how the model
might perform in practical applications; by using the same test set across the five models of
the same network type, an objective comparison can be made. Each of the test sets for the
three respective models was made up of 26,200 data points.

The results from the cross-validation of each network can be seen in Table 2. While
the columns describing FlowNet and FrameNet show the accuracy of the classifiers (the
percentage of classifications that were correct out of the test set), the column describing
VaporNet makes use of the root mean square error (RMSE). This value is a measure of the
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average error made by the model in terms of vapor quality prediction. Figures 6, 7a and 8a
were generated using the highest-performing model for each respective network.

Table 2. Findings of the 5-fold test results, with best results in bold.

Fold FrameNet
Accuracy (%)

FlowNet
Accuracy (%)

VaporNet
RMSE in Vapor Quality Prediction

Fold-1 93.0 91.5 4.8 × 10−2

Fold-2 92.5 95.4 5.2 × 10−2

Fold-3 91.0 92.5 4.4 × 10−2

Fold-4 90.6 87.4 6.1 × 10−2

Fold-5 92.3 91.8 6.4 × 10−2

Mean 91.9 91.7 5.5 × 10−2

Standard Deviation 0.9 2.6 0.8 × 10−2
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Figures 6 and 7a show the normalized confusion matrices for FrameNet and FlowNet,
respectively. Confusion matrices reveal how a classification model performs across its
classes, revealing any prediction biases that a model might have.

Figure 8a shows a boxplot for the set of predictions made for each vapor quality
value being tested. These data points were generated across a range of mass flow rates
and pressures. Because each vapor quality being tested is represented by a video with
a respective average vapor quality, there are multiple vapor quality predictions made
for each video, achieved by using clips from the larger video for predictions. Each set of
predictions is represented by a boxplot in Figure 8a, with a tighter distribution of predictions
representing more confident predictions for that vapor quality.

3.2. Real-Time Performance

Performance testing revealed that the constraint on interpolation speeds is from the
CNN frame classifier, with the LSTM network generating outputs orders of magnitude
faster. This testing also revealed that the Jetson Nano could process individual frames using
FrameNet (which has ResNet101 architecture) at a stable frame rate of 10 FPS. While this
interpolation speed is fast enough for VaporNet, FlowNet was trained using data captured
at 30 FPS. It was found that the Jetson Nano can process frames using ResNet18 [25] (a
version of ResNet with fewer parameters and, therefore, a lower memory requirement)
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at 20 FPS, and FlowNet and FrameNet were retrained using this new architecture, with
results as shown in Figure 1.
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This figure shows that FlowNet’s performance when using ResNet18 at 20 FPS is
comparable to its performance when using ResNet101 at 30 FPS (with mean model accura-
cies of 89.4 and 91.7%, respectively), and, as such, the real-time deployment of FlowNet
uses ResNet18 architecture at 20 FPS. The confusion matrix produced by this model, while
processing real-time data, can be seen in Figure 7b.

Because the Jetson Nano can run the optimal version of VaporNet, no changes are
made to this model for real-time implementation. The results produced by the real-time
implementation of VaporNet on the laboratory prototype can be seen in Figure 8b.
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4. Discussion
4.1. Offline Results

Table 2 shows that the accuracy of FrameNet is high across its models. Although the
prediction accuracies of FrameNet are mostly consistent across classes, there are certain
frame classes that produce a disproportionate number of classification errors, with these
misclassifications occurring mainly between neighboring classes, as seen in Figure 6. Most
of these incorrect classifications occur between the Small Bubbles and Big Bubbles classes;
this may be due to the similarity between the image features found in these classes, due to
the similarity in the bubbles: both classes have nearly spherical bubbles with only minor
deformations in their shapes. This issue of similar features being found in images existing in
different classes might also extend to the classification of a sequence of images, potentially
causing confusion between the churn and annular FlowNet classes. Another possible cause
for the above confusion is the introduction of errors in the FrameNet data labels by the
manual labeling of training and test data.

As seen in Table 2, both VaporNet and FlowNet have moderate standard deviation
values when compared to FrameNet in their cross-validation results, which indicates
that the performances of these networks are more sensitive to the data used for training
and that the networks may not generalize as well to a real-world test. This could be
from the increased model complexity introduced by the recurrent network layers. Another
explanation is that the sequence data used to train these networks comprised labeled videos
that were truncated and partitioned into sets of clips that share a label with their overall
video. It was observed that varying flow regimes arose among clips from the same video,
yet all clips shared the label of the overall video. This resulted in the incorrect labeling of
some clips. This led to the network overfitting to incorrectly labeled clips, producing the
noted variance in results. This also explains the incorrect FlowNet predictions between
consecutive flow regimes, as seen in Figure 7a, because these instances would represent
clips of the overall video where the flow regime transitions from the average regime of
the video to a transitional regime in a class preceding or following the average regime
class. The way to interpret the clip predictions would then be that, when accumulated, they
express the flow regime makeup of the overall video. In all test cases, the average flow
regime predicted across the set of clips in a given video was correct for that video.

Despite this, FlowNet achieved a mean accuracy of 92%, with almost all incorrect
classifications falling into neighboring flow regimes. The results gave good confidence in
predictions for the current application. The model architecture, therefore, has the capacity
to be trained successfully for the current task, but there is a tendency to overfit the training
data, producing a high variance in results across models, as discussed above.

Figure 8a shows a clear correlation between vapor quality predictions and true vapor
quality labels, with generally accurate, high-confidence predictions being made, with
the following exceptions: between the label ranges of 0.1 and 0.2, the network showed
a wider range of predictions and, therefore, a lower confidence per label. This range of
vapor qualities mostly produces slug flow, with videos of this flow regime transitioning
between clips of liquid-bubbly, to bubbly-slug, to slug, to slug-churn. Because this vapor
quality range produces videos that change significantly over time, it is not surprising
that different average vapor qualities would be predicted across the set of clips for such a
video. Nevertheless, the mean vapor quality predictions for these videos are still reasonably
accurate. There is a distinct drop in accuracy in the range from 0.6 to 0.9. This region
often represents annular and mist flows. The network’s tendency to under-predict vapor
quality in this region could arise because the image features extracted by FrameNet for
flow-image classification do not contain the information content required to accurately
predict the vapor quality of high-vapor-quality flow. This explains the seemingly uniform
classification of these videos, as seen in Figure 8a, as the image data required to calculate
their vapor quality to a more accurate degree is lost by FrameNet, which does not make use
of this data for flow image classification. This problem is an attractive subject for further
research and could potentially be solved by retraining FrameNet (and VaporNet on these



Sensors 2022, 22, 996 12 of 15

new FrameNet features) so that features specific to this vapor quality range are extracted,
rather than the broader features used here for analyzing the entire range of vapor qualities.

Table 2 reveals that VaporNet can predict vapor quality with a mean RMSE of 5% of
full scale, across the partitions of its training data. VaporNet can, therefore, be applied to
applications where the accuracy required falls within this error range.

Figure 9 highlights the fact that classifying flow regime by sequence is an appropriate
design decision: FrameNet identifies different image classes within the same flow regime,
whereas FlowNet analyses the sequence of frames to make a correct classification on the
entire set. This shows that temporal information is useful when classifying flow regimes
from image data. Additionally, when observing this sequence of frames, the deficiencies of
FrameNet as a flow regime classifier are highlighted; FrameNet classifies frames 1, 2, and 3
within different classes, yet they all belong to the same flow regime class. This shows that
despite FrameNet achieving higher accuracy than FlowNet, it is fundamentally unsuitable
for flow-regime classification because it does not account for temporal information.
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4.2. Real-Time Results

The superiority of ResNet18 at 20 FPS over ResNet101 at 10 FPS (with these frame
rates being the highest-performing for each model in terms of the Jetson Nano’s real-
time capabilities) for FlowNet, as shown in Figure 1, confirms that frame rate is a crucial
hyperparameter when designing a network for flow regime classification; this comparison
reveals that the model with far fewer network parameters but a more optimal frame rate
performs significantly better.

When comparing online and offline results for FlowNet (Figure 7a vs. Figure 7b) the
greatest decrease in accuracy occurs in the case of the mist flow class. Because images of
mist flow are very similar, it is likely that FlowNet makes use of image features that are
highly specific to the lighting conditions found in the training data when classifying this
regime. For the data collected using the real-time prototype, there are inherent differences in
the input images when compared to the training data, due to the altered camera positioning
and different camera parameters (such as aperture, white balance, shutter speed, resolution,
etc.). This leads to a change in the features found within an image and, thus, affects the
performance of the classifier for all classes, but it most negatively affects mist flow, which
contains more consistent features across images. VaporNet displays a similar drop in
performance at higher vapor levels, where mist flow is likely to occur, as seen in Figure 8b.

The decreased performances of both models during real-time testing, as seen when
comparing Figures 7a,b and 8a,b and from real-time performance metrics, reveal that
FlowNet and VaporNet achieve 61% classification accuracy and an RMSE of 0.1, respectively
(compared to values of 89.4% and 4.4 × 10−2, respectively, for their offline counterparts), are
the results of the different sets of image features found between the real-time and training
data, and not the results of the change to real-time data capturing and processing. The fact
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that the outputs from both models still follow a desirable trend, despite the differences
among images between datasets, indicates that these models could be improved, through
retraining with data more like those seen at the test-time, to achieve similar performances
to those seen in their offline implementations.

5. Conclusions

FrameNet was successfully trained to classify individual images from a two-phase
CO2 flow, but it was shown that individual frame classification can be misleading when
considering flow with transient properties. VaporNet and FlowNet address this issue
by incorporating temporal information through the addition of LSTM networks to their
architectures, while making use of spatial information provided by FrameNet. The results
produced by these networks, and the related qualitative arguments presented in this work,
encourage the inclusion of temporal information in further image-based studies of two-
phase flow. Additionally, the image feature detectors learned by the convolutional layers of
FrameNet were shown to be useful for all three network types, confirming that these feature
detectors are robust and produce a well-generalized reduction in the image information
content, and that this approach is a viable alternative to manual feature extraction for the
study of two-phase flow images. Encouraging results were also seen in the prototype
real-time implementations of these models, with the possibility of improving these results
through the retraining of the models using data more like that seen at test-time.
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