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Abstract: Many researchers have proposed vibration-based damage-detection approaches for con-
tinuous structural health monitoring. Translation to real applications is not always straightforward
because the proposed methods have mostly been developed and validated in controlled environ-
ments, and they have not proven to be effective in detecting real damage when considering real
scenarios in which environmental and operational variations are not controlled. This work was aimed
to develop a fully-automated strategy to detect damage in operating tie-rods that only requires one
sensor and that can be carried out without knowledge of physical variables, e.g., the axial load. This
strategy was created by defining a damage feature based on tie-rod eigenfrequencies and developing
a data-cleansing strategy that could significantly improve performance of outlier detection based
on the Mahalanobis squared distance in real applications. Additionally, the majority of damage-
detection algorithms presented in the literature related to structural health monitoring were validated
in controlled environments considering simulated damage conditions. On the contrary, the approach
proposed in this paper was shown to allow for the early detection of real damage associated with a
corrosion attack under the effects of an intentionally uncontrolled environment.

Keywords: automatic damage detection; tie-rod; structural health monitoring; continuous monitor-
ing; real damage; statistical pattern recognition; operational modal analysis

1. Introduction

The development of automatic damage-detection strategies has played a key role
in the condition-based maintenance of mechanical, civil and aerospace structures [1,2].
Vibration-based damage identification approaches have been widely adopted for long-term
continuous monitoring [3,4]. The fundamental idea of these approaches is that damage-
induced changes in physical properties (mass, damping and stiffness) are reflected in
changes in modal parameters (eigenfrequencies, modal damping and mode shapes) [5,6].
According to this principle, modal parameters can be adopted to describe the state of health
of a monitored structure and thus be used to define effective damage features.

A limitation of modal-based damage-detection strategies is that structural and physical
properties are also dependent on environmental and operational conditions and not only on
damage [7,8]. Furthermore, environmental and operational variations often cause changes
in vibration properties that are greater than those caused by damage [9]. Many works in the
literature have suggested strategies to overcome this limitation [10–13], but there have been
few applications to structures under real operating conditions, especially when damage is
present. The authors of this work propose an automatic algorithm that can be used for the
structural health monitoring of beam-like structures; this algorithm was validated with a
one-of-a-kind application where real damage was detected on full-scale structural elements
under the effects of an uncontrolled environment.

More specifically, the test case was represented by tie-rods, i.e., tensioned slender
beams widely adopted in civil structures to balance the lateral forces of arches and vaults
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(though the proposed strategy can work for any kind of tensioned beam, such as the ties
and struts of space frames or the diagonal braces of a truss girder). Despite their simple
geometry, the interpretation of tie-rod modal parameters is complex due to many different
physical variables (e.g., axial load and constraints characteristics) that cause changes in
the structural properties under operating conditions [14]. Moreover, the above-mentioned
physical variables are generally affected by significant uncertainty when real tie-rods
are considered.

A review of the state of the art on the topic of vibration-based tie-rod monitoring
revealed that the attention of the researchers has been mainly focused on the identification
of the axial load as a mean to assess the state of health of structures (the arch or vault where
the tie-rod is adopted) [15]. Indeed, the only possible direct measurement of tie-rod tension
must be obtained through the adoption of strain gauges calibrated during a tensioning
procedure, which is not a viable solution when operating tie-rods are considered. Thus,
many research activities have been devoted to the development of indirect approaches to
estimate the axial load from vibration measurements (some examples can be found in [16–22]).

A common aspect of the above-mentioned works is that none of them considered that
a tie-rod itself can be subject to damage. Conversely, deteriorative phenomena, such as
corrosion, may cause a tie-rod to lose its functionality and consequently cause the collapse
of the structure. Recently, a crack identification method for tie-rods was presented in [23]
based on a comparison between the modal parameters of a damaged tie-rod with those
of a healthy reference one undergoing the same environmental conditions. The approach
mentioned in the study was intended to be adopted through in situ tests, not continuously.
Moreover, since the approach requires a comparison with an undamaged twin structure,
its adoption in real monitoring applications may be difficult.

To overcome these limits, the authors of [24] proposed a vibration-based, data-driven
approach to tie-rod damage detection that showed the potential to detect damage under
the effects of an uncontrolled environment without knowledge of physical variables (e.g.,
tie-rod tension) and without the need for a reference structure. The key point of the
proposed approach is that when a pattern of modal parameters is considered instead of
just a single one, the damage-detection problem can be treated as a multivariate outlier
detection problem. Previous studies [10,25] have shown that calculating the Mahalanobis
squared distance (MSD) of new observations with respect to a baseline period helps mitigate
the effects of environmental and operational variations and allows for damage detection.
The strategy was validated in an uncontrolled environment to detect damage simulated
through the addition of concentrated masses on a tie-rod.

In line with these promising results, three main contributions to the state of the art are
made in this paper. First, attention is paid to minimizing the number of required sensors,
developing a damage-detection strategy that can be carried out by adopting a single
accelerometer on a monitored tie-rod. This strategy relies on a damage feature defined
only by tie-rod eigenfrequencies which could be identified with a single accelerometer
properly placed on the monitored tie-rod. This allows for a simpler experimental set-up
with respect to the one adopted in [24]. The obvious economic consequences of adopting a
simple experimental set-up can help the transition from research to real applications.

A second important contribution of this paper is the automatization of the method,
so the strategy can be adopted without any human supervision. We present an automatic
data-cleansing procedure that was developed and successfully tested on long-term data
acquired in an uncontrolled environment. This paper shows how the proposed strategy can
significantly improve the performance of a damage-detection strategy based on the MSD.

Finally, the experiment designed to validate the approach represents a one-of-a-kind
test case because data referring to the real evolution of a corrosion process over time were
considered in this work. This also represents a rare application in the field of structural
health monitoring, since the majority of the strategies presented in the literature were only
validated with simulated damage in laboratory environment. In this research, instead of
producing discrete changes to structural properties (such as the addition of a concentrated
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mass to simulate a reduction in bending stiffness), real continuous damage evolution
was considered over several months, which allowed us to replicate the most realistic and
challenging possible scenario to test the effectiveness of our damage-detection strategy for
continuous structural health monitoring.

The paper is organized as follows: The adopted vibration-based damage-detection
strategy is described, the mathematical background on the MSD is provided, and a damage
index is introduced in Section 2. The adoption of an effective data-cleansing algorithm
is a necessary step to use the strategy without human supervision, and this algorithm is
presented in Section 3. The experimental set-up and the corrosion process that allowed
for the introduction of real damage in the monitored tie-rods are described in Section 4.
The effectiveness of the damage-detection strategy is discussed in Section 5, where the
results of the experimental campaign are presented. The strengths of the method, current
limitations, and future developments are discussed in Section 6. Finally, conclusions are
drawn in Section 7.

2. Damage-Detection Strategy

In this section, the vibration-based damage-detection strategy, in which eigenfrequen-
cies of the monitored structure are used to define a damage feature, is presented. The
details related to the extraction of tie-rod eigenfrequencies using a single sensor under
operating conditions, together with the data-cleansing procedure proposed to apply the
strategy in an uncontrolled environment, are presented in the next section. The discussion
presented in this section is generally valid for any structure, regardless of the approach
adopted to identify the eigenfrequencies.

If a number M of vibration modes is considered, the M eigenfrequencies
fm (with m = 1, . . . , M) can be stored in a feature vector v, defined as follows:

v = { f1, f2, . . . , fm, . . . , fM}T (1)

where the superscript “T” indicates the transpose. More generally, m = 1 indicates the first
considered eigenfrequency, not necessarily the one associated with the first vibration mode.
From a continuous monitoring perspective, the identification of the eigenfrequencies can
be repeated a number of times Nrec and the eigenfrequencies can be stored in a matrix of
size Nrec ×M, as follows:

B =



vT
1

vT
2
...

vT
r
...

vT
Nrec


(2)

with r = 1, . . . , Nrec.
The matrix B represents a multivariate feature set where every column contains

the trend of each of the M considered eigenfrequencies over time. In order to develop
an unsupervised learning damage-detection strategy, the behavior of a feature during a
reference period (baseline) must be observed and statistically characterized. The matrix
containing the eigenfrequencies associated with the baseline period is named Bref hereafter.

Damage Index

A new observation of the feature vector during the monitoring period, when the tie-
rod health state is unknown, is referred to vnew, and multivariate metrics can be adopted to
check whether vnew is an outlier with respect to Bref. A damage index can be defined by
calculating the MSD between vnew and Bref according to the following expression:

DI = MSD
(

vnew, Bref
)
=
(

vnew − µref
B

)T(
Σref

B

)−1(
vnew − µref

B

)
(3)
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where µref
B is a column vector of size M × 1, the m-th element is the mean of the m-th

column of Bref, Σref
B is the covariance matrix [26] associated with Bref, and superscript “−1”

means the inverse. The index DI is the result of a multivariate discordancy test that can
be compared against a threshold t to determine whether vnew is judged to be statistically
likely or unlikely to have come from the generating process of the multivariate dataset Bref;
if DI > t, the new observation vnew is considered to be an outlier with respect to Bref and
damage is detected. The usual condition distribution is assumed to be Gaussian, and the
threshold calculation can be carried out in terms of a chi-squared-statistics or by adopting
a numerical method. The latter approach based on the Monte Carlo method was adopted
in this work following the procedure explained in [27] comprising the following steps:

1. For every iteration, a matrix with the same size of Bref (i.e., a matrix with Nrec rows
and M columns) is considered, where every element is generated from a zero mean
and unit standard deviation normal distribution.

2. The MSD is calculated between every row of the matrix and the matrix itself, obtaining
Nrec values of DI. The maximum value is stored for every iteration.

3. The procedure is repeated for a large number of trials (e.g., 103 times). All the resulted
maxima (e.g., 103 values) are sorted in terms of magnitude. The critical value for 5%
test of discordancy is given by the MSD in the array above which the 5% of the trials
occur. In this way, a threshold t∗—also known as “inclusive threshold”—is obtained.
This threshold must be used in cases where the baseline set also contains observations
related to the damage condition.

4. If the baseline set does not include data related to the damage condition, as in the
considered case, one must adopt another threshold t (also known as “exclusive
threshold”) that can be evaluated according to the following expression [1]:

t =
(Nrec − 1)(Nrec + 1)2t∗

Nrec(N2
rec − (Nrec + 1)t∗)

(4)

The threshold level is dependent on both the number of observations (Nrec) and the
number of variables (M) of the problem being studied. For a given period, the dimensions
of the baseline set are dependent on the parameters adopted to obtain a stable automatic
identification, as is discussed in the next section.

A key point of the proposed approach is that eigenfrequencies are used to synthetically
represent the current state of the monitored tie-rod because representative of all the physical
variables that mostly influence its dynamic behavior (e.g., the axial load). Even if these
variables change due to environmental and operational variations, the strategy does not
require knowledge of them. Indeed, as proven in [25], in order to filter out variability due to
environmental and operational conditions, this variability must be included in the samples
used to compute the covariance matrix Σref

B . If an adequate baseline set is considered as
reference, the MSD becomes almost insensitive to the variations due to environmental
effects, and, in this sense, the anomaly detection performance improves when a baseline
set containing a full range of environmental conditions is used [10].

A critical aspect of developing a completely automatic damage-detection algorithm is
related to the quality of the features used to evaluate Bref and vnew [28]. Indeed, when the
identification of eigenfrequencies is automatically carried out by exploiting the excitation
coming from an uncontrolled environment, many possible sources of error can lead to
non-reliable results, as discussed in the next section.

If such corrupted data are included in the baseline matrix, they increase the baseline
dispersion and make the damage index DI less sensitive to real outlier data related to
damage. Moreover, if a vector vnew contains wrong identifications, DI can exceed the
threshold when damage is not present. In order to obtain an automatic algorithm that can
work in real applications, a data-cleansing procedure was developed to discard features
containing wrongly identified eigenfrequencies without the supervision of an expert, as
explained in the next section.
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3. Automatic Identification and Data Cleansing

If the procedure described in Section 2 can be successfully used to detect damage in a
tie-rod, as shown in [24], a fundamental step toward real applications is the development
of a completely automatic algorithm with no need for human expert supervision. The
automatization of the procedure to obtain the data needed by the strategy described in
Section 2 is explained below.

Eigenfrequencies can be automatically identified from the dynamic response of a
monitored structure through the adoption of automated operational modal analysis
(OMA) [16,29,30] techniques. Among the different possible approaches, a single-degree-of-
freedom (SDOF) modal identification technique [31] was adopted in this work to identify
the eigenfrequencies of tie-rod bending vibration modes in the vertical plane. Indeed, the
monitored tie-rods showed lightly coupled modes that were not closely spaced in frequency
and not heavily damped, thus allowing for the adoption of the simple and fast approach
described below. However, before discussing the details of the specific case, it is worth men-
tioning that the data-cleansing procedure and the damage-detection approach proposed
here can be carried out regardless of the technique adopted to identify the eigenfrequencies
comprising feature vector v.

When the environment provides random excitation to a tie-rod, each eigenfrequency
can be identified through a best fitting between the experimental power spectrum of the
response Gyy,exp(ω), the function of the angular frequency ω (ω = 2π f , where f is the
frequency expressed in Hz), and the analytical power spectrum of the response of an SDOF
mechanical system with eigenfrequency fm excited by white noise, defined by the following
expression [31]:

Gyy,id(ω, fm, ζm, Xm, Am) =

∣∣∣∣∣ Xm

−ω2 + j2ξm(2π fm)ω + (2π fm)
2 + Am

∣∣∣∣∣
2

(5)

where j is the imaginary unit, ζm is the m-th modal damping ratio, Xm is a constant (function
of the white noise level, the eigenvector component at the measurement point and the modal
participation factor), and Am is the contribution of the out-of-band modes. To allow for
more compact notation, these parameters are grouped in a vector θm = { fm, ζm, Xm, Am}
such that Gyy,id(ω,θm). This simple technique comes with the advantage that a single
accelerometer can be adopted if the sensor is placed in a position that is not close to a node
of the considered vibration mode.

The Welch’s method, based on the frequency-averaging approach, can be used to
calculate an experimental power spectrum [32,33]. The approach requires an initial tuning
of some processing parameters that can be set once prior the automatic monitoring. These
parameters are related to the duration of the record to analyze T (which determines the
amount of time between two observations of the damage feature vector), the duration of
the sub-records Tsub used for the averaging procedure (which determines the frequency
resolution of the power spectrum ∆ f = 1/Tsub), the percentage of overlap between two sub-
records, and the type of window adopted on every sub-record [34]. The results presented
below refer to the considered case study, where a power spectrum was estimated every
hour (T = 3600 s) using Tsub = 40 s, an overlap of 50%, and a Hanning window.

In an uncontrolled environment, the averaging process may not always allow for a
good reconstruction of the power spectrum in the frequency bands where the hypothesis of
SDOF is made; for this reason, the best fitting procedure may fail or converge to wrong
solutions. When this occurs, the wrong estimates of the eigenfrequencies should not be
used to define damage feature vectors. We adopted a data-oriented approach that must be
seen in the context of continuous monitoring when a huge amount of data are available:
identification is always carried out, and wrong identifications are automatically detected
and discarded by analyzing the obtained eigenfrequencies.

The proposed data-cleansing procedure comprises two stages. The first takes place
after every eigenfrequency identification, considering vibration modes one at a time, and it



Sensors 2022, 22, 1370 6 of 25

is described in Section 3.1. In the second stage of data cleansing (presented in Section 3.2),
multiple vibration modes are considered together over a period to detect and remove
outliers that are still present after the first stage.

To show the effect of each stage, we discuss an example based on two weeks of
data in which three eigenfrequencies were considered. All the identified frequencies not
adopting any data cleansing are presented in Figure 1 as two scatter plots ( f2 versus f1
in Figure 1a and f3 versus f1 in Figure 1b). The outliers were those observations that
significantly deviated from the majority, and they were due to the wrong identification of
eigenfrequencies (some examples are circled in Figure 1a,b).
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3.1. First Stage

Every m-th eigenfrequency is considered separately every time identification is carried
out. The automatic identification procedure considering only one eigenfrequency fm is
described below.

1. Initialization step: This step is only intended to define the initial range of where to
assume the SDOF hypothesis. The first approximate value of the eigenfrequency fm,0
must be indicated, along with a value ∆m, such that the power spectrum is considered
only in the range of frequencies between fmin = fm,0 − ∆m

2 and fmax = fm,0 +
∆m
2 .

This can be done by roughly identifying the resonance after a visual inspection of the
power spectrum at the beginning of the monitoring period. Example initialization
parameters used to obtain the eigenfrequencies of the example reported in Figure 1 are
presented in Table 1. In this case, these values were defined after a visual inspection
of the power spectrum shown in Figure 2, which was obtained from data of duration
T = 3600 s, Tsub = 40 s, an overlap of 50%, and a Hanning window.

Table 1. Example of initialization parameters referring to the power spectrum in Figure 2.

m fm,0 (Hz) ∆m (Hz)

1 53 7
2 82 8
3 114 12
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2. Assessing the quality of the fitting: When a new record of data of duration T available,
the adopted automatic OMA technique is applied to identify the target eigenfrequency.
The output of this step is the evaluation of an index that can quantify the quality of
the identification. As mentioned above, the best fitting approach was adopted in this
work. For this reason, the experimental power spectrum Gyy,exp was first calculated,
and only the portion related to the frequencies in the considered range was taken
into account. The eigenfrequency fm was estimated by adopting the simplex search
method [35] to search for the solution of the minimization problem:

min
θm

sse (6)

where:

sse =
imax

∑
i=imin

(
Gyy,exp(ωi)− Gyy,id(ωi,θm)

)2 (7)

In Equations (6) and (7), ωi = 2π( fmin + i∆ f ), imin = 0 and imax = (∆m/∆ f ).
If the ideal power spectrum of the response corresponding to the solution of the

minimization problem
~
θm is Gyy,id

(
ω,

~
θm

)
, the R2 index can be calculated to quantify the

quality of the fitting as follows:

R2 = 1−
∑imax

i=imin

(
Gyy,id

(
ωi,

~
θm

)
− Gyy,exp(ωi)

)2

∑imax
i=imin

(
Γ− Gyy,exp(ωi)

)2 (8)

where Γ is the mean of Gyy,exp(ω) in the considered frequency range. The index R2

can be evaluated once the modal parameters are estimated regardless of the adopted
identification method.
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Ideally, R2 equals 1 (or is very close to 1) if the estimated power spectrum perfectly
overlaps with the experimental one. An example is reported in Figure 3a: in this case, the
experimental power spectrum (black thin line) and the ideal power spectrum of the response
of an SDOF system with an eigenfrequency equal to approximately 111.45 Hz (blue thick
line) showed a good match. Lower values of R2 are associated with the misidentification of
the modal parameters that can occur due to a lack of excitation of the considered vibration
mode. An example is presented in Figure 3b. In this case, the vibration mode was not
excited, as can be noticed by comparing the amplitude of the experimental power spectrum
with that of Figure 3a. In this case, the coefficient R2 was approximately equal to 0.5.
Other conditions that may be associated with a R2 < 1 are those associated with a poor
signal-to-noise ratio that does not allow for an accurate estimate of the power spectrum
in the considered frequency range, as can be observed via the shape of the experimental
power spectrum presented in Figure 3c. The R2 index, in this case, was close to 0.8.
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Figure 3. Superimposition of Gyy,exp(ω) and Gyy,id

(
ω, θ̃m

)
on a logarithmic scale for different

cases. A successful identification (R2 ∼= 1 ) (a). Lack of excitation of the considered vibration
mode (R2 ∼= 0.5 ) (b). Poor signal-to-noise ratio in the considered frequency band (R2 ∼= 0.8 ) (c).
Presence of an harmonic input close to the resonance (R2 ∼= 1 ) (d).

3. Updating fm,0 and storing fm in v: According to what previously observed, a threshold
level tR can be set to discard wrong identifications. If a R2 ≥ tR is associated with
fm, this value is considered as the first guess estimate for the next iteration, so fm,0
is updated such that fm,0 = fm (and consequently, the considered frequency range is
updated). Furthermore, fm is stored in the m-th row of the feature vector v. Conversely,
if R2 < tR, fm,0 is not updated and no feature vector v is obtained for the considered
record of data. Regardless of the results obtained with the other eigenfrequencies,
since the feature vector v must always contain the same number of elements, if even
one of the considered eigenfrequencies is not correctly identified, no feature vector
v can be obtained for the considered record of data. The procedure iterates starting
from step 2.
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To summarize, at this stage, only eigenfrequency estimates coming from fittings
characterized by R2 ≥ tR are preserved, with decisions made after considering only one
record of data at a time and every eigenfrequency separately. This first simple check on the
R2 value effectively points out the presence of clearly corrupted data (the results shown
below were obtained with a threshold level tR = 0.9). For the example of Figure 1, the
strategy was adopted on each of the three eigenfrequencies. The effect of this first stage
of data cleansing can be observed in Figure 4, where red-filled circles are associated with
identifications that did not satisfy the condition R2 ≥ 0.9 and were discarded. Although
a number of outliers were correctly detected and removed by the first stage, there were
still observations that deviated from the majority of the population, meaning that some
wrong eigenfrequency identifications could still be associated with a high R2. An example
related to the presence of a harmonic disturbance is presented in Figure 3d: in this case, the
solution provided by the simplex search method is the value of the harmonic disturbance
at 110 Hz, underestimating the correct eigenfrequency value for the considered vibration
mode and still resulting in an R2 ∼= 1. In general, to remove outliers still present after the
check on R2, another stage of data cleansing is needed.
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3.2. Second Stage

This time, multiple observations of the feature vector v (i.e., matrixes B) are considered.
The second strategy for outlier removal considers the trend in time of the eigenfrequencies
over a short-term period, assuming that in such a short-time window, eigenfrequencies
variations are only caused by axial load variations, like those caused by temperature
variations, and not by damage. This assumption is valid when considering long-term
deteriorative phenomena that do not significantly evolve in a short period, e.g., one or
two weeks.

From analytical models presented in the literature [36,37], every tie-rod squared eigen-
frequency is linearly dependent on the axial load. Consequently, squared eigenfrequencies
of different vibration modes are related to each other with a linear relationship if the axial
load is the only changing variable.

If a set Bshort is considered, the columns of the matrix are the trends of the M identified
eigenfrequencies in a short-term period, and they can be indicated as vectors em, with
m = 1, . . . M. All the elements in vectors em can be squared, and the resulting vectors
are indicated as sm hereafter, with m = 1, . . . , M. As an example, two vectors si and sj
are considered now, with i < j: if the only changing variable is the axial load, a scatter
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plot showing the values of sj as a function of the values of si should result in points lying
on a line (or scattered around a line when dispersion due to identification uncertainty is
considered). Conversely, abnormal observations that cannot be explained by the assumed
underlying linear model would deviate from the linear trend.

To exploit this idea in an automatic way, all the M− 1 couples made by the lowest
squared eigenfrequency and one of the other M− 1 squared eigenfrequencies are consid-
ered separately (in the discussed example where three eigenfrequencies f1, f2 and f3 are
considered, two couples can be made: s1-s2 and s1-s3). For every couple, the linear trend is
first estimated by only considering a subset of observations, as explained in Section 3.2.1.
Once the linear trend is characterized, data are fitted to the line and observations that show
a high residual are removed, as explained in Section 3.2.2.

3.2.1. Linear Trend Estimate

First, the linear trend between si and sj must be estimated over a short-term period
(two weeks of data in the considered example). To estimate the coefficients of the linear
trend, it is important to consider that, at this stage, outliers may be present in one or
both vectors. Evaluating the coefficients of the linear trend while also considering these
outliers can lead to biased results, so the identification of the linear trend is carried out
only on a sub-set of observations. A pre-selection of data is carried out using the Hampel
Identifier [28] on each of the two vectors. The Hampel Identifier is a variation of the
three-sigma rule of statistics that is robust against outliers. When data contain outliers,
even a single out-of-scale observation can cause significant changes of the sample mean
and variance. For this reason, the median and the median absolute deviation (MAD) are
used to estimate the data mean and standard deviation, respectively.

Only data of si and sj that are less than 1 scaled MAD (see Appendix A) distant
from the local median over a moving window of 72 h (green-filled circles in Figure 5) are
considered to estimate linear trend coefficients. The vectors that contain the data used to
carry out a linear fit are indicated with the symbols

^
si and

^
sj. The coefficients of the linear

regression aij and bij are those coming from the least squares solution of the linear problem:

^
sj = aij·

^
si + bij·u (9)

where u is a column vector of the same size as
^
si or

^
sj, with all elements equal to 1.

In the example, the two couples of squared eigenfrequencies resulting from the first
stage of the data-cleansing strategy are reported in Figure 5 (all the black and green-filled
circles). The observations corresponding to green-filled circles were those considered to
calculate a12 and b12 (i.e., the coefficients of the black-dashed line in Figure 5a) and a13 and
b13 (i.e., the coefficients of the black-dashed line in Figure 5b).

3.2.2. Discard with Residual

Once the coefficients aij and bij are known, vectors si and sj are considered at this
stage to finally carry out outlier removal based on the residuals εij of the linear fitting:

εij = sj − aij·si − bij·u (10)

The median and the scaled MAD of the elements of vector εij are calculated. Every
element that is more than 2 scaled MAD away from the median is considered an outlier
and the corresponding row of Bshort is removed. This check can be carried out on a moving
window of 72 h, as in the previous step, but it is also possible to use a broader window. In
the case, as an example, the outliers identified with a two-week window are those reported
with red-filled circles in Figure 6. Similarly to what discussed in Section 3.1, when the
check on either ε12 or ε13 marks an observation as an outlier, the corresponding three
eigenfrequency estimates f1, f2 and f3 are discarded. For this reason, when an outlier was
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detected, e.g., because of the check on ε12, the corresponding observation is marked with a
red filled circle in Figure 6a,b.
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In conclusion, the total effect of the proposed strategy on the previous example can
be observed in Figure 7, where the eigenfrequencies selected and those discarded by the
automatic data-cleansing procedure are indicated with blue circles and red-filled circles,
respectively. As shown in Section 5, the adoption of the data-cleansing strategy allowed
the automatic application of the algorithm introduced in Section 2 to successfully detect
real damage in an uncontrolled environment. Before discussing the results, the test case is
presented in the next section.
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4. Experimental Set-Up

The experimental set-up (see Figure 8a) comprised two nominally identical full-scale
aluminum tie-rods with a free length of 4 m and a cross-section of 0.015× 0.025 m2. The
set-up was located in the laboratories of Politecnico di Milano, specifically in a room
where numerous activities (mainly human activities and those related to laboratory testing
machines) take place throughout the day. Furthermore, the temperature is intentionally
not controlled, so environmental and operational variations are those of an uncontrolled
environment. More specifically, throughout the monitoring period, the maximum and
minimum observed laboratory temperatures were approximately 6 and 29 ◦C, respectively,
with daily thermal excursion from 3 to 8 ◦C.

The tie-rods were equipped with sensors to replicate a long-term structural health
monitoring system for research purposes (e.g., [24,38]). More specifically, each tie-rod
was equipped with four general-purpose industrial piezo-electric accelerometers (PCB
603C01 model with a sensitivity of 10.2 mV/(m/s2) and full scale of ±490 m/s2). The
choice for general-purpose industrial accelerometers comes from the decision to not adopt
high-end sensors, which are typical of laboratory environments and not representative
of real applications. Furthermore, strain gauges comprising a calibrated full Wheatstone
bridge were used to measure the axial load, and the laboratory temperature was measured
with a thermocouple close to the tie-rods.

Data were acquired with NI9234 modules with anti-aliasing filter on board at a sam-
pling frequency of 512 Hz, obtaining a bandwidth of approximately 200 Hz that included
the range of frequency significantly excited by the operative environment. After some
preliminary tests, it was observed that under normal conditions, the operating environment
usually provided a broadband excitation that significantly decreased above 200 Hz.

The data presented below were acquired with an accelerometer placed at ξ = L
10 (L is

the beam free-length and ξ is the longitudinal distance from the constraint according to
the scheme in Figure 8b). In order to adopt the proposed damage-detection strategy using
only one sensor, the accelerometer position was selected while trying to avoid a vibration
node of the first six bending vibration modes in the vertical plane. Figure 9 shows the
analytical mode shapes of the six considered modes for a pinned–pinned beam subject to
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axial load (the simple pinned–pinned model was used here to show the concept behind the
accelerometer position selection). The coordinate ξ is reported on the x-axis, and every m-th
mode shape Ψm(ξ), with m = 1, . . . , M and normalized to one, is presented on the y-axis.
The position of the accelerometer is indicated by a black-solid vertical line at ξ = L/10: it
is possible to observe that such a position potentially allowed for the identification of the
considered vibration modes.

Sensors 2022, 22, 1370 13 of 26 
 

 

 
Figure 8. (a) The experimental set-up; (b) convention for coordinate 𝜉. 

The tie-rods were equipped with sensors to replicate a long-term structural health 
monitoring system for research purposes (e.g., [24,38]). More specifically, each tie-rod was 
equipped with four general-purpose industrial piezo-electric accelerometers (PCB 603C01 
model with a sensitivity of 10.2 mV/(m/s2) and full scale of ±490 m/s2). The choice for gen-
eral-purpose industrial accelerometers comes from the decision to not adopt high-end 
sensors, which are typical of laboratory environments and not representative of real ap-
plications. Furthermore, strain gauges comprising a calibrated full Wheatstone bridge 
were used to measure the axial load, and the laboratory temperature was measured with 
a thermocouple close to the tie-rods.  

Data were acquired with NI9234 modules with anti-aliasing filter on board at a sam-
pling frequency of 512 Hz, obtaining a bandwidth of approximately 200 Hz that included 
the range of frequency significantly excited by the operative environment. After some pre-
liminary tests, it was observed that under normal conditions, the operating environment 
usually provided a broadband excitation that significantly decreased above 200 Hz. 

The data presented below were acquired with an accelerometer placed at 𝜉 = ௅ଵ଴ (𝐿 
is the beam free-length and 𝜉 is the longitudinal distance from the constraint according 
to the scheme in Figure 8b). In order to adopt the proposed damage-detection strategy 
using only one sensor, the accelerometer position was selected while trying to avoid a 
vibration node of the first six bending vibration modes in the vertical plane. Figure 9 
shows the analytical mode shapes of the six considered modes for a pinned–pinned beam 
subject to axial load (the simple pinned–pinned model was used here to show the concept 
behind the accelerometer position selection). The coordinate 𝜉 is reported on the x-axis, 
and every 𝑚-th mode shape Ψ௠(𝜉), with 𝑚 = 1, … , 𝑀 and normalized to one, is pre-
sented on the y-axis. The position of the accelerometer is indicated by a black-solid vertical 
line at 𝜉 = 𝐿/10: it is possible to observe that such a position potentially allowed for the 
identification of the considered vibration modes. 

Figure 8. (a) The experimental set-up; (b) convention for coordinate ξ.

As a general rule of thumb, the position of the accelerometer must be chosen after
considering how many vibration modes are identifiable given the operational environment.
When the number of modes is known, the accelerometer must be placed as far as possible
from the constraints in a position that is not a vibration node for the considered modes.
This choice is important to correctly identify the eigenfrequencies from structural dynamic
responses. In practical cases, even though the mode shapes of a real tensioned beam
are not exactly coincident with those of simplified analytical models, the positions of
modal nodes do not significantly differ and can thus be avoided. Alternatively, for a
more accurate selection of the position of the sensor, one can consider carrying out a
preliminary experimental campaign at the beginning of the monitoring aimed at identifying
the mode shapes. In this case, OMA can be carried out by using an adequate number of
accelerometers; once the vibration modes are reconstructed, the single sensor used for
long-term monitoring can be placed while avoiding modal nodes. Moreover, since multiple
possible options are available, the choice must fall on the position that can provide the
best signal-to-noise ratio (e.g., far from the constraints, where the eigenvector components
are generally low). A better quality of vibration data in terms of the signal-to-noise ratio
increases the reliability of the automatic identification process, which has an impact on the
proposed damage-detection algorithm performance.
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For our experiment, vibration data were continuously acquired under the effect of
uncontrolled environmental and operational variations throughout approximately one year,
first to define the baseline set and then to monitor the evolution of real damage during the
evolution of a corrosion process, as described in the next sub-section.

The Corrosion Process

A key part of the experiment was the introduction of real damage to the tie-rods,
which represents a one-of-a-kind application in the literature of tie-rod damage detection
and, more generally, structural health monitoring. A corrosion process was started on one
of the two tie-rods. The type of corrosion attack reproduced in the experiment is referred
to as “general corrosion”, where the electrochemical reactions between the metal and the
chemical to which it is exposed cause a uniform loss of the metal thickness over the entire
exposed surface. Although aluminum is a chemically very reactive metal, its behavior is
made stable due to the formation of a protective adherent oxide film on the surface. This
film is generated in a natural way, and it is immediately reproduced in the presence of
oxygen, thus protecting the substrate from further oxidation phenomena. Only when the
natural protection provided by the oxide is destroyed under the action of chemical agents
and its regeneration is inhibited can corrosion occur in its various forms [39].

The natural film can be attacked and dissolved both by strongly alkaline solutions
and an acid pH; the most sever attacks have been recorded in the presence of concentrated
solutions of sodium hydroxide (NaOH) and hydrofluoric acids (HF) [39]. In line with
this observation, a general corrosion process was induced on a portion of each of the two
tie-rods by alternating the direct application of HF (Figure 10a) and NaOH (Figure 10b)
on the top surface. First, HF was used to dissolve the protective film so that the general
corrosion process could start more easily. Then, a highly concentrated solution of NaOH
and water was applied to corrode the portion of the tie-rod. The reaction did not self-feed,
and once the NaOH stopped corroding, the formation of the protective oxide resumed.
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Moreover, since the corrosion products of NaOH helped the formation of the oxide, they
were brushed away from the surface of the tie-rods, and the procedure was periodically
repeated, starting again from the application of HF.
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Figure 10. (a) application of HF to the top of a tie-rod; (b) application of NaOH to the top of a tie-rod;
(c) the result of the corrosion process at ξ = L/10 on 25 May 2021; (d) the result of the corrosion
process at ξ = 5

8 L on 25 May 2021.

One of the two tie-rods was attacked for the first time on 8 November 2020 at ξ = 9
10 L,

thus introducing damage close to the constraints. The extent of the area subject to general
corrosion was approximately 5 cm, and the final appearance of the tie-rod on 25 May 2021
is presented in Figure 10c. On 23 February 2021, the same procedure started on the second
tie-rod at ξ = 5

8 L, for an extension of 10 cm. The final aspect of the tie-rod on 25 May 2021
can be observed in Figure 10d.

5. Results

In this section, the results of the experimental campaign are presented. First, damage
farther from the constraints is considered, so the results refer to the tie-rod corroded at
ξ = 5

8 L. In Figure 11, the timeline of the experiment is reported. The acquired data can be
divided into three sets: baseline, validation and corrosion. Data belonging to the baseline
set were those used to build the matrix Bref, which was the reference for the calculation of
the damage index DI through the MSD (see Section 2). The validation set contained data
acquired when damage was not present on the tie-rod but that were not included in the
matrix Bref; this set was used to check that the damage index did not exceed the threshold
level t when damage was not present, causing false alarms. Finally, the corrosion set
contained data referring to the period when the chemical attack was ongoing and damage
was progressing.
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Figure 11. Timeline of the test on the tie-rod corroded at ξ = 5
8 L.

Four pictures of different states of the tie-rod during the corrosion process with
the respective dates are presented in Figure 12: labels C1, C2, C3 and C4 are used in
Figures 13–15 to enable direct references to the tie-rod condition.
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Moreover, the magnitude of damage was quantified by measuring the reduction in
the height of the tie-rod cross section at the center of the corroded area. In Table 2, the
percentage of reduction in the height of the cross section with respect to the initial condition,
indicated by the symbol ∆h, is reported for every damage condition (conditions C5, C6, C7,
and C8 are related to the case of damage close to the constraints, as discussed below).

Table 2. Different magnitude of damage expressed in terms of ∆h.

Corrosion Condition ∆h (%)

C1 2
C2 5
C3 6
C4 10
C5 6
C6 8
C7 22
C8 28

The different temperature conditions corresponding to the different corrosion condi-
tions can distinguished from the trend of the laboratory temperature over time presented
in Figure 13, where different vertical lines with markers refer to different stages of the
corrosion process shown in Figure 12 (in this case, labels C5, C6, C7 and C8 refer to the case
of damage close to the constraints, as described below).

Figures 14 and 15 present the damage index DI, which was calculated between every
observation of the feature vector and Bref considering three tie-rod eigenfrequencies, more
specifically those of the third, fourth and fifth vibration modes. In the following figures,
black crosses indicate DI calculated on baseline data, blue circles indicate DI calculated on
the validation set, and red triangles indicate DI calculated during the corrosion process.
Different vertical lines with markers refer to different stages of the corrosion process
according to Figure 12. Finally, the horizontal black-dashed line represents the threshold
level t for the MSD-based outlier detection (see Section 2).

If the automatic procedure does not include any data-cleansing process, different
problems arise, as shown in Figure 14. Due to the presence of a high number of wrong
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eigenfrequency identifications, the scatter of the baseline data was high. This caused the
method to be less sensitive to damage, which was not detected (red triangles are always
significantly below the damage threshold). Moreover, no trend related to an evolving state
of damage could be assessed if red triangles were considered and compared with baseline
(black crosses) or validation data (blue circles).

The results presented in Figure 15 were obtained with data that were automatically
selected by the data-cleansing procedure. Since the baseline set, by definition, only included
data acquired when the health state of the tie-rod was known and damage was not present,
the data-cleansing process explained in Section 3.2 was conducted while considering all
the observations in the baseline set. For the other two sets (Validation and Corrosion), the
procedure was instead carried out with two weeks of data at a time because the structural
properties of the tie-rod could have changed due to possible damage and evolution.

It is possible to observe that the situation was significantly improved: all the black
crosses fall below the threshold, in accordance with the fact that no outlier related to damage
was present in the baseline set. Furthermore, the blue circles related to the validation set do
not fall above the threshold level, thus not causing false positives. During the corrosion
process, the index values represented by red triangles deviated from the range of black
crosses and blue circles, showing an increasing trend that can be more easily assessed by
looking at a moving average trend reported in green (obtained with a moving average
window of duration equal to one day that was shifted every hour).

When the moving average first crossed the threshold, the tie-rod was not yet in the
condition C2, so ∆h was between 2% and 5%. The result is remarkable considering that
the damage state C2 (∆h = 5%) was barely visible during a visual inspection of the tie-rod,
with reference to the picture in Figure 12.

The performance of the automatic damage-detection algorithm can be represented
through the adoption of a receiver operating characteristic (ROC) curve [40]. This graphical
tool is widely adopted to illustrate the capability of a binary classifier to detect damage
as a threshold is varied. An ROC is made by plotting the true positive rate (TPR) against
the false positive rate (FPR) at various threshold levels. The TPR is the ratio between the
number of positives correctly identified as positives (number of red triangles above the
threshold) and the total number of positives (total number of red triangles). The FPR is the
ratio between the number of false positives (number of blue circles above the threshold)
and the number of negatives (total number of the blue circles). A perfect classifier ROC is
composed by two straight lines from the origin with coordinates (0,0) to the top left corner
(0,1) and from (0,1) to the top right corner (1,1), while a random classifier is represented
by a diagonal from (0,0) to (1,1). The resulting plot can be used to compare the relative
performance of different classifiers and to determine whether a classifier performs better
than random guessing.

Figure 16 shows a comparison of the ROC curves with and without the automatic
data-cleansing procedure, as indicated by black-solid and black-dashed lines, respectively.
Figure 16a was derived from DI calculated every hour, while Figure 16b as derived from
data obtained with the moving average. It is possible to observe that the data-cleansing
algorithm was fundamental for the strategy to be automatically adopted for damage
detection (compare the black-dashed line with the black-solid line in Figure 16a,b). Indeed,
the black-dashed lines indicate that the damage-detection algorithm’s performance was
worse than that of a random classifier; conversely, the black-solid lines indicate behavior
that was very close to that of a perfect classifier.
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As in the previous case, different states of the corrosion process are presented in Fig-
ure 18. The labels adopted in Figure 19, where 𝐷𝐼 is presented for the second tie-rod, are 
the same as those reported in Figure 18. The severity of the damage in the different con-
ditions is quantified by Δℎ in Table 2, while the temperature conditions are shown in 
Figure 13. The damage index 𝐷𝐼 was evaluated while considering three tie-rod eigenfre-
quencies, more specifically those of the fourth, fifth and sixth vibration modes. 

Figure 16. ROC comparison between adopting (black-solid line) or non-adopting (black-dashed line)
the automatic data-cleansing procedure prior to damage detection (damage at ξ = 5

8 L). Results are
presented without (a) and with (b) a moving average.

The same conclusions can be drawn for the other tie-rod experiment that considered
damage close to the constraints (damage at ξ = 9

10 L). In this case, the timeline of the
experiment is reported in Figure 17, again adopting the same labels previously used to
identify the different datasets.
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Figure 17. Timeline of the test on the tie-rod corroded at ξ = 9/10 L.

As in the previous case, different states of the corrosion process are presented in
Figure 18. The labels adopted in Figure 19, where DI is presented for the second tie-
rod, are the same as those reported in Figure 18. The severity of the damage in the
different conditions is quantified by ∆h in Table 2, while the temperature conditions are
shown in Figure 13. The damage index DI was evaluated while considering three tie-rod
eigenfrequencies, more specifically those of the fourth, fifth and sixth vibration modes.
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Additionally in this case, the strategy could successfully detect damage, and the results
were remarkable considering the extent and severity of the damage in a location close to
the constraints where the index is less sensitive to damage, as shown in [24]. Moreover, it is
worth noticing that, in this case, the baseline set was shorter than that of damage at ξ = 5

8 L
(compare timelines reported in Figures 11 and 17) due to the fact that the corrosion attack
started earlier and that the tie-rod was used for another experimental test between 1 January
2020 and 22 April 2020. Since the performance of MSD-based damage detection improves
when a large-enough baseline set is adopted to capture a full range of environmental
conditions [10,25], the results presented in Figure 19 could improve if a larger baseline set
was adopted. Finally the ROC curves for this case are presented in Figure 20: again, it is
possible to observe how the performance of the damage-detection algorithm was improved
by the adoption of the data-cleansing procedure.
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6. Strengths of the Method, Current Limitations and Future Developments

In summary, the proposed method allows for tie-rod monitoring with a single sensor
through an easy-to-apply algorithm that does not require knowledge of physical variables,
e.g., the tie-rod axial load. By applying the proposed data-cleansing procedure, the damage-
detection algorithm based on the MSD can be adopted in a completely automatic way.
As proven by the results of the experimental campaign, the presented strategy allows for
the successful detection of real damage under the effect of uncontrolled operational and
environmental variations.

In practice, since the proposed approach requires the estimate of the eigenfrequencies
of multiple vibration modes, its main limitation is related to the frequency band of the
environmental disturbance that may sometimes limit the number of eigenfrequencies that
can be correctly identified. Future research may regard the improvement of the sensitivity
of the method and the evaluation of the damage-detection performance when other types
of damage are considered.
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7. Conclusions

An automatic, vibration-based, data-driven damage-detection algorithm for beam-like
structures is proposed in this work. The approach allows for damage detection with the use
of a single accelerometer on a monitored tie-rod, does not require time-based inspections,
and can be carried out without the supervision of a human operator.

The relationship between the eigenfrequency values of different vibration modes
is exploited to discard corrupted data at the data-cleansing stage and to detect damage
through the adoption of the MSD. The potential of the strategy in real applications was
experimentally proven, as real damage to full-scale tie-rods was detected both close to and
farther from the constraints under the effect of an intentionally uncontrolled environment.
Testing the algorithm under such a challenging and realistic scenario has allowed us to
show the potential of the proposed strategy to be successfully translated to real applications.
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Appendix A

A vector h, with dimensions (N × 1), is considered here. The r-th element of h is
indicated with hr. To robustly estimate the mean and the scatter of h, the median and the
MAD are often recommended. The MAD is defined as follows:

MAD(h) = median({|h1 −median(h)|, |h2 −median(h)|, . . . , |hr −median(h)|, . . . , |hN −median(h)|}) (A1)

According to [41], the element hr is considered an outlier for a given threshold nσ if:

|hr −median(h)| ≥ nσ·κ·MAD(h) (A2)

The quantity κ·MAD(h) is called scaled MAD, and κ is a normalization factor equal
to 1.4826 [42] that was chosen to make the expected value of the scaled MAD equal to the
standard deviation if h contains a Gaussian data sequence [42].

In this work, nσ = 1 on a moving window of 72 h was adopted on every single vector

s to select the data that comprised vectors
^
s, i.e., those used for the linear trend coefficient

estimates (see Section 3.2.1). nσ = 2 was adopted to identify the outliers in vectors εij
(see Section 3.2.2) and finally discard the corrupted identifications.
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