
����������
�������

Citation: Camuffo, E.; Mari, D.;

Milani, S. Recent Advancements in

Learning Algorithms for Point

Clouds: An Updated Overview.

Sensors 2022, 22, 1357. https://

doi.org/10.3390/s22041357

Academic Editor: Santiago Marco

Received: 31 December 2021

Accepted: 5 February 2022

Published: 10 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Recent Advancements in Learning Algorithms for Point Clouds:
An Updated Overview

Elena Camuffo , Daniele Mari and Simone Milani *

Department of Information Engineering, University of Padova, Via Gradenigo 6/A, 35131 Padova, Italy;
elena.camuffo@dei.unipd.it (E.C.); daniele.mari@dei.unipd.it (D.M.)
* Correspondence: simone.milani@dei.unipd.it

Abstract: Recent advancements in self-driving cars, robotics, and remote sensing have widened
the range of applications for 3D Point Cloud (PC) data. This data format poses several new issues
concerning noise levels, sparsity, and required storage space; as a result, many recent works address
PC problems using Deep Learning (DL) solutions thanks to their capability to automatically extract
features and achieve high performances. Such evolution has also changed the structure of processing
chains and posed new problems to both academic and industrial researchers. The aim of this paper is
to provide a comprehensive overview of the latest state-of-the-art DL approaches for the most crucial
PC processing operations, i.e., semantic scene understanding, compression, and completion. With
respect to the existing reviews, the work proposes a new taxonomical classification of the approaches,
taking into account the characteristics of the acquisition set up, the peculiarities of the acquired PC
data, the presence of side information (depending on the adopted dataset), the data formatting, and
the characteristics of the DL architectures. This organization allows one to better comprehend some
final performance comparisons on common test sets and cast a light on the future research trends.

Keywords: point cloud; deep learning; compression; scene understanding; semantic segmentation;
completion

1. Introduction

Point clouds have recently appeared among the most promising 3D visual representa-
tion models in many heterogeneous fields [1–6], ranging from automotive to immersive
technologies, such as Augmented and Virtual Reality (AR and VR). Their widespread
has been fostered by huge application potentialities such as building safer and smarter
autonomous vehicles, preserving endangered cultural heritage sites, implementing smarter
video surveillance systems, and enhancing sustainable processes in industrial production,
to mention some of them. Moreover, the availability of different sensing devices and
algorithms has enabled accurate and detailed acquisitions with diverse computational and
development costs. Three-dimensional objects are thus modeled by unordered sets of 3D
points sampled over the corresponding surface. Moreover, these representations enable
adaptive storage and visualization at different Level-Of-Details (LODs) by simply adding
or removing points according to the desired density [7–10]. Such flexibility derives from
the lack of topology and connectivity constraints (as there are in meshes), which makes
their acquisition and formatting lighter and better suited for real-time applications.

These advantages come with some structural characteristics that imply significant
drawbacks on the processing pipeline and its efficiency, which can be summarized as:

• data sparsity and uneven distribution;
• redundancy of data representation;
• noise and erroneous modeling of object surfaces.

Many point cloud acquisition strategies generate sparse models where points mostly
concentrate around key visual features [11]: this leaves large unsampled areas around

Sensors 2022, 22, 1357. https://doi.org/10.3390/s22041357 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041357
https://doi.org/10.3390/s22041357
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8351-4650
https://orcid.org/0000-0003-0727-3725
https://orcid.org/0000-0001-8266-5839
https://doi.org/10.3390/s22041357
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041357?type=check_update&version=2

Sensors 2022, 22, 1357 2 of 34

smooth regions that lead to the presence of holes and missing data. Such sparsity can be
utterly accentuated in point-of-view acquisition mechanisms (such as Time-of-Flight or
ToF sensors) [12], where the completeness of the model can be impaired by the presence of
occlusions and hidden surfaces, and cylindrical acquisition (such as the one adopted by
LiDARs), where density varies according to the closeness to the acquiring device [13].

Moreover, point clouds characterize object surfaces by the spatial repetition of basic
elements (points): the representation proves to be highly redundant whenever repre-
senting planar and regular scenes with respect to a surface-based approach such as with
meshes. This results in large models that require a huge storage space or transmission
bandwidth [14–18]. As a matter of fact, an accurate data organization is therefore required
to handle and visualize the model efficiently (rendering large point clouds turns out to be
prohibitive even for a powerful GPU) [19–22].

Finally, most of the acquisition mechanisms are vision-based, and therefore, they can be
highly affected by external noise sources such as illumination, object motion, sensor noise,
and external radiation sources [23–25]. This leads to wrong coordinate estimation [12],
together with the appearance of flying pixels and false surfaces [26]. Such impairments
can also be found on other sensing devices such as Frequency-Modulated Continuous
Wave (FMCW) radar [25], where environmental factors can deeply affect the quality of the
resulting acquisition and the final processing performance [27,28].

For these reasons, several research efforts have been recently dedicated to the de-
velopment of effective point cloud processing solutions, together with the ability of un-
derstanding and interpreting the acquired scene, including interpolation and completion
algorithms, compression mechanisms, data organization schemes, classification [29,30],
and segmentation strategies [6].

During the last ten years, deep learning solutions have seen a huge technical devel-
opment thanks to the availability of high-performing GPUs and large training datasets.
Such inherence has led to the creation of accurate and performing point cloud processing
algorithms that have overcome the performance of previous traditional computer vision
solutions [31]. On the other hand, the heterogeneous characteristics of point cloud data,
as well as the data-oriented nature of DL solutions, have brought forward some issues
and opened new research problems. From these premises, the analysis of the panorama of
PC processing solutions needs to be revisited and reorganized according to new classifica-
tion criteria.

The main aim of this work is to present an updated and reorganized overview of the
latest PC solutions where the different approaches are analyzed in light of a new taxonomi-
cal classification that was derived from the fundamental features of DL technologies. Most
of the previous works and overviews divide the analyzed strategies according to the neural
architecture (block structure, layer types, etc.) or their specific neural learning categories
(Convolutional Neural Networks, Generative Adversarial Networks, etc.). In our analysis,
we have seen that it is not possible to disregard other peculiarities such as the acquisition
method or sensors, the sparsity of the points, the organization of the data processed by
the networks, and the characteristics of the datasets. These details can be schematized
as follows.

• Data organization and formatting: point cloud data can be stored and sampled in
different ways depending on the acquisition strategy and on the following operations.
Point coordinates can be quantized, fused together, sampled, or erased in order to
simplify or reduce the noise level and improve the subsequent processing steps.

• Acquisition strategy and sensor integration: point cloud data can have very diverse
statistics depending on the algorithm or device that was used to generate it. As a
matter of fact, LiDAR and Structure-from-Motion PCs can be much sparser than ToF-
generated models. This introduces further distinctions between the different network
architectures that can be tailored and optimized for a specific type of data.

• Network/layer type and architecture: specific NN architectures could be more suit-
able for a given task; therefore, in the last years, a significant research effort has been

Sensors 2022, 22, 1357 3 of 34

dedicated to the investigation of the most effective network structures, as well as of
new processing layers that prove to be more efficient in targeting the characteristics of
the input. As a result, a few architectures have been widely reused for specific tasks
such as classification, coding, or semantic segmentation.

• Training/Learning strategy and adopted loss: recent developments in neural net-
works have shown that the learning paradigm can lead to very different performances
with the same dataset and network scheme. This evidence has led to the development
of different paradigms such as curriculum, continual, and contrastive learning, to
mention a few. Aside from the learning paradigm, loss functions have shown a crucial
role in the convergence speed, as well as in the final accuracy.

This paper overviews the most recent NN-based processing strategies for point clouds,
starting from simple classification problems and ending with the most advanced semantic
interpretation mechanisms (see Figure 1). The description presents the different strategies
classified according to their characteristics among the aforementioned, which are detailed
in the following sections (see Table 1).

Table 1. Structure of the paper and related references.

Sections Related References

(1) Introduction [1–31]
(2) Point Clouds as Data Structures

(2.1) Point Cloud Data [32]
(2.2) Acquisition Systems [25,27,28,33–35]
(2.3) Other Data Structures [4]

(3) Datasets
(3.1) ShapeNet [36,37]
(3.2) ModelNet [38]
(3.3) MPEG [39]
(3.4) 8i Voxelized Full Bodies [40]
(3.5) Stanford 3D Indoor Scene Dataset [41,42]
(3.6) KITTI [43]
(3.7) SemanticKITTI [44]
(3.8) SynthCity [45]
(3.9) Other Recent LiDAR Datasets for

Automotive Applications [46–48]

(4) General Purpose Deep Learning Techniques
(4.1) Architectures [29,30,49–51]
(4.2) Losses [52]

(5) Semantic Scene Understanding
(5.1) Disambiguation
(5.2) Discretization-Based Models [30,38,51,53–60]
(5.3) Projection-Based Models [61–72]
(5.4) Point Clouds-Based Models [6,32,34,49,50,73–79]
(5.5) Graph-Based Methods [80–82]
(5.6) Transformer-Based Methods [50,83,84]
(5.7) Performance Comparison between

Different Approaches
(6) Compression [49,85–99]

(6.1) Point-Set Autoencoders [49,100–103]
(6.2) Convolutional Autoencoders [85,95,104–110]

(7) Point Cloud Completion [111–127]
(7.1) Point Completion Network [100,103,128]
(7.2) Point Fractal Network [128,129]
(7.3) 3D Point Capsules Networks [103,130–132]
(7.4) GRNet [43,128,133–135]
(7.5) Other strategies [128,135,136]

(8) Conclusions [21,137]

Sensors 2022, 22, 1357 4 of 34

Section 2 presents the different data formats that are employed by different network
structures, while Section 3 overviews the main datasets and acquisition mechanisms that
are currently available and used in the literature. Section 4 describes the most widely
used network models that constitute the core building blocks for most of the processing
architectures and the adopted loss functions. Section 5 deals with the problem of semantic
scene understanding, while Section 6 presents the main learned compression schemes.
Section 7 describes the deep-learning completion strategies while the final conclusions are
drawn in Section 8.

Figure 1. Schematic representation of the paper organization.

2. Point Clouds as Data Structures

The latest 3D acquisition mechanisms have enabled the modeling of real 3D scenes by
means of unordered sets of 3D points, which can be accompanied by different attributes
including color components, normals, semantic labels, and sensing-related measurements
(such as reflectance in LiDAR acquisitions). In comparison to standard 2D images, point
clouds require an increment of the storage space (as each file consists of both geometry and
attribute information), as well as of the processing computational load. As a matter of fact,
different data structures have been proposed in order to enable efficient handling of the
acquired data.

2.1. Point Cloud Data

The most straightforward formatting strategy is through a list of three-dimensional
points sampled over the surface of the objects since this representation is the closest one
to the raw sensor data format. Specifically, a point cloud (see Figure 2a) is a set of three-
dimensional coordinate data [32], where each point is spatially defined by a triplet of
coordinates, e.g., (x, y, z). A dense set of 3D points can efficiently model the surface of an
object or a complete scene, which can be enriched by additional point features, related to
the specific acquisitions or generation strategies. The most common real-time acquisition
methods are the optical 3D sensing devices such as LiDAR or ToF sensors. However, PCs
can also be the result of photogrammetric scanning, multiview reconstruction, RADAR
estimation, and deep generative methods such as those employing Generative Adversarial
Networks (GANs). Recently, synthetic point cloud datasets from simulation environments
have also become very popular. Point clouds provide simple yet efficient and precise
representation and can be subjected to operations such as fast linear transformations,
objects combinations, and fast rendering. These benefits, on the other hand, must contend
with memory constraints and free space representation issues. Since the same surface
or position is sensed several times, this results in multiple overlapping dense points;
moreover, nonmeasured space (because of noise or lack of visual features to be used in

Sensors 2022, 22, 1357 5 of 34

the reconstruction) is treated similarly as free space. Finally, even if fast rendering can be
applied directly on 3D points, a solid representation of object geometries is usually more
efficient, and therefore, mesh reconstruction algorithms are often applied with a significant
computational effort.

(a) (b) (c) (d) (e)

Figure 2. The Stanford Bunny [38] model in different three-dimensional representations. (a) Point
Cloud, (b) Voxels, (c) Octree, (d) Mesh, (e) Depth.

2.2. Acquisition Systems

Data and algorithm selections are strongly driven by the requirements of specific
applications. As a result, it is possible to distinguish different types of point cloud data,
depending on the technologies used for the acquisition/generation.

• Light Detection And Ranging (LiDAR) are detection systems that resemble the oper-
ation of radar but, instead, use the light from a laser, producing a sparse prediction
of the environment in the form of point clouds. These sensors are increasingly being
applied in multiple fields, such as robotics, mobile mapping, and autonomous driving,
and they can provide large-scale datasets with more than one million points, either in
static [33] or dynamic [34,35] environments.

• An RGB-D camera is a type of sensor that can acquire both RGB and depth infor-
mation. RGB-D sensors are usually applied to capture point cloud data in an indoor
environment, because of their range limitations.

• Image-derived methods generate a point cloud indirectly from stereo or multiview
images. Image-derived point clouds have been frequently used in real-world scenarios;
however, there are not many studies on image-based data.

• Interferometric Synthetic Aperture Radar (InSAR) is a radar technique for remote
sensing. It generates maps of surface deformation or digital elevation based on the
comparison of two or more SAR images. InSAR-based point clouds are creating new
possibilities for point cloud applications, even though there are not many studies yet.

• Frequency-Modulated Continuous Wave Radar (FMCW Radar) is a special type of
radar sensor which radiates continuous transmission power such as a simple contin-
uous wave radar. FMCW radar has the peculiarity that it can change its operating
frequency during the measurement, i.e., the transmission signal is modulated in
frequency (or in phase). FMCW radars offer robust sensing to autonomous vehi-
cles [27,36], for their high-range resolution and accuracy: in fact, FMCW radars add
an extra dimension in the sensing, and they are more robust to weather changes, with
respect to LiDAR sensors. FMCW radars are often employed also in Human Motion
Detection [25,37] and Activity Recognition systems [28].

2.3. Other Data Structures

When dealing with deep learning algorithms, point clouds are usually not the most
suitable data structure to process. Thus, the input data are frequently subject to transforma-
tions that allow them to satisfy the specific needs of the architecture. Among other data
structures, we can find volumetric models, shell or boundary models, parametric models,
and depth maps.

Sensors 2022, 22, 1357 6 of 34

2.3.1. Volumetric Models

Volumetric models are the most common and intuitive representation of three-dimensional
data as they are just an extension of bidimensional images to the third dimension [4]. We
can consider voxels (see Figure 2b) as the equivalent three-dimensional representation
of a pixel from a bilevel image. A voxel is formally a three-dimensional cubic unit block
that represents a naive extension of occupancy grids to a 3D space (an occupancy grid is
a bidimensional space, representing an environment, subdivided through a grid system
where occupied cells are filled while those relative to free space are not). A sparse vox-
elization can be obtained directly from point clouds, by discretizing the space and filling
voxels where one or more points are present. Unfortunately, this representation results
are quite rough and bulky, and hence, data can be organized more efficiently by means of
octree structures. Octrees (see Figure 2c) are tree-based data structures that progressively
refine the representation of 3D space by recursively partitioning the occupancy volume
into octants and keeping track of the nonempty (occupied) subregions. Volumetric repre-
sentations are practical for rendering and smooth visualization. However, they perform
a rough approximation of the initial geometry and introduce significant aliasing artifacts
whenever voxel resolution is not high enough. As a matter of fact, they are mostly used
in three-dimensional convolutional neural architectures (thanks to their highly structured
grid layout).

2.3.2. Shell or Boundary Models

Shell or boundary (B-Reps) models are usually employed to represent the boundaries
or surfaces of the objects. Almost all visual models used in reality capture workflows,
games, and movies are boundary representations. Among them, triangular meshes (see
Figure 2d) are the most commonly used in computer graphics. A mesh is a geometric data
structure that encodes a three-dimensional object geometry in terms of a combination of
edges, vertices, and faces. Meshes are a great way to explicit the geometry of a point cloud,
and they frequently allow for a significant reduction in the number of points required as
vertices. On top of that, they permit one to obtain a sense of the relationship between objects
through the faces’ connectivity. However, meshing is an interpolation of the base point
cloud geometry and can only represent the data to a certain degree, which is determined
by the mesh’s complexity. There are a variety of ways for meshing a point cloud, but the
best results typically necessitate some prior knowledge of the object’s shape.

2.3.3. Depth Maps

Depth maps (see Figure 2e) are images that encode depth information of a three-
dimensional scene from a single viewpoint. This information is encoded using height above
the ground, horizontal disparity, and angle with gravity for each pixel. This representation
is accurate and dense if the surface radiated by the sensor or associated with a visual
feature is consistent (i.e., associated with a uniform depth measurement) and wide enough.
For example, in real-time autonomous driving scenarios, depth maps allow one to map
the environment at 360◦ in real-time. A depth map is a good data structure for its low
memory requirements, but it suffers from weak topology and cannot generate a full three-
dimensional description of the scene without fusing multiple diverse viewpoints.

3. Datasets

In this section, we briefly present some of the most popular point cloud and 3D sample
datasets that have been proposed in association with different deep learning tasks, ranging
from compression to semantic segmentation and classification. Such repositories currently
represent the main state-of-the-art benchmarks on which most algorithms are evaluated
and compared.

Sensors 2022, 22, 1357 7 of 34

3.1. ShapeNet

ShapeNet [39] is a very large repository of shapes (see Figure 3a) comprehending
many different semantic classes organized under the WordNet [40] taxonomy. Those were
gathered from various 3D CAD model repositories and were labeled so that the resulting
trained models can solve different tasks. The annotations assigned to the data samples can
be divided as follows:

• Language-related annotations: category labels are assigned to the objects according
to the WordNet taxonomy; this labeling is helpful for indexing tasks and can be used
to train-shape classification models.

• Geometric annotations: information about the object orientation, symmetry planes,
and scale are provided; in general, labels also identify the main object parts that
compose each model.

• Physical annotations: physical properties of the surface materials and weights are
also provided to enable physical simulations.

The large number of labels that are provided in this dataset, make it a perfect candidate
for many different tasks such as classification, part segmentation, data generation, and
reconstruction. The main issue with this data is that since they are synthetic they produce
perfect PCs far from the noisy and incomplete ones obtained by sensors.

(a) (b) (c)

(d) (e) (f)

Figure 3. Samples from some of the presented datasets. (a) ShapeNet, (b) MPEG, (c) 8iVFB, (d) S3DIS,
(e) SemanticKITTI, (f) SynthCity.

3.2. ModelNet

Similar to ShapeNet, ModelNet [41] is a repository of CAD 3D models that can be
divided into 40 classes of object shapes. Also in this dataset, the models are synthetically
generated and therefore, although artifact-free, they are not very faithful with respect to
real data.

Most of the time, these two datasets are used in conjunction using Shapenet as training
data and ModelNet as testing models.

3.3. MPEG

MPEG test conditions [42] include a set of reference point clouds that have been
acquired with different strategies spanning from Structure-from-Motion to ToF sensors to
LiDAR data (see Figure 3b). More precisely, dynamic sequences were acquired with ToF
and LiDAR sensors, while static data include models from laser scanners and sampled
multicamera reconstruction as well. Models are organized into three categories including

Sensors 2022, 22, 1357 8 of 34

static models, dynamic objects, and dynamic acquisitions. Data were generated from
multiple repositories by several contributors including Microsoft, CERTH, 8i, Queen Mary
University, IMT, and UPM, to mention some of them.

3.4. 8i Voxelized Full Bodies

The 8i Voxelized Full Bodies (8iVFB) consists of four point cloud sequences (longdress,
loot, redandblack, and soldier), where the full body of a human subject (see Figure 3c)
is captured by 42 RGB cameras configured in 14 clusters (each cluster acting as a logical
RGB-D camera), at 30 fps, over a 10 s period [43]. Spatial coordinates are quantized with
10 bit resolutions representing each model with a 1024× 1024× 1024 voxel cube; for each
sequence, the cube is scaled so that it is the smallest bounding cube that contains the entire
sequence. The dataset represents the reference data for the JPEG Pleno Dataset.

3.5. Stanford 3D Indoor Scene Dataset

The Stanford 3D Indoor Scene Dataset (S3DIS) [44] contains 6 large-scale indoor areas
with 27 rooms (see Figure 3d). Each point in the scenes is annotated with one of the
13 semantic categories. S3DIS belongs to the category of static datasets [45], which are
commonly used for point cloud classification tasks, but it is designed to be suitable even
for Semantic Segmentation, Instance Segmentation, and Object Detection tasks. Its main
application scenarios include robotics, augmented reality, and urban planning.

3.6. KITTI

KITTI [34] is one of the most popular publicly available datasets for autonomous
driving. It is a sequential dataset, acquired with an autonomous driving system to capture
the sequences of LiDAR frames with a moving viewpoint on the street. The system is
composed of a LiDAR sensor, a stereo camera rig (RGB-D), a Global Positioning System
(GPS), and Inertial Measurement Unit (IMU) to allow different tasks of interest: stereo,
optical flow, visual odometry, 3D object detection, and 3D tracking.

As a sequential dataset, KITTI contains several frames but sparse points. Furthermore,
since sensors’ viewpoints follow the direction of the roads (the acquisition equipment
was installed on a vehicle), the sampled LiDAR points associated with the road label are
distributed at specific angles, which can be easily predicted from the knowledge of the
system’s settings.

3.7. SemanticKITTI

SemanticKITTI dataset [35] was built on the velodyne sequences of KITTI dataset and
provides in addition to 3D data, the Semantic Segmentation and Panoptic Segmentation
labels (see Figure 3e). It contains detailed point-wise annotations with 28 classes, on
22 different scenes, and it is one of the biggest public datasets for autonomous driving.

3.8. SynthCity

SynthCity [46] is a 367.9 M point clouds dataset acquired with Mobile Laser Scanning
in a simulated environment (see Figure 3f). Every point is assigned a label from one of
9 categories. The problem of using these kinds of datasets is the large gap between synthetic
and real scenes. The former can generally be very realistic, but they lack accuracy in detail,
even if they are extremely easy to label and acquire.

3.9. Other Recent LiDAR Datasets for Automotive Applications

Semantic3D [33] is the existing largest LiDAR dataset for outdoor scene segmentation
tasks with more than 4 billion points. Paris-Lille-3D [47] is smaller than Semantic3D, with
more than 140 million labeled points. It was acquired with a mobile LiDAR in two French
cities, Paris and Lille, and well suits autonomous vehicles’ applications. Finally, Lyft [48] is a
novel proposed dataset for the perception of urban scenarios, and it is coupled with another

Sensors 2022, 22, 1357 9 of 34

dataset for the prediction of vehicles’ trajectories. It includes more than 30,000 LiDAR point
clouds with 1.3 million annotations.

4. General Purpose Deep Learning Techniques

In this section, we provide a brief overview of some state-of-the-art NN architectures
and losses, which are employed in multiple PC-related domains. The subsequent sections
analyze how these are employed in the different PC processing steps.

4.1. Architectures

The architectures used for point cloud processing are generally designed to accomplish
more than one deep learning task. Some of these directly process point coordinates, while
others work on different data structures.

4.1.1. PointNet

One of the most successful architectures is PointNet [49], which was proposed both
for classification and segmentation purposes. Its main feature is that it directly processes
point spatial coordinates instead of voxel grids, as other same-purpose schemes do. This
solves some sparsity problems since the latter usually implies characterizing a lot of empty
subregions; as a result, voxel-based solutions require larger storage space, as well as a lot of
useless computations (e.g., in 3D CNNs architectures). The main drawback of this model is
that it does not take into consideration the local correlation between neighboring points:
this effect proves to be crucial in a correct classification as it is nicely investigated in [29].

Since it processes an unordered set of coordinates, PointNet is designed to be per-
mutation invariant. This property is attained by computing point-wise features that are
then merged into a single vector by applying a transformation h followed by a symmetric
function g (e.g., the sum or the multiplication):

f (x1, . . . , xn) = g(h(x1), . . . , h(xn)). (1)

This is repeated for multiple g, h functions to learn different properties of the data.
In order to enable scale, rotation, and translation invariance, an affine registration

transform is learned in order to standardize the data points.
A block diagram of the architecture can be seen in Figure 4. It is possible to notice that

the first block is the T-net unit. This block takes as an input tensors T ∈ Rb×n×3, where b is
the batch size and n is the number of points; the output is a tensor of the same size that is
standardized by multiplying T by the learned affine transform. In detail, the sequence of
operations can be summarized as follows:

• expand dim: Rb×n×3 −→ Rb×n×3×1

• 2D convolution with 64 kernels with size [1, 3], no padding, stride 1, ReLU and
BatchNorm: Rb×n×3×1 −→ Rb×n×1×64

• 2D convolution with 128 kernels of size 1, no padding, stride 1, ReLU and BatchNorm:
Rb×n×1×64 −→ Rb×n×1×128

• 2D convolution with 1024 kernels of size 1, no padding, stride 1, ReLU and BatchNorm:
Rb×n×1×128 −→ Rb×n×1×1024

• Max pooling with size [n, 1]: Rb×n×1×1024 −→ Rb×1×1024

• fully connected layers to obtain an affine transform for each point cloud in the batch:
Rb×1×1024 −→ Rb×3×3

This sequence is repeated on the point cloud features. The function h actually consists
of the following pipeline: TNet −→ MLP −→ TNet −→ MLP; on the other hand, the
symmetric function g is a max pooling over all points. It is important to notice that, in the
MLPs, weights are reused for each feature vector associated with the point (this operation
is essentially a 1D convolution). Thanks to the global max pooling and the convolution
operations, it is actually possible to feed a variable number of points to the network and
the algorithm will still yield 1024 global features.

Sensors 2022, 22, 1357 10 of 34

Since the transformation matrix for the 64-dimensional features is quite big and
hard to learn, the authors add a regularization component Lreg to the loss that forces the
transformation matrix to be close to an orthogonal one:

Lreg = ||I − AAT ||2F (2)

Figure 4. PointNet [49] model.

4.1.2. PointNet++

As previously mentioned, PointNet does not exploit local correlation in the data. In
order to mitigate this lack of data and improve the efficiency of the architecture, Point-
Net++ [50] was introduced: the enhanced scheme divides the PC into smaller sets of
neighboring points where features are extracted and merged recursively.

Although it solves the issue of local correlation, this technique introduces the need to
define an efficient partitioning strategy to create the PC subsets. The authors decided to
choose the centroids with the furthest point sampling algorithm that in general has better
data coverage w.r.t. random sampling. In order to find the groups of points, ball queries or
KNN can be used.

This allows a hierarchical merging of PointNet features from local clusters characteriz-
ing the local statistics and processing the input point set in a bottom-up manner [29].

4.1.3. Convolutional Neural Networks

Differently from per-point feature extractors such as PointNet and PointNet++, local
correlation in PC processing can be exploited by means of Convolutional Neural Networks
(CNNs). Such architectures have already been thoroughly tested in 2D signal processing
and a wide variety of architectures have already been proposed to solve various tasks. As a
matter of fact, their extension to the 3D case has been a natural implication [30]. An effective
application of 3D convolution implies representing the input PC as a voxel grid which
implies the quantization of point coordinates (introducing an additional quantization noise
component on geometry data) and the characterization of many empty spaces (generating a
lot of useless operations). For these reasons, the computational complexity of CNNs scales
cubically with the grid resolution.

4.1.4. OctNet

One approach that tries to tackle the computational complexity issue arisen by CNNs
is OctNet by Riegler et al. [51], where the authors propose a solution based on octrees that
reduces the complexity of the problem. An octree is a data structure used to represent a
voxel volume, allowing one to model densely populated regions with high precision while
empty regions are summarized by a big empty cell. This optimizes the representation of
the voxel volume, but it has the problem that accessing a random element turns out to be
very slow depending on its depth in the coding tree. This drawback may be critical for
real-time PC processing. For this reason, the authors proposed the Hybrid Grid-Octree,
where multiple “shallow” octrees with maximum depth equal to 3 are distributed in a

Sensors 2022, 22, 1357 11 of 34

grid within the voxel volume. As a result, whenever large areas of the volume are actually
empty, octree coding represents them with a long sequences of zeros on which convolution
operations can be skipped, thus reducing the overall computational complexity. This allows
this architecture to process point clouds at a much higher resolution.

4.2. Losses

In order to properly optimize a neural network, a cost function that is to be minimized
needs to be defined. When considering PC data, there are some loss expressions that
are recurrently used in multiple tasks; a brief introduction to the most popular ones is
provided below.

1. Categorical Crossentropy
Categorical Crossentropy is the most common loss choice for DL tasks that involve
the assignment of different classes to the samples (e.g., classification and semantic
segmentation). In this case, the model should output for each sample xi a probability
distribution vector ŷi (easily obtainable with a softmax activation function) where each
entry ŷi,j represents the probability that sample xi belongs to class cj. In particular
for the multiclass classification task given the predicted classes and the ground truth,
respectively ŷ, y ∈ [0, 1]n×c, where n is the number of samples and c the number of
classes, the categorical crossentropy loss is defined as:

CE(y, ŷ) = − 1
n

n

∑
i=1

c

∑
j=1

yi,jlog(ŷi,j) (3)

2. Earth Mover’s Distance
The Earth Mover’s Distance (EMD) [52] is a permutation invariant metric that com-
putes the minimum movement required for point set S1 to be mapped into point set
S2. Considering the two sets need to have the same cardinality, it is possible to write
it as:

dEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

||x− φ(x)||2. (4)

The main drawbacks of this metric are the computational demand and the lack
of differentiability; as a matter of fact, its use in training operations is not easy,
and therefore, it is commonly used for evaluation in PC compression, interpolation,
completion, and generation.

3. Chamfer (Pseudo) Distance
An alternative to EMD is the Chamfer (pseudo) Distance (CD), which measures the
squared distance between one element in S1 with the nearest neighbor in S2 and vice
versa. It can be expressed as:

CD(S1, S2) = ∑
x∈S1

min
y∈S2
||x− y||22 + ∑

y∈S2

min
x∈S1
||y− x||22. (5)

The main advantages of this metric are that it does not require |S1| = |S2|, it is
differentiable everywhere, and it is actually faster for computing w.r.t. EMD. As a
consequence, it is usually the best choice when considering point prediction tasks that
do not rely on a voxel grid (completion, generation, interpolation, and compression).

5. Semantic Scene Understanding

Semantic scene understanding is an essential computer vision task in many application
fields (such as autonomous driving, remote sensing, and robotics), and the new possibilities
offered by deep learning techniques have inspired many research efforts in this direction.
The main aim is to identify and classify each element within an acquired scene, i.e., analyze
the objects starting from the three-dimensional coordinates of the acquired samples, their
layout, and their spatial, functional, and semantic mutual relationships.

Sensors 2022, 22, 1357 12 of 34

5.1. Disambiguation

Semantic scene understanding includes several computer vision tasks that provide
understanding at different levels. Among these, we can mention:

• Classification: identifies the content of a point cloud and categorizes it with a single
geeral label. Formally, given a set of points, X = {x1, x2, . . . , xN} and a candidate label
set Y = {y1, y2, . . . , yk} assign the whole point set X to only one of the k labels.

• Object Detection: localizes all the objects in the scene and encapsulates each of
them into a bounding box; in this way, the task estimates the geometric location and
orientation in addition to semantic instance labels. Each box is commonly represented
as (x, y, h, w, θ, c). The parameters (x, y) denote the object (bounding box) center
position, while (h, w) represents the bounding box size with width and height, and
θ is the object orientation. Finally, c represents the semantic label of this bounding
box (object).

• Semantic Segmentation: clusters the input data into several homogeneous regions,
where points in the same region have identical attributes. Each input point can be asso-
ciated with a semantic label, i.e., given a set of N ordered points X = {x1, x2, . . . , xN}
and a candidate labels set Y = {y1, y2, . . . , yN}, assigned to each xi one label yi. If the
instances of a category of objects are recognized as different entities, the task is named
Instance Segmentation, while if we are referring to a differentiation among the parts of
a single point cloud, we are referring Part Segmentation.

The main architectures and methods in PC semantic scene understanding can be
categorized according to the format of input point cloud data (Figure 5). Hereinafter, we
overview the most successful deep learning models, with the main focus on PC Semantic
Segmentation, but considering also Object Detection and Classification, since the most
popular architectures generally address more than one task.

Figure 5. Taxonomy of the main methods for PC Semantic Scene Understanding.

5.2. Discretization-Based Models

Discretization-based methods transform point clouds into discrete data structures be-
fore feeding them to the network architecture. These structures can be dense, such as voxels
or octrees, or sparse, such as permutohedral lattices (in mathematics, the permutohedron
of order n is an (n− 1)-dimensional polytope embedded in an n-dimensional space). Their
main advantage is that these structures can be treated as three-dimensional images and
dense or sparse convolutions can be easily applied.

5.2.1. Dense

The idea behind these methods is to divide the space occupied by point clouds into
volumetric occupancy grids (voxels or octrees) and assign the same label to all the points
belonging to the same cell. Then, using a convolutional architecture, as Huang et al. in [53],
a prediction is computed for each voxel center and assigned to the neighboring points.

Sensors 2022, 22, 1357 13 of 34

The advantage of using these data structures is that both the three-dimensional shape
and viewpoint can be encoded and voxels can be classified according to the particular
condition in occluded, self-occluded, and visible voxels. Nevertheless, the performance
is severely limited by voxel density and boundary artifacts caused by the point cloud
partition. SEGCloud by Tchapmi et al. [54] brought an improvement introducing fine-
graining and global consistency; this result was achieved by using trilinear interpolation to
remap predictions to point cloud and Fully Connected Conditional Random Fields (CRFs)
to enforce spatial consistency of predictions (Figure 6).

Figure 6. SegCloud [54] pipeline.

3D ShapeNets [41] was proposed by Wu et al. jointly with the ModelNet dataset
(Section 3) to solve the classification task. It employs a Convolutional Deep Belief Network
(CDBN) to describe the geometric shape of a 3D voxel grid as a probability distribution
of binary variables. A CDBN is a type of deep artificial neural network composed of
multiple blocks of convolutional restricted Boltzmann machines stacked together, which is
translation invariant and scales well to high-dimensional images. This model automatically
learns the hierarchical compositional part representations of 3D objects, and it can also be
optimized for completion purposes (Section 7). Although it achieves impressive results
with low-resolution voxel grids, the performance of the model is limited. VoxNet [55] was
proposed by Maturana et al. for 3D object recognition, and using 3D convolution filters is
another pioneer in volumetric data processing. From these initial works, 3D convolution
has been widely adopted showing a good accuracy even in challenging acquisition set-
ups [30]. A different method using an adversarial scenario is proposed in 3D GAN [56],
which is a volumetric CNN composed of a generator and a discriminator, both made of
five volumetric fully convolutional layers. The generative-adversarial criterion has the
advantage in capturing the structural variation between two 3D objects, but its limitation
can be seen in memory occupation and in low 3D resolution.

OctNet [51] (already described in Section 4) better exploits the sparsity of the input
data and permits improving the performances of voxel-based methods. This approach hier-
archically partitions the space with a series of unbalanced octrees, which adapt the memory
allocation and computation according to the point density of different volumetric regions.

5.2.2. Sparse

As already stated before, the inherent sparsity of many point cloud models makes
the percentage of occupied cells in volumetric representations quite small. For these
reasons, sparse convolutional networks could be more efficient, as was highlighted by
many approaches in the literature. Graham et al. [57] proposed Submanifold Sparse
Convolutional Networks, a technology that efficiently minimizes memory usage and
computational complexity, suited for high-dimensional and spatially sparse data.

Important contributes are given by Su et al. with SplatNet [58] and by Rosu et al.
with LatticeNet [59]. LatticeNet, developed after SplatNet, is based on Permothoedral Lat-
tices and computes Sparse Convolution (SC) with slight modifications, achieving efficient
processing of large-scale point clouds.

Sensors 2022, 22, 1357 14 of 34

5.3. Projection-Based Models

Projection-based models use a bidimensional projection of point clouds to infer pre-
dictions, i.e., they remap the input data to a simpler and easier to handle structure. These
methods are based either on multiview, spherical, or cylindrical projections. The considered
deep learning architectures are usually well-established convolutional neural networks
(CNN) models (eventually pre-trained on image datasets), such as AlexNet [61], VGG [62],
GoogLeNet [63], ResNet [64]. Compared with discretization-based models, these methods
can improve the performance for different 3D tasks by taking multiple views of the objects
or scenes of interest and then fusing the outputs or performing majority voting to produce
the final prediction; additionally, they are efficient in terms of computational complexity.
On the other hand, this strategy implies an information loss, and its performances highly
vary depending on the projection viewpoints or directions.

5.3.1. Multiview

Multiview CNN (MVCNN) by Su et al. [65] was one of the pioneering 2D DL models
in 3D estimation via the merging of different multiview features (generated by means
of different MaxPooling stages) into a global descriptor. However, this operation retains
the most important features only and fails to preserve comprehensive visual information.
MVCNN-MultiRes was proposed by Qi et al. [66] to improve MVCNN by introducing
multiresolution 3D filtering to capture multiscale information. Nevertheless, multiview
methods cause numerous limitations and a loss in geometric structures. To tackle this
problem, approaches such as SnapNet [67] apply CNNs on multiple 2D image views
generating one RGB map and one depth map to preserve geometric features; labels are
assigned to both images before reprojecting back to 3D space.

5.3.2. Spherical

An efficient way to obtain fast and accurate PC segmentation was proposed by Wu et al.
with SqueezeSeg [68], an end-to-end network based on CRFs and SqueezeNet [69]. Squeeze-
SegV2 [70] was then introduced to address domain shift, i.e., including also synthetic data in
the training procedure, by utilizing an Unsupervised Domain Adaptation (UDA) pipeline.
Milioto et al. proposed RangeNet++ [71] for real-time semantic segmentation of LiDAR
point clouds.

5.3.3. Cylindrical

Cylindrical coordinate systems have recently proved to be very effective in LiDAR PC
representation for different tasks. PolarNet [72] instead of common spherical or bird’s-eye-
view projection, balances the points across grid cells in a polar coordinate system, indirectly
aligning a segmentation network’s attention with the long-tailed distribution of the points
along the radial axis.

5.4. Point Clouds-Based Models

To avoid limitations posed by both projection and discretization based methods, many
approaches resort to processing point cloud data directly.

5.4.1. Pointwise MLP Methods

This class of methods have been introduced by Qi et al. in 2017 with PointNet [49]
(explained in detail in Section 4). This is one of the pioneering frameworks in PC semantic
segmentation as it achieved considerable results avoiding the use of convolutional networks,
learning per-point features using shared MLPs and global features using symmetrical
pooling functions. Following the PointNet trend, other works have adopted a shared MLP
as the basic processing unit thanks to its high efficiency. PointNet++ [50] (presented in
Section 4) was introduced to capture local structures, introducing a hierarchical network
that applies PointNet recursively, learning local features with a progressively increasing
contextual scale based on K-nearest-neighbor (KNN) and query-ball searching methods.

Sensors 2022, 22, 1357 15 of 34

A pioneer work for large-scale point cloud segmentation is represented by RandLA-
Net [60]. In this work, Hu et al. proposed an efficient and lightweight network that captures
context information of each point neighborhood and employs an effective local feature
aggregation module (Figure 7), which automatically preserves complex local structures
by progressively increasing the receptive field. Furthermore, this network only relies
on random point sampling to achieve remarkably high efficiency in terms of memory
and computation.

Figure 7. RandLA-Net [60] basic module.

5.4.2. Point Convolution Methods

These methods adopt specific 3D convolution operators tailored on point clouds, which
can be either continuous or discrete: 3D Continuous Convolution kernels are defined on
a continuous space, where the weights for neighboring points are related to the spatial
distribution with respect to the center point. 3D Discrete Convolution kernels are defined
on regular grids, where the weights for neighboring points are related to the offsets with
respect to the center point. (Figure 8).

Figure 8. Different types of point convolution [32].

PointConv [73] firstly introduced novel continuous convolution kernels as nonlinear
functions and proposed a formulation for efficiently scaling up the network and improving
its performance, while KPConv [74] proposed a deformable version of this convolution
operator that learns local shifts effectively deforming the kernels to fit them to the point
cloud geometry. Similarly, (AF)2-S3Net [75] fuses voxel-based and point-based learning
methods into a unified framework to effectively process large 3D scenes.

Among discrete convolution-based approaches are neural architectures that employ
simple CNN layers for classification and localization tasks [37]. The pioneer method
PointCNN [76] introduces a χ-Conv operator (Figure 9) that weights and permutes input
points and features before they are processed by a typical convolution. This allows one

Sensors 2022, 22, 1357 16 of 34

to canonicalize point order and learn generalized convolutional features from unordered
and unstructured point clouds. On the other hand, the introduction of skip connections,
as in [36], has proven to boost the performance of convolutional networks: a UNet-like
architecture is adopted in this work for classification and object detection in mmWave-radar
point clouds.

Figure 9. PointCNN [76] χ-Conv operator.

More recently, Cylinder3D [77] (Figure 10) was introduced in the context of automo-
tive point clouds for driving-scene modeling. This architecture exploits the 3D topology
relations and structures of sparse point clouds to build a cylindrical volumetric partition
and explore context information in an effective progressive manner.

Finally, approaches have been developed to embed the temporal dimension in the
processing. Fan et al. proposed PSTNet [78] (see Figure 11), a deep network that hierar-
chically captures features from a Point Spatiotemporal (PST) convolution. PST combines a
spatial convolution to capture the local structure of points in the 3D space and a temporal
convolution to model the dynamics of the spatial regions along the time dimension.

Figure 10. Cylinder3D [77] space partition.

Figure 11. PSTNet [78] sequence encoding.

5.4.3. RNN-Based Methods

RNN-based methods have been introduced to model the interdependency between
point cloud acquisitions at different subsequent time instants (usually called frames in anal-
ogy with standard 2D video). One of the major works exploiting this idea is PointRNN [79]

Sensors 2022, 22, 1357 17 of 34

which proposes the network in two different versions depending on the recurrent module
introduced, i.e., PointGRU and PointLSTM. Other solutions combine the efficiency of CNN
with the recurrent architectures such as in the classification approach by Pirasteh et al. [6].

5.5. Graph-Based Methods

Finally, several methods resort to networks that process graphs (see Figure 12), which
are really suitable structures to represent point clouds as they can capture the geometric
structure and shape of objects. When representing point clouds with graphs, each node
corresponds to an input point and each edge represents the relationship between the point
and its neighbors.

Figure 12. Graph-based networks principle [32].

Landrieu et al. [80] used superpoint-graph to capture the structure and context infor-
mation of large-scale point clouds. The segmentation problem is split into three subprob-
lems, i.e., geometrically homogeneous partition, superpoint embedding, and contextual
segmentation. To further improve the partition step, Landrieu and Boussaha proposed
a supervised framework to oversegment a point cloud into pure superpoints [81]. This
problem is formulated as a deep metric learning problem structured by an adjacency graph.
In addition, a graph-structured contrastive loss is also proposed to help the recognition of
borders between objects.

Another milestone in graph-based methods is DGCNN [82], which constructs a local
neighborhood graph to extract the local geometric features and applies Convlike operations,
named EdgeConv. An EdgeConv acts on graphs dynamically computed in each layer of the
network and captures local geometric structure while maintaining permutation invariance.

5.6. Transformer-Based Methods

A very successful architecture presented recently in the literature is the transformer [84].
This architecture achieves a state-of-the-art performance in natural language processing
tasks and is being employed also for image processing with good results. This type of
model also lends itself well to point cloud processing because it is naturally independent of
the input order. In [83], the authors propose Point Cloud Transformer (PCT) (Figure 13),
which exploits the effectiveness of transformers for point cloud classification, normal esti-
mation, semantic segmentation, and part segmentation, proposing some improvements
with respect to the original architecture, in order to adapt it to the new domain.

In particular, the input embedding module is substituted with a neighbor embedding
that, instead of obtaining point-wise features, aggregates them using Farthest Point Sam-
pling (FPS) and K-Nearest Neighbors as in PointNet++ [50] in such a way that the receptive
field is enlarged. On the other hand, the self-attention module usually computes:

Fout = LBR(Fsa)− Fin (6)

where LBR is a linear layer followed by batch normalization and ReLU activation function;
Fsa is the product between the attention vector and the values vector, and Fin is the input to
the layer. In this work, this layer is modified so that:

Fout = LBR(Fsa − Fin)− Fin (7)

Sensors 2022, 22, 1357 18 of 34

similarly to a Laplacian operator in graph signal processing.

Plane

𝑀𝐴−𝑃𝑜𝑜𝑙𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

256

256

𝑁𝑐

128128 1024

C

128128128

𝐺𝑙𝑜𝑏𝑎𝑙
𝐹𝑒𝑎𝑡𝑢𝑟𝑒

𝐿𝑖𝑛𝑒𝑎𝑟 𝐿𝐵𝑅 𝐿𝐵𝑅𝐷
𝑃𝑜𝑖𝑛𝑡

𝐹𝑒𝑎𝑡𝑢𝑟𝑒

R
256 256 𝑁𝑠

𝐼𝑛𝑝𝑢𝑡
𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔

𝑅𝑒𝑝𝑒𝑎𝑡RC 𝐶𝑜𝑛𝑐𝑎𝑡

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛/𝑁𝑜𝑟𝑚𝑎𝑙 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

Figure 13. Point cloud transformer network architecture [83].

These improvements allow one to extract more meaningful features in the context of
PCs, with respect to the standard transformer, allowing one to achieve a state-of-the-art
performance in semantic segmentation and other meaningful tasks.

5.7. Performance Comparison between Different Approaches

In this section, we finally propose a quick comparison among some of the main
aforementioned approaches for PCSS. In order to provide a fair comparison, we take into
account the Intersection over Union (IoU) value, also referred to as the Jaccard index, which
is one of the most commonly used metrics in semantic segmentation. It is defined as:

IoU = J(A, B) =
|A ∩ B|
|A ∪ B| (8)

where A and B denote the ground truth and the predicted segmentation maps, respectively;
IoU ranges from 0 to 1. In general, the IoU is averaged over all the classes, i.e., the Mean-IoU
(mIoU) is used.

Table 2 presents some of the architectures mentioned, reporting their publication year,
summarizing the methods used for such models and the results achieved on some popular
datasets discussed in Section 3. These achievements are also visualized in Figure 14, where
we underline for each approach the main broad category to which it belongs.

Table 2. Comparison of some of the main approaches for Point Cloud Semantic Segmentation in
terms of mIoU percentage, on SemanticKITTI [35], S3DIS [44], and Semantic3D [33] datasets.

Year SemanticKITTI S3DIS Semantic3D Category

PointNet [49] 2017 14.6 - - PC (MLP)
PointNet++ [50] 2017 20.1 - - PC (MLP)

SegCloud [54] 2017 - - 61.3 Disc (D)
SnapNet [67] 2018 - - 59.1 Proj (MV)

SqueezeSeg [68] 2018 29.5 - - Proj (Sph)
SPGraph [80] 2018 17.4 62.1 76.2 Graph

SPLATNet [58] 2018 18.4 - - Disc (S)
SqueezeSegV2 [70] 2019 39.7 - - Proj (Sph)

LatticeNet [59] 2019 52.9 - - Disc (S)
KPConv [74] 2019 - 70.6 74.6 PC (C-Conv)

RangeNet++ [71] 2019 52.2 - - Proj (Sph)
RandLA-Net [60] 2019 53.9 70.0 77.4 PC (MLP)

PolarNet [72] 2020 57.2 - - Proj (Cyl)

Cylinder3D [77] 2020 68.9 - - Proj (Cyl) + PC
(D-Conv)

PTC [83] 2021 - 73.5 - Transformer

(AF)2-S3Net [75] 2021 70.8 - - Disc (D) + PC
(C-Conv)

Sensors 2022, 22, 1357 19 of 34

Figure 14. Graphical comparison of the main approaches for Point Cloud Semantic Segmentation in
terms of mIoU percentage, on SemanticKITTI [35], S3DIS [44], and Semantic3D [33] datasets.

6. Compression

Point cloud compression is a very hot topic in 3D computer vision due to the increasing
hype that self-driving cars and visors are arising. The former can acquire billions of
points per day, while the latter is not capable of storing large amounts of information
thus requiring an efficient way to store and exchange data compactly while retaining high
reconstruction quality.

The basic approaches that tackle this problem employ clever data structures carefully
designed for the task. One of the most effective ones is the octree, used for example in the
MPEG compliant codec G-PCC [85]. It is based on a recursive partitioning of the space
in octants and is represented as a tree. Octrees address sparsity by retaining information
in the grid only where points are located. Usually, the coding tree derived from this
procedure can be represented by 8-bit strings that are then encoded using standard lossless
techniques (e.g., Huffman source coding). Octrees are used as the foundation for many
other compression approaches [85,86] due to the high availability of software where they
are implemented (for example the Point Cloud Library [87]). One of these approaches [88]
exploits a tree-structured conditional entropy model to reduce the redundancy in the octree
representation generated by LiDAR sensors in self-driving cars.

Other approaches exploit Graph Signal Processing (GSP), and specifically the Graph
Fourier Transform, to capture the local structure of the 3D model [89,90]. These graphs are
usually built either using KNN or by connecting with an edge all points that are closer
than a certain threshold. In [91], the PC is encoded in two layers, the Base Layer (BL),
i.e., where losslessly encodes a coarse representation of the 3D model, and the Enhanced
Layer (EL), where finer-grained details are coded in a lossy manner using GSP. In particular,
the residuals between the real model and the upsampled BL are multiplied by the basis
(eigenvectors relative to the biggest eigenvalues of the Laplacian matrix of the local graph),
thus obtaining some energy efficient coefficients that can be quantized, entropy coded, and
transmitted or stored.

Finally, due to the success obtained by deep Autoencoders (AEs) in image compres-
sion [92–97], deep learning approaches have started to emerge for PCs compression also
thanks to the advent of PCs specific networks such as [49]. In learned point cloud coding,
approaches can be grouped into two main classes. In the first one, the data are handled as
an unordered set of points (usually, and the adopted core architecture is PointNet [49]). In
the second one, the PC is quantized in a grid and processed by convolutional layers.

Most of the point-based works are not strictly concerned with dimensionality reduction
and reconstruction tasks and aim at training a neural model with efficient generative
capabilities. As a matter of fact, autoencoders can be used for this purpose especially when
the latent space is regularized, such as in Variational AE [98] or in Adversarial AE [99].
Moreover, most of these solutions mainly focus on the point cloud geometry (skipping the
compression of their attributes, such as color components or normals). Notice that, even

Sensors 2022, 22, 1357 20 of 34

if the main focus of these methods is not strictly the compression of point cloud data, the
efficiency of the related approaches makes them worthy of investigation and discussion.

6.1. Point-Set Autoencoders

In this section, PointNet-based architectures are overviewed [49]. PointNet is usually
employed in architectures such as the encoder module. This allows one to have architectures
invariant to input permutation, since the features are computed point-wise and then
aggregated using a symmetric function. The latter technique is not easily extendable to the
decoder; therefore, a simple fully connected architecture is usually adopted, which has to
cope with the disadvantage of having the number of output points fixed.

The main weakness of this class of mechanisms is that both PointNet and fully con-
nected networks are not really good at exploiting spatial correlation so it might take longer
to learn meaningful compressed representations; moreover, MLP units are not reusing
weights and require training a lot of parameters.

6.1.1. Learning Representations and Generative Models for 3D Point Clouds

The first of these techniques is the one proposed by Achlioptas et al. in [100] where
Autoencoders (AE), Generative Adversarial Networks (GANs), and Gaussian Mixture
Models (GMMs) are explored as generative models for point cloud data. More precisely,
the paper introduces a new PointNet-based AE architecture and evaluates different metrics
as reconstruction objectives or performance evaluators for the generated samples. The AE
processes PCs with fixed size of 2048 points, obtained by sampling points from shapes
found in the ShapeNet and ModelNet datasets. Both EMD and CD are used as structural
losses, and the results show a low reconstruction error (EMD ≈ 0.043 , CD ≈ 4.5× 10−4

with 128 units in the hidden layer) on raw PC data. The remaining contributions of the
paper are not discussed here as they involve generative models and not the main focus of
this section, i.e., PC compression and reconstruction.

6.1.2. Adversarial Autoencoders for Compact Representations of 3D Point Clouds

An improvement to [100] was proposed by Zamorski et al. in [101] by adding regular-
ization to the latent space using an adversarial component trained with the Wasserstein
criterion [102]. This discriminator is used to force a prior distribution on the latent space
enabling the model to compactly represent point cloud data either with continuous or
binary values. The model is designed to perform point cloud compression, clustering, and
generation. The general encoder/decoder architectures and the considered datasets are the
same as above. The neural network is trained in an end-to-end fashion using EMD loss.

6.1.3. Folding Net

A different workflow is presented in [103] where a new decoding technique is pro-
posed. The approach followed by Yang et al. uses the features extracted by the encoder
to fold a 2D grid in the shape of the object to reconstruct. This is performed in two steps:
first, the latent space vector is concatenated with points in a 2D grid and processed by
a 1D convolution similarly to PointNet to obtain an intermediate folding. This is then
concatenated again with the former and processed to obtain the final result. Some examples
of PC, intermediate foldings, and reconstructions can be seen in Figure 15.

In addition, in this case, ShapeNet is used as the training set, and the model is tested
on ModelNet obtaining a final Chamfer distance of ≈0.03.

Sensors 2022, 22, 1357 21 of 34

Figure 15. Examples of PCs and their reconstruction procedure.

6.2. Convolutional Autoencoders

Like in their image-based counterparts, convolutional autoencoders have been widely
exploited on voxel-based point cloud data. The current subsection overviews their main
applications.

6.2.1. Syndrome-Based Autoencoder

In the work [104], the proposed solution combines a classical CNN workflow with
some ideas from Distributed Source Coding (DSC). In the DSC framework, the main idea is
that the decoder already knows a code-word, called side information, highly correlated
to the one that one would like to reconstruct. This implies that only a few correction bits,
called syndromes, are sent in order to correct it.

The main idea here is that the receiver is sent a low-resolution version of the PC,
encoded in a lossless manner and the syndromes computed by the encoder. This low-res
model is then upsampled leading to a model with a lot of artifacts and bad quality. Then
the decoder using the syndromes and the side information is able to remove these artifacts
and reconstruct a point cloud similar to the original one.

The architecture used in this work is inspired by U-Net [105], but the features concate-
nated with the ones produced by the decoder are computed at the receiver side from the
side information so that they do not need to be transmitted. In order to address the sparsity
problem, the whole grid is divided into smaller blocks with dimensions 8× 8× 8, and only
those that contain some useful information are processed by the network. The drawback of
this approach is that it only exploits correlation inside the blocks. The main advantages
are that the model can be trained with fewer data since it does not need to learn to encode
complex shapes but just 8× 8× 8 cubes, it is highly parallelizable, and has small memory
requirements as each cube is encoded and decoded independently.

An additional component is added to the loss function given that most of the re-
constructed blocks are planar. This metric computes how similar the fitted planes in the
original and reconstructed blocks are.

The dataset used to train and test the procedure is composed of 3D models provided by
MPEG (see Section 3), this contains more complex samples w.r.t. ModelNet and ShapeNet
since some of the models are acquired with structure from motion, stereo systems, or
LiDAR and are thus not sampled from perfect synthetic meshes.

An improvement is then introduced by the same author in [106] where a discriminator
component is introduced after the decoder to distinguish between reconstructed and real
data in order to improve the perceptual quality of the decoded blocks. The architecture
proposed by this method can be seen in Figure 16.

Sensors 2022, 22, 1357 22 of 34

Figure 16. Scheme of the architecture proposed in [106].

6.2.2. Learned-PCGC

Another work that follows a similar approach is [107]. The authors propose a com-
pression framework that could be easily implemented on embedded systems due to the
highly parallelizable procedure and the low amount of weights needed for the deep learn-
ing models.

The point cloud is first preprocessed by applying voxelization, and coordinates are
downscaled, i.e., divided by a scale factor s > 1 and rounded to the closest integer. Then,
the grid is partitioned into blocks of dimension W ×W ×W. In addition, in this case, since
the whole PC is processed in blockwise order, the coding performance is high, even with a
relatively small model.

DL hyperprior coding [95] is adopted (see Figure 17) in order to improve the effect of
entropy coding and thus obtain better compression rates. It consists of adding a side NN
that is trained to predict the best parameter values for entropy coding leading to a better
regularization and higher compression ratios.

Figure 17. Architecture proposed in [107].

At the decoder side, the PC is reconstructed by inverting all the aforementioned
operations. The framework was trained on Shapenet and tested on the MPEG dataset
achieving superior compression and quality w.r.t. to the G-PCC codec [85], i.e., the stan-
dard static point cloud coder developed by the MPEG group using non deep learning
based techniques.

6.2.3. PCGAE, Implicit/Explicit Quantization, and DL-PCSC

Other approaches were presented by Guarda et al. in [108]. Initially, the authors
proposed in [109] a simple convolutional network where the latent space is quantized in
order to perform entropy coding. Later in [108], the approach was improved by imple-
menting the hyperpriors technique [95] and by proposing an implicit/explicit quantization
framework (see Figure 18). In implicit quantization, a deep learning model is optimized
to minimize a given rate–distortion tradeoff while, in the explicit one, the latent space is
quantized with different step values depending on the required quality/rate tradeoff. This
is performed to address an issue present in all the aforementioned works, i.e., multiple

Sensors 2022, 22, 1357 23 of 34

neural networks need to be trained in order to achieve different compression rates. With
this type of approach, the overall number of networks that need to be trained is greatly
reduced. To further refine this idea, ref. [110] was proposed; here, the latent space produced
by the encoder is split into NL subsets of features that can be progressively encoded to
obtain NL different quality levels. At the decoder side, the values of the missing levels are
padded with zeroes leading to a loss in reconstruction quality.

Figure 18. Architecture proposed in [108].

6.2.4. Brief Comparison between the Aforementioned Approaches

When considering the works by Wang et al. [107], Milani [106], and Guarda et al. [110],
it is possible to see from Figure 19 that the former achieves the best Bjontegaard improve-
ment rates. Moreover, ref. [106] provides similar results with a simpler network that
requires less training time. The approach by Guarda et al. gives the lowest reconstruction
quality, but this is due to the fact that a single network is required to perform compression
at different resolutions; therefore, this is the most flexible and the one with the lowest
memory requirements among the three approaches.

∆PSNR ∆Rate
0

2

4

6

8

∆
P
S
N
R

0

100

200

300

400

500

600

∆
R
a
te

(%
)

Wang et. al.

Milani

Guarda et. al.

Figure 19. Bjontegard metrics for Wang et al. [107], Milani [106], and Guarda et al. [110] against
TMC13.

7. Point Cloud Completion

Point cloud completion is the task of inferring the overall shape of an object given a
partial observation. It is very common that real-world 3D data are incomplete; for example,
models acquired by sensors installed on self-driving cars are usually sparse or incomplete.

PC completion approaches can be broadly summarized in the following categories:

• Geometry methods: the shapes are reconstructed from the partial input using inter-
polation [111–114], without the need for external data;

• Symmetry methods: symmetries and repeating patterns in the objects are
detected [115–118] and used to reconstruct the missing parts;

Sensors 2022, 22, 1357 24 of 34

• Alignment methods: either the partial input is matched and substituted with a shape
in a database [119–122], or multiple parts are matched and merged together [123–125]
in order to obtain the full surface;

• Learned methods: a model learns a probabilistic representation of the possible shapes,
and then it produces the most likely output that might have generated the input it
was fed [126,127].

When considering learned methods, neural networks are generally the most perform-
ing solutions. There is great parallelism between compression and completion because also
in this case the model requires one to extract meaningful features from the input and to
reconstruct the original shape. Consequently, also in PC completion the most successful
architectures are AEs either with a PointNet-based encoder (CD or EMD losses) or with a
voxelized representation of the PC using CNNs and MSE.

7.1. Point Completion Network

Great results on this matter were obtained by Yuan et al. [128] (see Figure 20), where
the authors combined the techniques proposed in [100] and in [103] (see Section 6.1) in
order to achieve better reconstruction performance. This was motivated by the fact that
they noticed that the fully connected decoder is better at reconstructing a low-density
version of the object, while the grid deformation procedure is better at distributing the
points along the surface.

The encoder applies PointNet twice: the first time, a matrix of features F is computed
and then the global representation is obtained as g = maxpool(F). Then, in the second
step, g is concatenated to each feature vector in F, and they are processed again by a
PointNet-like architecture to obtain the final result. The decoder, on the other hand, starts
with some fully connected layers, used to predict a low-resolution version of the object that
should be reconstructed. Then, in the second stage, each predicted point is combined with
a 2D grid that with the folding operation turns into a patch. Finally, all these are merged
together to obtain the full PC.

Figure 20. Point Completion Network [128] architecture.

The overall loss is obtained by combining a Chamfer distance component between
the reconstruction and the ground truth, with the earth moving distance between the
coarse reconstruction and a downsampled version of the expected PC. The dataset used for
training is ShapeNet, and the partial inputs are generated by backprojecting 2.5D images
into 3D to obtain a result that resembles data acquired by real sensors.

7.2. Point Fractal Network

The work by Huang et al. [129] uses a PointNet-based encoder called Combined
Multilayer Perceptron (CMLP) (see Figure 21). Unlike [128], CMLP applies a max-pooling

Sensors 2022, 22, 1357 25 of 34

on the last three layers (instead of the last one only). The feature representations are
aggregated into a vector that contains both global and local information. This procedure is
applied three times, first on the partial point cloud and then on two subsampled versions of
the latter using the iterative farthest point sampling algorithm. The three feature vectors are
aggregated and processed by an MLP in order to compute the latent space representation
of the PC.

Figure 21. Point Fractal Network [129] architecture.

On the decoder side, only the missing part is reconstructed. This means that the origi-
nal geometry of the object is preserved. This is performed hierarchically, i.e., starting from
the latent representation 3 different feature layers FC1, FC2, FC3 which are produced by
using a fully connected network. Each of these is responsible for predicting the missing part
at a different resolution. This allows one to build the missing component in a hierarchical
manner, which shows good improvements in the reconstruction quality.

The loss is composed of a multistage completion loss and an adversarial component.
The former is computed by aggregating the Chamfer Distance between the reconstruction
at the different resolutions and the ground truth together with its downsampled versions,
while the latter is obtained by adding a discriminator that has to understand if the missing
part is real or reconstructed.

7.3. 3D Point Capsule Networks

Many of the techniques used for PC processing are extensions of successful ideas
for 2D multimedia data. One example is the work by Zhao et al. [130] where capsule
networks [131] and the dynamic routing algorithm [132] are adapted to 3D data (see
Figure 22) in order to learn more meaningful features in the latent space of the autoencoder.
This is made possible by the high representative power of capsules whose output is a vector,
where the norm represents the probability that the feature encoded in the vector is present
in the input, while the direction represents the actual feature.

Figure 22. 3D Point Capsule Network [130] architecture.

Sensors 2022, 22, 1357 26 of 34

The encoder is built by extracting per-point features using the same technique as in
PointNet, and then these are fed into multiple independent convolutional layers followed
by max-pooling. The outputs are concatenated into a vector called primary point capsules,
and these are then clustered into higher level latent capsules using the dynamic routing
algorithm. The capsules are concatenated with random grids, following a procedure similar
to [103]: the grids are deformed accordingly to capsule features and patched together to
obtain the final reconstructed model. In addition, in this case, the dataset used for training
is ShapeNet, and the reconstruction loss is the Chamfer distance.

7.4. GRNet

One of the most successful architectures for point cloud completion is GRNet [133].
Here, two brand-new differentiable layers were proposed: Gridding and Gridding reverse.
Their purpose is to transform the PCs into grids that can be processed by convolutional
layers without adding quantization noise. Optimizing the parameters using Chamfer
Loss usually results in predictions that average the various possible modes of the out-
put [134]. As a consequence, a new Gridding loss is proposed, i.e., the L1 distance between
Gridding(ypred) and Gridding(ytrue). The Gridding operation computes a grid around the
model, assigning a value wi to each vertex vi = (xv

i , yv
i , zv

i) of the grid. In order to retain
information about the points in the various cells of the grid, wi is computed as:

wi = ∑
p∈N (vi)

w(vi, p)
|N (vi)|

(9)

where N (vi) is the set of points of the PC lying in the eight cells that are adjacent to vi, and
the interpolation function w(vi, p) is defined as:

w(vi, p) = (1− |xv
i − x|)(1− |yv

i − y|)(1− |zv
i − z|) (10)

The Gridding reverse operation on the other hand generates one point pc
i for each cell

in the grid as:

pc
i =

∑θ∈Θi w′θvθ

∑θ∈Θi w′θ
(11)

where Θi is the set of the eight vertices around the ith cell; in general, no point is generated
if ∑θ∈Θi w′θ = 0. The network operates in five steps:

1. The incomplete PC is transformed in a grid using the Gridding operation;
2. The grid is processed by a CNN with skip connections in a U-Net fashion, and this

step should reconstruct the missing part of the input PC;
3. Gridding reverse is used to produce a coarse point cloud Pc;
4. The next step is cubic feature sampling. Here, 2048 points are sampled from the

coarse point cloud. For each point, the features computed by the first three transposed
convolution layers (relative to the eight vertices around the cell where the point lies)
are concatenated together to generate a big feature vector Fc;

5. A multilayer perceptron processes these features to predict the residual offset between
the point in the coarse and the final completed PC. Then, the final PC is computed as
P = MLP(Fc) + Tile(Pc, r) where the Tile operation repeats the points Pc, r times, so
that the final PC has 2048r points.

As previously mentioned, the loss is computed as the L1 distance between the grid
produced by the ground truth and the one produced by the prediction:

Lgridding =
1

N3
G
||Gridding(Prec)− Gridding(Ptrue)||1 (12)

where NG is the resolution of the grid.

Sensors 2022, 22, 1357 27 of 34

The training set was derived from ShapeNet similarly to [128] while the Completion3D
benchmark [135] and the KITTI [34] datasets were used for performance evaluation.

7.5. Other Strategies

Other noteworthy deep-learning-based approaches are AtlasNet and TopNet.
AtlasNet [136] is one of the first approaches for PC completion. It inspired the Point

Completion Network work [128], and in fact, it works in a similar way: a coarse reconstruc-
tion of the PC is computed, and randomly sampled 2D grids are folded around each point.

Otherwise, in TopNet [135], the decoder reconstructs the whole PC in a hierarchical
rooted tree structure. This is performed by using n MLPs to predict n new features for the
next layer of the tree. These features are then concatenated with the latent space vector,
and the same procedure is repeated. In the end, the final layer predicts points that are
aggregated to produce the PC.

8. Conclusions

This survey presents an updated overview of the main research trends in deep point
cloud processing. The paper highlights the newest research trends and proposes a new
taxonomical organization that includes some of the main peculiarities of PC structures and
the adopted neural architectures. The current state-of-the-art PC technology focuses on
semantic scene understanding, coding, and completion tasks: the current paper proposes
detailed highlights on these aspects, while including some insights on other related op-
erations. Among them, we can identify semantic segmentation, classification and object
detection, generative reconstruction algorithms, and upsampling (deeply connected with
compression and completion). Such tasks usually exploit very similar architectures and
training procedures, applicable in a variety of different scenarios, which are thereby re-
viewed in this paper via highlighting their differences and similarities. Special attention
was also devoted to the PC acquisition mechanism, which has recently proved to be crucial
in characterizing the statistics of the processed data. Being that DL solutions are highly
data oriented, the peculiarities of the acquiring technologies strongly affect the dataset and
its quality. As a matter of fact, this overview also poses attention on the available datasets
and on their uses for the different tasks.

Starting from these premises, the analysis highlights that there is still plenty of room
for improvements, and future research trends can be summarized as follows.

• Semantic Scene Understanding: as it is a widely explored field, many solutions de-
veloped are able to provide accurate results. Point-based methods are the actual
direction of research for their lossless property, and the main hot topic is the develop-
ment of networks that include the temporal dimension, as only a few works already
exist. Moreover, given the huge computational capabilities required by these tasks,
modifications to the learning procedures are being investigated, and future works
should point to this direction, particularly aiming at faster and lighter solutions.

• Compression: right now only geometry coding for static PCs has been addressed;
therefore, future research works may tackle attributes (color, normals, etc.), dynamic
point clouds, and also the study of techniques for better rate control. Moreover, since
some applications target the PC visualization, future compression strategies will be
dealing with PC rendering and interpolation as well (see [21] as an example).

• Completion: point cloud completion networks already achieve very good recon-
struction results. To the best of our knowledge, the main issue is that most of these
approaches require very big and computationally complex networks which might
be unsuitable for real-time applications and small devices with low computational
capabilities. Future works should try to provide results comparable to the state of the
art but with smaller computational time, memory requirements, and energy consump-
tion. Moreover, the last year has witnessed a rising hype towards the Neural Radiance
Field (NeRF) [137] for 3D data visualization and interpolation. Although these solu-

Sensors 2022, 22, 1357 28 of 34

tions have been adopted so far on light-field imaging and multi-view rendering, their
application to SfM point clouds comes as a natural extension.

• Generative approaches: when considering generative methods for PC coding, these
are still in very early stages; in particular, mostly single 3D models have been consid-
ered, and moving toward automatic PC scene generation might be a very promising
research direction in the field of PC generation.

Overall, point cloud processing is now moving towards the direction of new tech-
nologies driven by the latest development of deep learning and GPUs. However, research
is moving also towards the exploration of new learning techniques and methodologies,
e.g., Continual Learning, Contrastive Learning, Coarse-to-Fine Learning, and Domain
Adaptation techniques, to adapt the models to data and improve them even in the absence
of huge computational devices.

Author Contributions: The general organization of the work was carried on by E.C., D.M. and S.M.,
jointly. Bibliographical research and preparation of resources for classification and segmentation was
carried on by E.C., while the material on compression and completion was prepared by D.M. Draft
preparation. Graphics and visualization were by E.C. and D.M.; writing and revision was performed
by E.C., D.M. and S.M. General supervision was performed by S.M. All authors have read and agreed
to the published version of the manuscript.

Funding: SID 2018 project “SartreMR”—Department of Information Engineering, University
of Padova.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All of the datasets mentioned in this paper were properly cited, and the
download links are either specified in the bibliography or are present in the papers (also referenced
in the bibliography) that explain how they were built and what type of data they contain.

Acknowledgments: This work was partially funded by the University of Padova SID 2018 project
“SartreMR”.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AR Augmented Reality
BL Base Layer
CD Chamfer Distance
CDBN Convolutional Deep Belief Network
CNN Convolutional Neural Network
CRF Conditional Random Field
DL Deep Learning
DSC Distributed Source Coding
EL Enhanced Layer
EMD Earth Moving Distance
FMCW Frequency-Modulated Continuous Wave
GSP Graph Signal Processing
GPU Graphics Processing Units
KNN K-Nearest Neighbors
IMU Inertial Measurement Unit
LiDAR Light Detection And Ranging
MLP Multilayer Perceptron

Sensors 2022, 22, 1357 29 of 34

mIoU mean Intersection over Union
NN Neural Network
PC Point Cloud
SS Semantic Segmentation
SC Sparse Convolutions
UDA Unsupervised Domain Adaptation
VR Virtual Reality

References
1. Pereira, F.; Dricot, A.; Ascenso, J.; Brites, C. Point cloud coding: A privileged view driven by a classification taxonomy. Signal

Process. Image Commun. 2020, 85, 115862. [CrossRef]
2. Gao, H.; Cheng, B.; Wang, J.; Li, K.; Zhao, J.; Li, D. Object Classification Using CNN-Based Fusion of Vision and LIDAR in

Autonomous Vehicle Environment. IEEE Trans. Ind. Inform. 2018, 14, 4224–4231. [CrossRef]
3. Irschara, A.; Zach, C.; Frahm, J.M.; Bischof, H. From structure-from-motion point clouds to fast location recognition. In

Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009;
pp. 2599–2606. [CrossRef]

4. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.
[CrossRef]

5. Agarwal, S.; Snavely, N.; Simon, I.; Seitz, S.M.; Szeliski, R. Building Rome in a day. In Proceedings of the 2009 IEEE 12th
International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 72–79. [CrossRef]

6. Pirasteh, S.; Rashidi, P.; Rastiveis, H.; Huang, S.; Zhu, Q.; Liu, G.; Li, Y.; Li, J.; Seydipour, E. Developing an Algorithm for
Buildings Extraction and Determining Changes from Airborne LiDAR, and Comparing with R-CNN Method from Drone Images.
Remote Sens. 2019, 11, 1272. [CrossRef]

7. Cao, K.; Xu, Y.; Cosman, P.C. Pstch-Aware Averaging Filter For Scaling in Point Cloud Compression. In Proceedings of the
2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–29 November 2018;
pp. 390–394. [CrossRef]

8. Li, K.; Wang, X.; Xu, Y.; Wang, J. Density Enhancement-Based Long-Range Pedestrian Detection Using 3-D Range Data. IEEE
Trans. Intell. Transp. Syst. 2016, 17, 1368–1380. [CrossRef]

9. Zhao, M.; Cheung, G.; Florencio, D.; Ji, X. Progressive graph-signal sampling and encoding for static 3D geometry representation.
In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017;
pp. 735–739. [CrossRef]

10. Milani, S. Fast point cloud compression via reversible cellular automata block transform. In Proceedings of the 2017 IEEE
International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 4013–4017. [CrossRef]

11. Furukawa, Y.; Ponce, J. Accurate, Dense, and Robust Multi-View Stereopsis. In Proceedings of the 2007 IEEE Conference on
Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8.

12. Zennaro, S.; Munaro, M.; Milani, S.; Zanuttigh, P.; Bernardi, A.; Ghidoni, S.; Menegatti, E. Performance evaluation of the 1st and
2nd generation Kinect for multimedia applications. In Proceedings of the 2015 IEEE International Conference on Multimedia and
Expo (ICME), Turin, Italy, 29 June–3 July 2015; pp. 1–6. [CrossRef]

13. Sridhara, S.N.; Pavez, E.; Ortega, A. Cylindrical Coordinates for Lidar Point Cloud Compression. In Proceedings of the 2021 IEEE
International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3083–3087. [CrossRef]

14. Milani, S.; Polo, E.; Limuti, S. A Transform Coding Strategy for Dynamic Point Clouds. IEEE Trans. Image Process. 2020,
29, 8213–8225. [CrossRef] [PubMed]

15. Souto, A.L.; de Queiroz, R.L. On Predictive RAHT For Dynamic Point Cloud Coding. In Proceedings of the 2020 IEEE
International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 2701–2705.
[CrossRef]

16. Pavez, E.; Girault, B.; Ortega, A.; Chou, P.A. Region Adaptive Graph Fourier Transform for 3D Point Clouds. In Proceedings
of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020;
pp. 2726–2730. [CrossRef]

17. Mekuria, R.; Blom, K.; Cesar, P. Design, Implementation, and Evaluation of a Point Cloud Codec for Tele-Immersive Video. IEEE
Trans. Circuits Syst. Video Technol. 2017, 27, 828–842. [CrossRef]

18. Liu, H.; Yuan, H.; Liu, Q.; Hou, J.; Liu, J. A Comprehensive Study and Comparison of Core Technologies for MPEG 3-D Point
Cloud Compression. IEEE Trans. Broadcast. 2020, 66, 701–717. [CrossRef]

19. Discher, S.; Richter, R.; Döllner, J. A Scalable WebGL-Based Approach for Visualizing Massive 3D Point Clouds Using Semantics-
Dependent Rendering Techniques. In Proceedings of the 23rd International ACM Conference on 3D Web Technology, Web3D ’18,
Poznań, Poland, 20–22 June 2018; Association for Computing Machinery: New York, NY, USA, 2018. [CrossRef]

20. Martinez-Rubi, O.; Verhoeven, S.; Van Meersbergen, M.; Van Oosterom, P.; GonÁalves, R.; Tijssen, T. Taming the beast: Free and
open-source massive point cloud web visualization. In Proceedings of the Capturing Reality Forum 2015, Salzburg, Austria,
23–25 November 2015.

http://doi.org/10.1016/j.image.2020.115862
http://dx.doi.org/10.1109/TII.2018.2822828
http://dx.doi.org/10.1109/CVPR.2009.5206587
http://dx.doi.org/10.1109/CVPR.2018.00472
http://dx.doi.org/10.1109/ICCV.2009.5459148
http://dx.doi.org/10.3390/rs11111272
http://dx.doi.org/10.1109/GlobalSIP.2018.8646392
http://dx.doi.org/10.1109/TITS.2015.2502325
http://dx.doi.org/10.1109/ICIP.2017.8296378
http://dx.doi.org/10.1109/ICIP.2017.8297036
http://dx.doi.org/10.1109/ICME.2015.7177380
http://dx.doi.org/10.1109/ICIP42928.2021.9506448
http://dx.doi.org/10.1109/TIP.2020.3011811
http://www.ncbi.nlm.nih.gov/pubmed/32746248
http://dx.doi.org/10.1109/ICIP40778.2020.9191205
http://dx.doi.org/10.1109/ICIP40778.2020.9191183
http://dx.doi.org/10.1109/TCSVT.2016.2543039
http://dx.doi.org/10.1109/TBC.2019.2957652
http://dx.doi.org/10.1145/3208806.3208816

Sensors 2022, 22, 1357 30 of 34

21. Capraro, F.; Milani, S. Rendering-Aware Point Cloud Coding for Mixed Reality Devices. In Proceedings of the 2019 IEEE
International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3706–3710. [CrossRef]

22. Tateno, K.; Tombari, F.; Navab, N. Real-time and scalable incremental segmentation on dense SLAM. In Proceedings of the 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015;
pp. 4465–4472. [CrossRef]

23. Wolff, K.; Kim, C.; Zimmer, H.; Schroers, C.; Botsch, M.; Sorkine-Hornung, O.; Sorkine-Hornung, A. Point Cloud Noise and
Outlier Removal for Image-Based 3D Reconstruction. In Proceedings of the 2016 Fourth International Conference on 3D Vision
(3DV), Stanford, CA, USA, 25–28 October 2016; pp. 118–127. [CrossRef]

24. Milani, S. Improving 3D reconstruction tracks using denoised euclidean distance matrices. In Proceedings of the 2017 IEEE
International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 740–744. [CrossRef]

25. Yu, C.; Fang, S.H.; Lin, L.; Chien, Y.R.; Xu, Z. The Impact of Environmental Factors on mm-Wave Radar Point-Clouds for
Human Activity Recognition. In Proceedings of the 2020 International Workshop on Electromagnetics: Applications and Student
Innovation Competition (iWEM), Makung, Taiwan, 26–28 August 2020; pp. 1–2.

26. Milani, S.; Calvagno, G. Correction and interpolation of depth maps from structured light infrared sensors. Signal Process. Image
Commun. 2016, 41, 28–39. [CrossRef]

27. Jin, F.; Sengupta, A.; Cao, S.; Wu, Y.J. Mmwave radar point cloud segmentation using gmm in multimodal traffic monitoring. In
Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020; pp. 732–737.

28. Shen, Y.H.; Chien, Y.R.; Fang, S.H. Human Detection with Weak Ranging Signal for FMCW Radar Systems. In Proceedings of the
2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Sydney, Australia, 21–24
April 2020; pp. 343–344.

29. Oviedo-de la Fuente, M.; Cabo, C.; Ordóñez, C.; Roca-Pardiñas, J. A Distance Correlation Approach for Optimum Multiscale
Selection in 3D Point Cloud Classification. Mathematics 2021, 9, 1328. [CrossRef]

30. Özdemir, E.; Remondino, F.; Golkar, A. An Efficient and General Framework for Aerial Point Cloud Classification in Urban
Scenarios. Remote Sens. 2021, 13, 1985. [CrossRef]

31. Liu, W.; Sun, J.; Li, W.; Hu, T.; Wang, P. Deep Learning on Point Clouds and Its Application: A Survey. Sensors 2019, 19, 4188.
[CrossRef] [PubMed]

32. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern
Anal. Mach. Intell. 2021, 43, 4338–4364. [CrossRef] [PubMed]

33. Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J.D.; Schindler, K.; Pollefeys, M. Semantic3d. net: A new large-scale point cloud
classification benchmark. arXiv 2017, arXiv:1704.03847.

34. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

35. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, Korea, 27–28 October 2019.

36. Cheng, Y.; Su, J.; Chen, H.; Liu, Y. A New Automotive Radar 4D Point Clouds Detector by Using Deep Learning. In Proceedings
of the ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON,
Canada, 6–11 June 2021; pp. 8398–8402.

37. Alujaim, I.; Park, I.; Kim, Y. Human motion detection using planar array FMCW Radar through 3D point clouds. In Proceedings
of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–3.

38. Turk, G. The Stanford Bunny. 2000. Available online: http://graphics.stanford.edu/data/3Dscanrep/ (accessed on 30 December
2021).

39. Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.; et al. Shapenet:
An information-rich 3d model repository. arXiv 2015, arXiv:1512.03012.

40. Fellbaum, C. WordNet: An Electronic Lexical Database; MIT Press: Cambridge, MA, USA, 1998.
41. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A Deep Representation for Volumetric Shapes.

2015. Available online: http://xxx.lanl.gov/abs/1406.5670 (accessed on 30 December 2021).
42. MPEG 3DG; Requirements. Common Test Conditions for Point Cloud Compression—Doc. N17229; ISO/IEC JTC1/SC29/WG11

Coding of Moving Pictures and Audio Meeting Proceedings; ISO/IEC: Geneva, Switzerland, 2017.
43. Eugene, D.; Bob, H.; Taos, M.; Philip, A.C. 8i Voxelized Full Bodies—A Voxelized Point Cloud Dataset. JISO/IEC JTC1/SC29

Joint WG11/WG1 (MPEG/JPEG) input document WG11M40059/WG1M74006. 2017. Available online: http://plenodb.jpeg.org/
pc/8ilabs (accessed on 30 December 2021)

44. Poux, F.; Billen, R. Voxel-Based 3D Point Cloud Semantic Segmentation: Unsupervised Geometric and Relationship Featuring vs
Deep Learning Methods. ISPRS Int. J. Geo-Inf. 2019, 8, 213. [CrossRef]

45. Gao, B.; Pan, Y.; Li, C.; Geng, S.; Zhao, H. Are We Hungry for 3D LiDAR Data for Semantic Segmentation? arXiv 2021,
arXiv: abs/2006.04307.

46. Griffiths, D.; Boehm, J. SynthCity: A large-scale synthetic point cloud. arXiv 2019, arXiv:1907.04758
47. Roynard, X.; Deschaud, J.E.; Goulette, F. Paris-Lille-3D: A large and high-quality ground-truth urban point cloud dataset for

automatic segmentation and classification. Int. J. Robot. Res. 2018, 37, 545–557. [CrossRef]

http://dx.doi.org/10.1109/ICIP.2019.8803432
http://dx.doi.org/10.1109/IROS.2015.7354011
http://dx.doi.org/10.1109/3DV.2016.20
http://dx.doi.org/10.1109/ICIP.2017.8296379
http://dx.doi.org/10.1016/j.image.2015.11.008
http://dx.doi.org/10.3390/math9121328
http://dx.doi.org/10.3390/rs13101985
http://dx.doi.org/10.3390/s19194188
http://www.ncbi.nlm.nih.gov/pubmed/31561639
http://dx.doi.org/10.1109/TPAMI.2020.3005434
http://www.ncbi.nlm.nih.gov/pubmed/32750799
http://graphics.stanford.edu/data/3Dscanrep/
http://xxx.lanl.gov/abs/1406.5670
http://plenodb.jpeg.org/pc/8ilabs
http://plenodb.jpeg.org/pc/8ilabs
http://dx.doi.org/10.3390/ijgi8050213
http://dx.doi.org/10.1177/0278364918767506

Sensors 2022, 22, 1357 31 of 34

48. Kesten, R.; Usman, M.; Houston, J.; Pandya, T.; Nadhamuni, K.; Ferreira, A.; Yuan, M.; Low, B.; Jain, A.; Ondruska, P.; et al. Lyft
Level 5 Perception Dataset 2020. 2019. Available online: https://level5.lyft.com/dataset/ (accessed on 30 December 2021).

49. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

50. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv 2017,
arXiv:1706.02413.

51. Riegler, G.; Osman Ulusoy, A.; Geiger, A. Octnet: Learning deep 3d representations at high resolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3577–3586.

52. Rubner, Y.; Tomasi, C.; Guibas, L.J. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 2000, 40, 99–121.
[CrossRef]

53. Huang, J.; You, S. Point cloud labeling using 3D Convolutional Neural Network. In Proceedings of the 2016 23rd International
Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2670–2675. [CrossRef]

54. Tchapmi, L.P.; Choy, C.B.; Armeni, I.; Gwak, J.; Savarese, S. SEGCloud: Semantic Segmentation of 3D Point Clouds. 2017.
Available online: http://xxx.lanl.gov/abs/1710.07563 (accessed on 30 December 2021).

55. Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for real-time object recognition. In Proceedings of the
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October
2015; pp. 922–928.

56. Wu, J.; Zhang, C.; Xue, T.; Freeman, W.T.; Tenenbaum, J.B. Learning a Probabilistic Latent Space of Object Shapes via 3D
Generative-Adversarial Modeling. In Proceedings of the 30th International Conference on Neural Information Processing Systems,
Barcelona, Spain, 5–10 December 2016; pp. 82–90.

57. Graham, B.; van der Maaten, L. Submanifold sparse convolutional networks. arXiv 2017, arXiv:1706.01307.
58. Su, H.; Jampani, V.; Sun, D.; Maji, S.; Kalogerakis, E.; Yang, M.H.; Kautz, J. Splatnet: Sparse lattice networks for point cloud

processing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22
June 2018; pp. 2530–2539.

59. Rosu, R.A.; Schütt, P.; Quenzel, J.; Behnke, S. Latticenet: Fast point cloud segmentation using permutohedral lattices. arXiv 2019,
arXiv:1912.05905.

60. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of
Large-Scale Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, 14–19 June 2020.

61. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings
of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NE, USA, 3–8 December 2012;
Volume 25.

62. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
63. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

64. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

65. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-View Convolutional Neural Networks for 3D Shape Recognition. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015.

66. Qi, C.R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; Guibas, L.J. Volumetric and multi-view cnns for object classification on 3d data.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 5648–5656.

67. Boulch, A.; Guerry, J.; Le Saux, B.; Audebert, N. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks.
Comput. Graph. 2018, 71, 189–198. [CrossRef]

68. Wu, B.; Wan, A.; Yue, X.; Keutzer, K. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object
segmentation from 3d lidar point cloud. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1887–1893.

69. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

70. Wu, B.; Zhou, X.; Zhao, S.; Yue, X.; Keutzer, K. Squeezesegv2: Improved model structure and unsupervised domain adaptation
for road-object segmentation from a lidar point cloud. In Proceedings of the 2019 International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4376–4382.

71. Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. Rangenet++: Fast and accurate lidar semantic segmentation. In Proceedings of
the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019;
pp. 4213–4220.

72. Zhang, Y.; Zhou, Z.; David, P.; Yue, X.; Xi, Z.; Gong, B.; Foroosh, H. Polarnet: An improved grid representation for online lidar
point clouds semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 9601–9610.

https://level5.lyft.com/dataset/
http://dx.doi.org/10.1023/A:1026543900054
http://dx.doi.org/10.1109/ICPR.2016.7900038
http://xxx.lanl.gov/abs/1710.07563
http://dx.doi.org/10.1016/j.cag.2017.11.010

Sensors 2022, 22, 1357 32 of 34

73. Wu, W.; Qi, Z.; Fuxin, L. Pointconv: Deep convolutional networks on 3d point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9621–9630.

74. Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 15–20 June
2019; pp. 6411–6420.

75. Cheng, R.; Razani, R.; Taghavi, E.; Li, E.; Liu, B. 2-S3Net: Attentive feature fusion with adaptive feature selection for sparse
semantic segmentation network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Nashville, TN, USA, 20–25 June 2021; pp. 12547–12556.

76. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. Pointcnn: Convolution on x-transformed points. Adv. Neural Inf. Process. Syst.
2018, 31, 820–830.

77. Zhu, X.; Zhou, H.; Wang, T.; Hong, F.; Ma, Y.; Li, W.; Li, H.; Lin, D. Cylindrical and Asymmetrical 3D Convolution Networks for
LiDAR Segmentation. arXiv 2020, arXiv:2011.10033.

78. Fan, H.; Yu, X.; Ding, Y.; Yang, Y.; Kankanhalli, M. PSTNet: Point spatio-temporal convolution on point cloud sequences. In
Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April–1 May 2020.

79. Fan, H.; Yang, Y. PointRNN: Point recurrent neural network for moving point cloud processing. arXiv 2019, arXiv:1910.08287.
80. Landrieu, L.; Simonovsky, M. Large-scale point cloud semantic segmentation with superpoint graphs. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4558–4567.
81. Landrieu, L.; Boussaha, M. Point cloud oversegmentation with graph-structured deep metric learning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 7440–7449.
82. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. Acm

Trans. Graph. (TOG) 2019, 38, 1–12. [CrossRef]
83. Guo, M.H.; Cai, J.X.; Liu, Z.N.; Mu, T.J.; Martin, R.R.; Hu, S.M. PCT: Point cloud transformer. Comput. Vis. Media 2021, 7, 187–199.

[CrossRef]
84. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; pp. 5998–6008.

85. Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; Cesar, P.; Chou, P.A.; Cohen, R.A.; Krivokuća, M.; Lasserre, S.; Li, Z.; et al.
Emerging MPEG standards for point cloud compression. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 9, 133–148. [CrossRef]

86. Schnabel, R.; Klein, R. Octree-based Point-Cloud Compression. SPBG 2006, 6, 111–120.
87. Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), Shanghai, China, 9–13 May 2011.
88. Huang, L.; Wang, S.; Wong, K.; Liu, J.; Urtasun, R. OctSqueeze: Octree-structured entropy model for LiDAR compression. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 1313–1323.

89. Zhang, C.; Florencio, D.; Loop, C. Point cloud attribute compression with graph transform. In Proceedings of the 2014 IEEE
International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 2066–2070.

90. Thanou, D.; Chou, P.A.; Frossard, P. Graph-based motion estimation and compensation for dynamic 3D point cloud compression.
In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September
2015; pp. 3235–3239.

91. de Oliveira Rente, P.; Brites, C.; Ascenso, J.; Pereira, F. Graph-Based Static 3D Point Clouds Geometry Coding. IEEE Trans.
Multimed. 2019, 21, 284–299. [CrossRef]

92. Toderici, G.; Vincent, D.; Johnston, N.; Jin Hwang, S.; Minnen, D.; Shor, J.; Covell, M. Full resolution image compression with
recurrent neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI,
USA, 21–26 July 2017; pp. 5306–5314.

93. Li, M.; Zuo, W.; Gu, S.; Zhao, D.; Zhang, D. Learning convolutional networks for content-weighted image compression. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 3214–3223.

94. Agustsson, E.; Tschannen, M.; Mentzer, F.; Timofte, R.; Gool, L.V. Generative adversarial networks for extreme learned image
compression. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 15–20 June
2019; pp. 221–231.

95. Ballé, J.; Minnen, D.; Singh, S.; Hwang, S.J.; Johnston, N. Variational image compression with a scale hyperprior. arXiv 2018,
arXiv:1802.01436.

96. Minnen, D.; Ballé, J.; Toderici, G. Joint autoregressive and hierarchical priors for learned image compression. arXiv 2018,
arXiv:1809.02736.

97. Guo, Z.; Zhang, Z.; Feng, R.; Chen, Z. Causal Contextual Prediction for Learned Image Compression. IEEE Trans. Circuits Syst.
Video Technol. 2021. [CrossRef]

98. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114
99. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial autoencoders. arXiv 2015, arXiv:1511.05644.

http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.1007/s41095-021-0229-5
http://dx.doi.org/10.1109/JETCAS.2018.2885981
http://dx.doi.org/10.1109/TMM.2018.2859591
http://dx.doi.org/10.1109/TCSVT.2021.3089491

Sensors 2022, 22, 1357 33 of 34

100. Achlioptas, P.; Diamanti, O.; Mitliagkas, I.; Guibas, L. Learning representations and generative models for 3d point clouds. In
Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 40–49.

101. Zamorski, M.; Zięba, M.; Klukowski, P.; Nowak, R.; Kurach, K.; Stokowiec, W.; Trzciński, T. Adversarial autoencoders for compact
representations of 3D point clouds. Comput. Vis. Image Underst. 2020, 193, 102921. [CrossRef]

102. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference
on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 214–223.

103. Yang, Y.; Feng, C.; Shen, Y.; Tian, D. Foldingnet: Point cloud auto-encoder via deep grid deformation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 206–215.

104. Milani, S. A Syndrome-Based Autoencoder For Point Cloud Geometry Compression. In Proceedings of the 2020 IEEE International
Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 2686–2690.

105. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

106. Milani, S. ADAE: Adversarial Distributed Source Autoencoder For Point Cloud Compression. In Proceedings of the 2021 IEEE
International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3078–3082.

107. Wang, J.; Zhu, H.; Ma, Z.; Chen, T.; Liu, H.; Shen, Q. Learned point cloud geometry compression. arXiv 2019, arXiv:1909.12037.
108. Guarda, A.F.; Rodrigues, N.M.; Pereira, F. Deep learning-based point cloud geometry coding: RD control through implicit and

explicit quantization. In Proceedings of the 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW),
London, UK, 6–10 July 2020; pp. 1–6.

109. Guarda, A.F.; Rodrigues, N.M.; Pereira, F. Point cloud coding: Adopting a deep learning-based approach. In Proceedings of the
2019 Picture Coding Symposium (PCS), Ningbo, China, 12–15 November 2019; pp. 1–5.

110. Guarda, A.F.; Rodrigues, N.M.; Pereira, F. Point cloud geometry scalable coding with a single end-to-end deep learning model.
In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28
October 2020; pp. 3354–3358.

111. Berger, M.; Tagliasacchi, A.; Seversky, L.; Alliez, P.; Levine, J.; Sharf, A.; Silva, C. State of the art in surface reconstruction from
point clouds. In Proceedings of the Eurographics 2014, Strasbourg, France, 7–11 April 2014; Volume 1, pp. 161–185.

112. Davis, J.; Marschner, S.R.; Garr, M.; Levoy, M. Filling holes in complex surfaces using volumetric diffusion. In Proceedings of the
First International Symposium on 3D Data Processing Visualization and Transmission, Padua, Italy, 19–21 June 2002; pp. 428–441.

113. Nealen, A.; Igarashi, T.; Sorkine, O.; Alexa, M. Laplacian mesh optimization. In Proceedings of the 4th International Conference
on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, Kuala Lumpur, Malaysia, 29 November–2
December 2006; pp. 381–389.

114. Sarkar, K.; Varanasi, K.; Stricker, D. Learning quadrangulated patches for 3d shape parameterization and completion. In
Proceedings of the 2017 International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017; pp. 383–392.

115. Mitra, N.J.; Guibas, L.J.; Pauly, M. Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph. (TOG) 2006,
25, 560–568. [CrossRef]

116. Mitra, N.J.; Pauly, M.; Wand, M.; Ceylan, D. Symmetry in 3d geometry: Extraction and applications. In Computer Graphics Forum;
Wiley and Blackwell: Hoboken, NJ, USA, 2013; Volume 32, pp. 1–23.

117. Pauly, M.; Mitra, N.J.; Wallner, J.; Pottmann, H.; Guibas, L.J. Discovering structural regularity in 3D geometry. In Proceedings of
the ACM SIGGRAPH 2008, New York, NY, USA, 11–15 August 2008; pp. 1–11.

118. Podolak, J.; Shilane, P.; Golovinskiy, A.; Rusinkiewicz, S.; Funkhouser, T. A planar-reflective symmetry transform for 3D shapes.
In Proceedings of the ACM SIGGRAPH 2006, New York, NY, USA, 30 July–3 August 2006; pp. 549–559.

119. Han, F.; Zhu, S.C. Bottom-up/top-down image parsing with attribute grammar. IEEE Trans. Pattern Anal. Mach. Intell. 2008,
31, 59–73.

120. Li, Y.; Dai, A.; Guibas, L.; Nießner, M. Database-assisted object retrieval for real-time 3d reconstruction. In Proceedings of the
Computer Graphics Forum; Wiley and Blackwell: Hoboken, NJ, USA, 2015; Volume 34, pp. 435–446.

121. Nan, L.; Xie, K.; Sharf, A. A search-classify approach for cluttered indoor scene understanding. ACM Trans. Graph. (TOG) 2012,
31, 1–10. [CrossRef]

122. Pauly, M.; Mitra, N.J.; Giesen, J.; Gross, M.H.; Guibas, L.J. Example-based 3d scan completion. In Proceedings of the Symposium
on Geometry Processing, Vienna, Austria, 4–6 July 2005; pp. 23–32.

123. Kalogerakis, E.; Chaudhuri, S.; Koller, D.; Koltun, V. A probabilistic model for component-based shape synthesis. ACM Trans.
Graph. (TOG) 2012, 31, 1–11. [CrossRef]

124. Kim, V.G.; Li, W.; Mitra, N.J.; Chaudhuri, S.; DiVerdi, S.; Funkhouser, T. Learning part-based templates from large collections of
3D shapes. ACM Trans. Graph. (TOG) 2013, 32, 1–12. [CrossRef]

125. Shen, C.H.; Fu, H.; Chen, K.; Hu, S.M. Structure recovery by part assembly. ACM Trans. Graph. (TOG) 2012, 31, 1–11. [CrossRef]
126. Han, X.; Li, Z.; Huang, H.; Kalogerakis, E.; Yu, Y. High-resolution shape completion using deep neural networks for global

structure and local geometry inference. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,
22–29 October 2017; pp. 85–93.

127. Yang, B.; Rosa, S.; Markham, A.; Trigoni, N.; Wen, H. Dense 3D object reconstruction from a single depth view. IEEE Trans.
Pattern Anal. Mach. Intell. 2018, 41, 2820–2834. [CrossRef]

http://dx.doi.org/10.1016/j.cviu.2020.102921
http://dx.doi.org/10.1145/1141911.1141924
http://dx.doi.org/10.1145/2366145.2366156
http://dx.doi.org/10.1145/2185520.2185551
http://dx.doi.org/10.1145/2461912.2461933
http://dx.doi.org/10.1145/2366145.2366199
http://dx.doi.org/10.1109/TPAMI.2018.2868195

Sensors 2022, 22, 1357 34 of 34

128. Yuan, W.; Khot, T.; Held, D.; Mertz, C.; Hebert, M. Pcn: Point completion network. In Proceedings of the 2018 International
Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 728–737.

129. Huang, Z.; Yu, Y.; Xu, J.; Ni, F.; Le, X. PF-Net: Point fractal network for 3D point cloud completion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7662–7670.

130. Zhao, Y.; Birdal, T.; Deng, H.; Tombari, F. 3D point capsule networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 1009–1018.

131. Hinton, G.E.; Krizhevsky, A.; Wang, S.D. Transforming auto-encoders. In Proceedings of the International Conference on
Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; pp. 44–51.

132. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. arXiv 2017, arXiv:1710.09829.
133. Xie, H.; Yao, H.; Zhou, S.; Mao, J.; Zhang, S.; Sun, W. GRNet: Gridding residual network for dense point cloud completion. In

Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 365–381.
134. Jiang, L.; Shi, S.; Qi, X.; Jia, J. Gal: Geometric adversarial loss for single-view 3d-object reconstruction. In Proceedings of the

European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 802–816.
135. Tchapmi, L.P.; Kosaraju, V.; Rezatofighi, H.; Reid, I.; Savarese, S. Topnet: Structural point cloud decoder. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 383–392.
136. Groueix, T.; Fisher, M.; Kim, V.G.; Russell, B.C.; Aubry, M. A papier-mâché approach to learning 3d surface generation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 216–224.

137. Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Proceedings of the ECCV, Glasgow, UK, 23–28 August 2020.

	Introduction
	Point Clouds as Data Structures
	Point Cloud Data
	Acquisition Systems
	Other Data Structures
	Volumetric Models
	Shell or Boundary Models
	Depth Maps

	Datasets
	ShapeNet
	ModelNet
	MPEG
	8i Voxelized Full Bodies
	Stanford 3D Indoor Scene Dataset
	KITTI
	SemanticKITTI
	SynthCity
	Other Recent LiDAR Datasets for Automotive Applications

	General Purpose Deep Learning Techniques
	Architectures
	PointNet
	PointNet++
	Convolutional Neural Networks
	OctNet

	Losses

	Semantic Scene Understanding
	Disambiguation
	Discretization-Based Models
	Dense
	Sparse

	Projection-Based Models
	Multiview
	Spherical
	Cylindrical

	Point Clouds-Based Models
	Pointwise MLP Methods
	Point Convolution Methods
	RNN-Based Methods

	Graph-Based Methods
	Transformer-Based Methods
	Performance Comparison between Different Approaches

	Compression
	Point-Set Autoencoders
	Learning Representations and Generative Models for 3D Point Clouds
	Adversarial Autoencoders for Compact Representations of 3D Point Clouds
	Folding Net

	Convolutional Autoencoders
	Syndrome-Based Autoencoder
	Learned-PCGC
	PCGAE, Implicit/Explicit Quantization, and DL-PCSC
	Brief Comparison between the Aforementioned Approaches

	Point Cloud Completion
	Point Completion Network
	Point Fractal Network
	3D Point Capsule Networks
	GRNet
	Other Strategies

	Conclusions
	References

