
����������
�������

Citation: Xu, W.; Hu, J.; Chen, R.; An,

Y.; Xiong, Z.; Liu, H. Keypoint-Aware

Single-Stage 3D Object Detector for

Autonomous Driving. Sensors 2022,

22, 1451. https://doi.org/10.3390/

s22041451

Academic Editors: Yangquan Chen,

Subhas Mukhopadhyay,

Nunzio Cennamo, M. Jamal Deen,

Junseop Lee and Simone Morais

Received: 9 January 2022

Accepted: 11 February 2022

Published: 14 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Keypoint-Aware Single-Stage 3D Object Detector for
Autonomous Driving
Wencai Xu, Jie Hu *, Ruinan Chen, Yongpeng An, Zongquan Xiong and Han Liu

Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology,
Wuhan 430070, China; vehfish@whut.edu.cn (W.X.); chenruinan@whut.edu.cn (R.C.);
yongpeng20_@whut.edu.cn (Y.A.); zq.xiong@whut.edu.cn (Z.X.); liuhan77@whut.edu.cn (H.L.)
* Correspondence: auto_hujie@whut.edu.cn

Abstract: Current single-stage 3D object detectors often use predefined single points of feature maps
to generate confidence scores. However, the point feature not only lacks the boundaries and inner
features but also does not establish an explicit association between regression box and confidence
scores. In this paper, we present a novel single-stage object detector called keypoint-aware single-
stage 3D object detector (KASSD). First, we design a lightweight location attention module (LLM),
including feature reuse strategy (FRS) and location attention module (LAM). The FRS can facilitate
the flow of spatial information. By considering the location, the LAM adopts weighted feature fusion
to obtain efficient multi-level feature representation. To alleviate the inconsistencies mentioned
above, we introduce a keypoint-aware module (KAM). The KAM can model spatial relationships
and learn rich semantic information by representing the predicted object as a set of keypoints. We
conduct experiments on the KITTI dataset. The experimental results show that our method has a
competitive performance with 79.74% AP on a moderate difficulty level while maintaining 21.8 FPS
inference speed.

Keywords: 3D single stage object detector; feature reuse strategy; location attention module;
keypoint-aware module

1. Introduction

Nowadays, object detection has become a fundamental task of scene understanding,
attracting much attention in various fields, such as autonomous vehicles and robotics. The
tasks include traffic sign detection [1–3], traffic light detection [4,5], 2D object detection [6],
and 3D objection detection [7,8], which rely on sensors installed on the autonomous vehicles.
Since LiDAR (light detection and ranging) can provide accurate distance information about
the surrounding environment and is not impacted under low-light conditions, it has become
one of the main sources of perception. The purpose of 3D object detection of LiDAR point
cloud is to predict the bounding box, classification, and direction, an essential job for
downstream perception and planning tasks.

Recently, 3D object detection methods based on deep learning have been widely
adopted, and achieved dramatic developments in industry and academia [7]. Despite huge
advantages, it is important to note that point clouds suffer some drawbacks: (1) The original
point cloud is sparse, while the image is dense; (2) Point cloud data have an unstructured
and unordered nature [8]; (3) Point cloud data are sensitive to occlusion and distance; (4) 3D
features introduce a heavy computational burden. Instead of learning feature for each point,
volumetric-based methods encode point clouds into regular 3D grids, called voxels, so as
to achieve robust representation and then apply a Convolution Neural Network (CNN)
for feature extraction and prediction instance object. Furthermore, a regular data format
can naturally transfer previous mature knowledge from the image domain. Although
the point cloud can reflect the real geometric structure and object size, the image may
suffer from these information losses. Thus, applying image methods directly may deliver

Sensors 2022, 22, 1451. https://doi.org/10.3390/s22041451 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041451
https://doi.org/10.3390/s22041451
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22041451
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041451?type=check_update&version=1

Sensors 2022, 22, 1451 2 of 18

the opposite effects and degrade the final performance. Based on the discussion above,
this study analyzes the performance of representative architecture on feature extraction.
Moreover, we derive a novel and efficient feature extraction method that can learn a rich
feature representation and avoid using deeper models that slow the calculation speed.

One of the crucial questions in object detection is the inconsistence between the
confidence score and the predicted bounding box. Generally, the confidence score is usually
used to rank the bounding box in the Non-Maximum Suppression (NMS) process to remove
redundant candidates [9]. It is found that IOU is more responsive to localization quality;
thus, 3D IOU-Net [8] and CIA-SSD [10] integrate an IOU prediction head into object
detection architecture to achieve a remarkable performance improvement. However, these
methods remain problematic in that there is no way to measure the distance between the
two bounding boxes when they do not overlap with each other, which does not facilitate
the subsequent optimization process.

In addition, most 3D object detection methods adopt a predefined single anchor point
to calculate object confidence scores. However, in such cases, the location is independent
from training and no close ties can be established with the predicted bounding box. Espe-
cially, two drawbacks will appear: (1) Although the predefined anchor point position is
fixed, the position of the predicted bounding boxes relative to the anchor point is shifted. In
Figure 1a, the anchor point (purple circle) stands on the top right of the predicted bounding
box, while in Figure 1e, it is on the top left of the predicted bounding box. It can be observed
that the relative position of the predefined anchor points to the bounding box is uncertain.
In other words, it is necessary to establish an explicit mapping correspondence between the
detection object and sampling points; (2) The position of the LIDAR scanning on the object
is different due to the position and orientation of the detection object. In Figure 1a, the scan
point lies in the lower left part of the bounding box, while in Figure 1e, it is in the lower
right part of the bounding box. Obviously, the traditional 3D object detection method using
a single anchor point feature cannot adequately describe the whole bounding box feature.
Therefore, more robust bounding box representation needs to be explored.

Sensors. 2022, 14, x FOR PEER REVIEW 2 of 19

the image may suffer from these information losses. Thus, applying image methods di-
rectly may deliver the opposite effects and degrade the final performance. Based on the
discussion above, this study analyzes the performance of representative architecture on
feature extraction. Moreover, we derive a novel and efficient feature extraction method
that can learn a rich feature representation and avoid using deeper models that slow the
calculation speed.

One of the crucial questions in object detection is the inconsistence between the con-
fidence score and the predicted bounding box. Generally, the confidence score is usually
used to rank the bounding box in the Non-Maximum Suppression (NMS) process to re-
move redundant candidates [9]. It is found that IOU is more responsive to localization
quality; thus, 3D IOU-Net [8] and CIA-SSD [10] integrate an IOU prediction head into
object detection architecture to achieve a remarkable performance improvement. How-
ever, these methods remain problematic in that there is no way to measure the distance
between the two bounding boxes when they do not overlap with each other, which does
not facilitate the subsequent optimization process.

In addition, most 3D object detection methods adopt a predefined single anchor point
to calculate object confidence scores. However, in such cases, the location is independent
from training and no close ties can be established with the predicted bounding box. Espe-
cially, two drawbacks will appear: (1) Although the predefined anchor point position is
fixed, the position of the predicted bounding boxes relative to the anchor point is shifted.
In Figure 1a, the anchor point (purple circle) stands on the top right of the predicted
bounding box, while in Figure 1e, it is on the top left of the predicted bounding box. It can
be observed that the relative position of the predefined anchor points to the bounding box
is uncertain. In other words, it is necessary to establish an explicit mapping correspond-
ence between the detection object and sampling points; (2) The position of the LIDAR
scanning on the object is different due to the position and orientation of the detection ob-
ject. In Figure 1a, the scan point lies in the lower left part of the bounding box, while in
Figure 1e, it is in the lower right part of the bounding box. Obviously, the traditional 3D
object detection method using a single anchor point feature cannot adequately describe
the whole bounding box feature. Therefore, more robust bounding box representation
needs to be explored.

(a) (b) (c)

(e) (f) (g) (h)

(d)

Figure 1. Various BEVs (bird’s eye views) of predicted bounding box. The purple circle refers to the
predefined anchor point, which predicts the 3D bounding box. The blue circles refer to the extracted
keypoints on the boundary, and the green circles refer to the extracted keypoints inside the bound-
ing box. The blue dashed line refers to the BEV of the predicted bounding box. The red circles refer
to the point on the detection object scanned by the LIDAR, the yellow star refers to the center loca-
tion of the bounding box. (a,e) denote different relations of predefined anchor points and bounding
boxes. (b,c) denote different distribution of boundary keypoints of the bounding boxes. (f,g) indicate
different distribution of inner keypoints of the bounding boxes. (d,h) indicate different Point out the
different sampling methods covering the boundary and inner parts.

Figure 1. Various BEVs (bird’s eye views) of predicted bounding box. The purple circle refers to the
predefined anchor point, which predicts the 3D bounding box. The blue circles refer to the extracted
keypoints on the boundary, and the green circles refer to the extracted keypoints inside the bounding
box. The blue dashed line refers to the BEV of the predicted bounding box. The red circles refer to
the point on the detection object scanned by the LIDAR, the yellow star refers to the center location
of the bounding box. (a,e) denote different relations of predefined anchor points and bounding
boxes. (b,c) denote different distribution of boundary keypoints of the bounding boxes. (f,g) indicate
different distribution of inner keypoints of the bounding boxes. (d,h) indicate different Point out the
different sampling methods covering the boundary and inner parts.

Considering the above problem, we proposed a KAM (keypoint-aware module) which
can directly utilize the boundary keypoints from each boundary and inner keypoints by

Sensors 2022, 22, 1451 3 of 18

mapping the predicted real geometries to a feature map. In this way, the predicted scores
can be jointly optimized with the features corresponding to the prediction bounding boxes.

In the paper, we divide the bounding box into two parts, so as to extract the sampling
keypoints: the boundary parts and the inner parts. For the extraction of sampling points,
three aspects are considered: (1) The contribution of the boundary points or inner points,
respectively, to the 3D object detection; (2) Different sampling strategies for boundary
points and inner points. For boundary keypoints sampling, two sampling strategies are
adopted. One is to use only the four corner points (blue circles), as in Figure 1b. The other
is to sample the boundary uniformly. For example, as seen in Figure 1c, three points are
sampled uniformly for the boundary. For inner keypoints sampling, the points are divided
into different numbers of uniform spatial grids. For example, in Figure 1f, the BEV of the
bounding box is divided into four parts, while in Figure 1g, the BEV of the bounding box
is divided into six parts; (3) A combination of boundary keypoints and inner points. The
combination of different numbers of boundary and inner keypoints could improve the
performance of 3D object detection differently. For example, in Figure 1d, four samples are
extracted from the boundary and other four from the inner. In Figure 1h, the boundary
parts extract six samples and the inner parts extract six samples. The combination that
yields the best detection performance should be chosen.

In summary, the key contributions of the proposed method are as follows:

(1) In order to better retain and extract spatial information from LiDAR, as well as to
extract effective cross-layer features, a novel lightweight location attention module
named LLM is proposed, which can maintain an efficient flow of spatial information
and incorporate multi-level features.

(2) A keypoints sample method is adopted to enhance the correlation between the pre-
dicted bounding box and scores, thus improving the performance of detection.

(3) Extensive experiments are conducted on the KITTI benchmark dataset, demonstrating
that the proposed network attains good performance.

2. Related Work
2.1. Multi-Modal Fusion Detector

Currently, the fusion between LiDAR and camera sensors is a promising research
hotspot. The camera can provide dense and rich information on objects such as their
fine-grained colors and textures, while LiDAR can provide precise range information.
Thus, various fusion methods have been exploited to enhance the performance of 3D
object detection.

Frustum PointNets [11] assumes the availability of 2D image proposals and gets
the point cloud of the corresponding area to estimate the 3D bounding box. However,
Frustum PointNets assumes that vertical space only has one object, which is not suitable
for the 3D point cloud. Thus, Frustum ConvNet [12] is designed to generate a sequence
of proposals to solve the problem of multiple object occlusions. MV3D [13] introduces
the two-stage detector. It generates 3D object proposals from the BEV map and deeply
fuses multi-view features via region-based representation. Such fusion is with comparative
coarse, so DCFS [14] exploits continuous convolutions to fuse image and LIDAR feature
maps at different levels of resolution. To guide the network to learn better cross-modality
feature representations, MMF [15] develops a multi-task detector, which can deliver 2D
and 3D object detection, ground estimation, and depth completion.

In order to avoid forcing fuse feature vectors from different sizes, CLOCs [16] propose
a late fusion strategy, which only jointly aligns and label data in the final fusion step.

2.2. LiDAR-Based Detector

Judging from the current published work, the performance of LiDAR-only based
detectors is better than that of the fusion-based detectors.

There are two approaches to tackle object detection on the point cloud. The first
approach is to use a two-stage detector. PointRCNN [17] is such a two-stage detection

Sensors 2022, 22, 1451 4 of 18

framework. The first stage generates a foreground segmentation mask, while the second
stage conducts region pool operation from the 3D proposals in the first stage, so as to refine
3D bounding boxes. STD [18] designs spherical anchors to generate accurate point-based
proposals. To capture dense representations, it deploys a new PointsPool layer to convert
point-based features. PV-RCNN [19] incorporates point-based and voxel-based methods
to generate high-quality multi-scale features with flexible receptive fields. However, the
two-stage methods mentioned above fail to satisfy the real-time requirements. Voxel-
Net [20] propose new voxel features encoding layer to learn complex feature. SECOND [21]
introduces an improved sparse convolution and data augmentation to reduces the time
for both training and inference. PointPillars [22] learns features on pillars and significantly
increase the speed by formulating all key operations as 2D convolutions. 3DSSD [23] com-
bines F-FPS and D-FPS together to effectively preserve interior points of various instances
to solve sampling questions.

2.3. Location Quality Estimation

This study is focused on single-stage object detectors, owing to real-time effectiveness.
Generally, classification scores are predicted with a single point in a predefined style.
SASSD [24] divides feature map corresponding to the bounding box and select the center
position to obtain more precise classification scores. However, SA-SSD does not exploit
boundary awareness of bounding box, which is also important to define object confidence.
3D IoU-Net [8] use the IOU (Intersection-over-Union) to suppress irrelevant confidence.
CIA-SSD [10] formulates a novel IOU-weighted NMS to reduce redundant predictions and
keep higher inference speed. However, CIA-SSD and 3D IOU-Net do not associate the
predicted bounding box feature with a certain score.

As analyzed above, current advanced methods take into account the confidence scores
quality. Different from the previous methods, this study deeply explores the relationship
between the confidence scores and the predicted box, so that it can be closely linked to
improving detection performance.

3. Approach

In this section, we introduce the proposed single-stage 3D object detection method.
First, we present the design of full architecture. Second, we discuss the 3D feature extraction
backbone module. Third, the proposed location attention module is discussed. Finally, we
depict the strategies for keypoint-aware module in detail.

3.1. Framework

The proposed KASSD detector, as depicted in Figure 2, consists of four components:
(1) A voxel-based feature extractor; (2) A 3D backbone module; (3) A lightweight location
attention module; (4) A keypoint-aware module.

The 3D backbone module voxelizes raw 3D point cloud data and converts these data to
3D sparse CNN features. Then, 3D sparse convolution is used to extract features effectively.
Compared to the 3D sparse convolution, 2D convolution is more compact and efficient [25].
Thus, the 3D sparse feature is reshaped to deliver the general 2D feature presentation. The
extracted feature information contained in the point cloud is not only in higher sparsity but
also substantially varies according to distances. To efficiently learn multi-layer features, a
lightweight location attention module is proposed to address this problem. For pixel-wise
features, most research uses one point to predict the class scores that are not adequate, thus
leading to lower accuracy. By discussing different mapping feature extraction methods
with influence on the results, this study proposes a novel keypoint-aware sample module.
Experiments show that the novel method based on mapping is an effective way to learn
the remote range and sparsity feature.

Sensors 2022, 22, 1451 5 of 18

Sensors. 2022, 14, x FOR PEER REVIEW 5 of 19

Voxelization Direction

Scores

Regression
box

Refined
scores

Sparse 3D
downsample
convolution

Sparse 3D
subm

convolution

KAM
branch

LAM
module

pointcloud

…

…

…
BEV3D

Ave rage

Figure 2. Overview of the KASSD. Firstly, the KASSD convert raw points to voxel features. Then,
the 3D backbone module applies 3D sparse convolution for feature extraction. Subsequently, the 3D
features are converted into BEV representations, on which we use the LLM module to obtain more
expressive features for subsequent detection. Finally, the KAM take regression box is used as input
and generates accurate confident scores for post-processing.

The 3D backbone module voxelizes raw 3D point cloud data and converts these data
to 3D sparse CNN features. Then, 3D sparse convolution is used to extract features effec-
tively. Compared to the 3D sparse convolution, 2D convolution is more compact and effi-
cient [25]. Thus, the 3D sparse feature is reshaped to deliver the general 2D feature presen-
tation. The extracted feature information contained in the point cloud is not only in higher
sparsity but also substantially varies according to distances. To efficiently learn multi-
layer features, a lightweight location attention module is proposed to address this prob-
lem. For pixel-wise features, most research uses one point to predict the class scores that
are not adequate, thus leading to lower accuracy. By discussing different mapping feature
extraction methods with influence on the results, this study proposes a novel keypoint-
aware sample module. Experiments show that the novel method based on mapping is an
effective way to learn the remote range and sparsity feature.

3.2. Voxelization
As we all know, the point cloud is unordered and diverse in 3D space; thus, it is

necessary that the point cloud is split to heterogeneous small voxels with a resolution of
dx, dy, dz, supposing that the range of point cloud is along the X, Y, Z axis. The original
point cloud is equally discretized to grid cells with coordinates. Next, it is necessary to
make the inter-cell point cloud uniformly. As shown in Figure 3, there exist two methods.
Shown in Figure 3a, many papers [26,27] use this method to extract voxel feature, which
consists of the FCN layer, pool layer, and feature concatenation layer. It is comparatively
complex and consumes some time. In Figure 3b, another method is shown, which is much
more simple, and can immediately compute the mean value of all points in a specific grid
excluding for empty cell.

Figure 2. Overview of the KASSD. Firstly, the KASSD convert raw points to voxel features. Then,
the 3D backbone module applies 3D sparse convolution for feature extraction. Subsequently, the 3D
features are converted into BEV representations, on which we use the LLM module to obtain more
expressive features for subsequent detection. Finally, the KAM take regression box is used as input
and generates accurate confident scores for post-processing.

3.2. Voxelization

As we all know, the point cloud is unordered and diverse in 3D space; thus, it is
necessary that the point cloud is split to heterogeneous small voxels with a resolution of dx,
dy, dz, supposing that the range of point cloud is along the X, Y, Z axis. The original point
cloud is equally discretized to grid cells with coordinates. Next, it is necessary to make the
inter-cell point cloud uniformly. As shown in Figure 3, there exist two methods. Shown in
Figure 3a, many papers [26,27] use this method to extract voxel feature, which consists of
the FCN layer, pool layer, and feature concatenation layer. It is comparatively complex and
consumes some time. In Figure 3b, another method is shown, which is much more simple,
and can immediately compute the mean value of all points in a specific grid excluding for
empty cell.

Sensors. 2022, 14, x FOR PEER REVIEW 6 of 19

V
FE

 L
ay

er

M
A

P

a

Raw point cloud sample voxelization

b

c

Figure 3. Voxel feature encoding layer. (a) Complex encoding method by stacking layers. (b)

Computing mean value of inner points in voxel grid.

3.3.3. D Backbone Module

We use the popular 3D backbone module [28] that consists of four blocks, denoted as

1 2 3 4, , ,B B B B . Each of the blocks is serially connected to the last block. The detailed

architecture is shown in Figure 4. Blue layer means submanifold sparse convolutions

layer. Green layer means general convolution. Specifically, the input features enter four

blocks sequentially, and each one is shown in Figure 4. As a result, these are four stages,

where each one has a resolution of with respect to the input feature.

Figure 4. The structure of the 3D backbone module. The first orange box converts voxel features into

4D sparse tensors. The green boxes are submanifold convolutional layers. The blue boxes are sparse

convolution with stride = 2.

3.4. Lightweight Location Attention Module

Aiming to better use the feature representation of point clouds in 2D space with

shallow CNN, we introduce the LLA module. Current object detectors mostly use CNN

blocks or immediately use multi-level features for feature fusion to strengthen features,

which cannot take full advantage of the representation potential of feature fusion. This is

because shallow information is obtained through less convolution and lacks rich semantic

features, while deep feature lacks excessive spatial detail [29]. However, in the later

experiments, we found that the technology which is practical in the imaging field does

not scale well in the LIDAR field. Thus, we should exploit a new architecture that can

extend the ability of 2D CNN to the point cloud domain.

5×200

176×64

40×1600

1408×4

40×1600

1408×16

20×800

704×32

10×400

352×64

Dense

B1 B2 B3 B4

Figure 3. Voxel feature encoding layer. (a) Complex encoding method by stacking layers.
(b) Computing mean value of inner points in voxel grid.

Sensors 2022, 22, 1451 6 of 18

3.3. D Backbone Module

We use the popular 3D backbone module [28] that consists of four blocks, denoted
as B1, B2, B3, B4. Each of the blocks is serially connected to the last block. The detailed
architecture is shown in Figure 4. Blue layer means submanifold sparse convolutions layer.
Green layer means general convolution. Specifically, the input features enter four blocks
sequentially, and each one is shown in Figure 4. As a result, these are four stages, where
each one has a resolution of with respect to the input feature.

Sensors. 2022, 14, x FOR PEER REVIEW 6 of 19

VF
E

La
ye

r

M
A

P

a

Raw point cloud sample voxelization

b

c

Figure 3. Voxel feature encoding layer. (a) Complex encoding method by stacking layers. (b) Com-
puting mean value of inner points in voxel grid.

3.3.3. D Backbone Module
We use the popular 3D backbone module [28] that consists of four blocks, denoted as

1 2 3 4, , ,B B B B . Each of the blocks is serially connected to the last block. The detailed archi-
tecture is shown in Figure 4. Blue layer means submanifold sparse convolutions layer.
Green layer means general convolution. Specifically, the input features enter four blocks
sequentially, and each one is shown in Figure 4. As a result, these are four stages, where
each one has a resolution of with respect to the input feature.

Figure 4. The structure of the 3D backbone module. The first orange box converts voxel features into
4D sparse tensors. The green boxes are submanifold convolutional layers. The blue boxes are sparse
convolution with stride = 2.

3.4. Lightweight Location Attention Module
Aiming to better use the feature representation of point clouds in 2D space with shal-

low CNN, we introduce the LLA module. Current object detectors mostly use CNN blocks
or immediately use multi-level features for feature fusion to strengthen features, which
cannot take full advantage of the representation potential of feature fusion. This is because
shallow information is obtained through less convolution and lacks rich semantic features,
while deep feature lacks excessive spatial detail [Error! Reference source not found.].
However, in the later experiments, we found that the technology which is practical in the
imaging field does not scale well in the LIDAR field. Thus, we should exploit a new archi-
tecture that can extend the ability of 2D CNN to the point cloud domain.

Figure 4. The structure of the 3D backbone module. The first orange box converts voxel features into
4D sparse tensors. The green boxes are submanifold convolutional layers. The blue boxes are sparse
convolution with stride = 2.

3.4. Lightweight Location Attention Module

Aiming to better use the feature representation of point clouds in 2D space with
shallow CNN, we introduce the LLA module. Current object detectors mostly use CNN
blocks or immediately use multi-level features for feature fusion to strengthen features,
which cannot take full advantage of the representation potential of feature fusion. This is
because shallow information is obtained through less convolution and lacks rich semantic
features, while deep feature lacks excessive spatial detail [29]. However, in the later
experiments, we found that the technology which is practical in the imaging field does not
scale well in the LIDAR field. Thus, we should exploit a new architecture that can extend
the ability of 2D CNN to the point cloud domain.

In the experiments later, we also migrate a large CNN, of which the network depth
has also been deepened. In addition, the high-level feature focuses on abstract semantic
and provides the rough positions information, while the low-level feature determines
the accurate object information. Thus, multi-level feature fusion should consider the
importance of space and semantics of different positions in multi-level features.

For spatial information that decreases with increasing network depth, we use a simple
but effective method to maintain the efficient flow of spatial information in CNN. The
detailed process is shown in Figure 5a. We exploit the potential ability through feature
reuse strategy (FRS), yielding representational power from the network.

In Figure 5a, the proposed FRS is mainly implemented in three branches. Firstly, in
branch 1, the BEV feature F0 is obtained by reducing input feature channels so that they
can be directly summed with the following high-level feature. Secondly, the spatial feature
F1 is obtained by using three convolutions and does not change the feature dimension.
Then, the semantic feature F2 is obtained by one-layer convolution with stride = 2 and
two-layer convolution with stride = 1 to get more abstract semantic representation. Thus,
the resolution of F2 is reduced by half, but the number of channels doubles. To reduce the
loss of spatial information, we add two branches. Branch 2 passes feature F0 to each of the
subsequent layers. In branch 3, the intermediate layer feature F3 also directly passes to the

Sensors 2022, 22, 1451 7 of 18

subsequent feature map. F2 is reshaped to the original dimension by two deconvolutions
so that it can be easily operated with the original feature. In other words, one branch
combines the bottom layer feature, which promotes the flow of spatial information, while
another branch combines the intermediate feature, which extracts rich semantic features. In
addition, we combine features through sum operations. The aim is to reduce the number of
parameters; it has been found that this works rather robustly in our experiments. In this
way, all features are utilized multiple times.

Sensors. 2022, 14, x FOR PEER REVIEW 7 of 19

In the experiments later, we also migrate a large CNN, of which the network depth
has also been deepened. In addition, the high-level feature focuses on abstract semantic
and provides the rough positions information, while the low-level feature determines the
accurate object information. Thus, multi-level feature fusion should consider the im-
portance of space and semantics of different positions in multi-level features.

For spatial information that decreases with increasing network depth, we use a sim-
ple but effective method to maintain the efficient flow of spatial information in CNN. The
detailed process is shown in Figure 5a. We exploit the potential ability through feature
reuse strategy (FRS), yielding representational power from the network.

Sum

Sum

S

Multiply

Multiply

+

Fout

LAM+

(a)

(b)

②

①

Deconv

+

Deconv

+

1F 2F

4F

3F

0FinputF

outF

3F

4F

③

0π ∗

1π ∗

0π

1π

Figure 5. The structure of the LLM module. (a) Feature reuse module. (b) Location attention module
for multi-layer feature fusion.

In Figure 5a, the proposed FRS is mainly implemented in three branches. Firstly, in
branch 1, the BEV feature 0F is obtained by reducing input feature channels so that they
can be directly summed with the following high-level feature. Secondly, the spatial fea-
ture 1F is obtained by using three convolutions and does not change the feature dimen-
sion. Then, the semantic feature 2F is obtained by one-layer convolution with stride = 2
and two-layer convolution with stride = 1 to get more abstract semantic representation.
Thus, the resolution of 2F is reduced by half, but the number of channels doubles. To
reduce the loss of spatial information, we add two branches. Branch 2 passes feature 0F
to each of the subsequent layers. In branch 3, the intermediate layer feature 3F also di-
rectly passes to the subsequent feature map. 2F is reshaped to the original dimension by
two deconvolutions so that it can be easily operated with the original feature. In other
words, one branch combines the bottom layer feature, which promotes the flow of spatial
information, while another branch combines the intermediate feature, which extracts rich
semantic features. In addition, we combine features through sum operations. The aim is
to reduce the number of parameters; it has been found that this works rather robustly in
our experiments. In this way, all features are utilized multiple times.

Figure 5. The structure of the LLM module. (a) Feature reuse module. (b) Location attention module
for multi-layer feature fusion.

For the sake of better incorporating multi-level features, we introduce the location
attention module (LAM). Generally, the more parameters, the more difficult the training,
and this will reduce the speed of inference. Different from AttaNet [29], our module does
not introduce any convolution operations, and therefore, reduces the number of parameters.
In Figure 5b, the architecture of the SSA module is illustrated in detail.

π∗0 = ϕ(F3)
π∗1 = ϕ(F4)

π0, π1 = so f tmax(π∗0 , π∗1)
(1)

where ϕ means element summation operation of feature map, so f tmax means the SoftMax
function, and π0, π1 is the attention map of the input features F3 and F4, respectively.

Sensors 2022, 22, 1451 8 of 18

The input feature of the LAM module consists of a high-level feature F3 ∈ Rh×w×c and
a low-level feature F4 ∈ Rh×w×c corresponding to parts in Figure 5b. First, in Equation (1),
by ϕ operation, which means element summation, we reduce the feature channel to one by
adding values along channel dimension, getting a feature map feature map π∗0 ∈ Rh×w×1

and π∗1 ∈ Rh×w×1. Next, we use the SoftMax operation to calculate relative attention mask
between multi-level feature map which output two BEV attention maps, π0, π1. We can
view the attention mask as an important weight distribution for each element in the feature.
The higher the scores, the more important the position. Finally, since the dimension of
the attention map π0, π1 is the same as the input feature F3 and F4, except for the channel
dimension, we multiply the input feature by attention map directly. In Equation (2), our
adaptive weighted result is calculated as follows:

Foutput = π0•F3 + π1•F4 (2)

The final output feature map Foutput is fed into the KAM module for the object
detection task.

3.5. Keypoint-Aware Module

The purpose of this module is to make full use of the feature information provided by
the predicted bounding box. Traditional methods use a single point to represent the pro-
posal, ignoring geometric information and internal feature clues of the entire bounding box.

Most of the point clouds are located on the boundary of the object, which indicates that
boundary features are discriminative to the object. In addition, internal features are also
essential to the representation of the bounding box, which provides the abstract semantic
feature of the object. However, extracting features from the entire region increases the
computational burden. Inspired by the R-fcn [30], we devise an effective proposal feature
extraction method.

Thus, we introduce a keypoint-aware module (KAM) for the score prediction. The
structure of KAM is shown in detail in Figure 6. To generate effective feature representation
for each prediction box in the current training process, the KAM module uses the features at
the boundary (star) and inner area (diamond and central circle) sampling points to represent
the bounding box. It can capture rich semantic features of the whole object and establish
explicit location-feature map relation, which is essential to alleviate the misalignment
problem between scores and the prediction bounding box. Specifically, we divide the object
detection scores into two parts: a boundary-aware module and an inner-aware module.

Sensors. 2022, 14, x FOR PEER REVIEW 9 of 19

Figure 6. The illustration of the KAM module. The predicted bounding box is projected to feature
map and extract keypoints to yield a rich representation.

The KAM module takes the last layer feature map as the input and consists of three
convolutions to output the confident map.

To the boundary area, our boundary-aware module selects representative features
using uniform sampling, such as the blue circle in Figure 7. Specifically, long edges are
represented by m points and short edges by n points. Since the labeled boxes are rectan-
gular, the number of keypoints on opposite sides is the same. Given the proposal bound-
ing box from the regression branch, subscript i indicates the i-th point along the x-axis and
subscript j indicates the j-th point along the y-axis. 0 0(,)x y is the center location coordinate
of the bounding box, represented by the purple circle in Figure 7. Lastly, , ,w l θ are the
width, length, and angle.

Length

width
Boundary keypoints

Inner keypoints

Center keypoint

Bounding box

Y

θ

Figure 7. The method to calculate keypoints. The boundary keypoints are represented by blue circles
and the inner points by green circles. The center keypoint is indicated by a purple circle. The blue
dashed line refers to the BEV of the predicted bounding box.

Figure 6. The illustration of the KAM module. The predicted bounding box is projected to feature
map and extract keypoints to yield a rich representation.

Sensors 2022, 22, 1451 9 of 18

The KAM module takes the last layer feature map as the input and consists of
three convolutions to output the confident map.

To the boundary area, our boundary-aware module selects representative features
using uniform sampling, such as the blue circle in Figure 7. Specifically, long edges are
represented by m points and short edges by n points. Since the labeled boxes are rectangular,
the number of keypoints on opposite sides is the same. Given the proposal bounding box
from the regression branch, subscript i indicates the i-th point along the x-axis and subscript
j indicates the j-th point along the y-axis. (x0, y0) is the center location coordinate of the
bounding box, represented by the purple circle in Figure 7. Lastly, w, l, θ are the width,
length, and angle.

Sensors. 2022, 14, x FOR PEER REVIEW 9 of 19

Figure 6. The illustration of the KAM module. The predicted bounding box is projected to feature

map and extract keypoints to yield a rich representation.

The KAM module takes the last layer feature map as the input and consists of three

convolutions to output the confident map.

To the boundary area, our boundary-aware module selects representative features

using uniform sampling, such as the blue circle in Figure 7. Specifically, long edges are

represented by m points and short edges by n points. Since the labeled boxes are

rectangular, the number of keypoints on opposite sides is the same. Given the proposal

bounding box from the regression branch, subscript i indicates the i-th point along the x-

axis and subscript j indicates the j-th point along the y-axis. 0 0(,)x y is the center location

coordinate of the bounding box, represented by the purple circle in Figure 7. Lastly, , ,w l

are the width, length, and angle.

Length

width
Boundary keypoints

Inner keypoints

Center keypoint

Bounding box

Y

Figure 7. The method to calculate keypoints. The boundary keypoints are represented by blue circles

and the inner points by green circles. The center keypoint is indicated by a purple circle. The blue

dashed line refers to the BEV of the predicted bounding box.

Mapping

Confident scores

W

……
W
W

…M

Figure 7. The method to calculate keypoints. The boundary keypoints are represented by blue circles
and the inner points by green circles. The center keypoint is indicated by a purple circle. The blue
dashed line refers to the BEV of the predicted bounding box.

The above values are in the LiDAR coordinate system. Moreover, the boundary
keypoints calculation method can be defined as follows:

ki =

(x0 +

l
2 cos(θ) + niw sin(θ), y0 +

l
2 sin(θ) + niw cos(θ)), El

(x0 − l
2 cos(θ) + niw sin(θ), y0 − l

2 sin(θ) + niw cos(θ)), Er
(x0 − w

2 sin(θ) + mil cos(θ), y0 +
w
2 sin(θ) + mil sin(θ)), Eb

(x0 +
w
2 sin(θ) + mil cos(θ), y0 − w

2 sin(θ) + mil sin(θ)), Et

(3)

where ni, mi are a set of keypoints linearly spaced between [− 1
2 , 1

2]. In Figure 7, for example,
the long edge is represented by four keypoints, ni = [− 1

2 ,− 1
6 , 1

6 , 1
2]. Moreover, the wide

edge is represented by three keypoints, ni = [− 1
2 , 0,− 1

2]. Lastly, El , Er, Eb, and Et denote
the left, right, bottom, and top edges, respectively.

Given a certain area inside a bounding box, the inner-aware module divides the inner
area evenly into the d × e grid, using grid vertices as feature points. In addition, the
calculation method is similar to the boundary points.

If the proposed box is represented by a total of K keypoints, then the corresponding
final convolution outputs the K-layer feature map on the so-called score map. Each score
map describes the feature response for keypoints of the predicted bounding box. For
example, the first scores map represents the score of the top-left point. Assuming the input

Sensors 2022, 22, 1451 10 of 18

feature maps are in the order of (left border, top border, right border and bottom border,
inner point), each feature point score F can be formulated with the following equation:

Fi(τx, τy) =

ζ(ρ(Kl

i)), 0 ≤ c < n
ζ(ρ(Kr

i)), n ≤ c < 2n
ζ(ρ(Kb

i)), 2n < c ≤ 2n + m
ζ(ρ(Kt

i)), 2n + m < c ≤ 2n + 2m
ζ(ρ(Kc

i)), 2n + 2m < c ≤ 2n + 2m + f

(4)

where f denotes the total number of inner points. f = (d− 1)× (e− 1) + 1. (τx, τy) is a
uniform representation for mapped coordinates of the keypoint. Ki represents real-world
coordinates; moreover, Ki = (x, y). x, y are the coordinates with respect to the LiDAR
coordinate system. Typically, Ki is fractional; thus, the Fi(τx, τy) value is calculated by
bilinear interpolation ζ with the adjacent position. ρ signifies the coordinates offset and
scale, ρ = x+o f f set

scale . (τx, τy) are the coordinates with respect to the feature map. The mean
value of all keypoints is calculated as final scores.

si,j =
1
N

N

∑
i=1

F(τx, τy) (5)

3.6. Loss Function

The loss function of our work is a combination of the Regression loss function, class
loss function, direction loss function, and keypoints loss function. For the bounding box,
the parameterizations of seven coordinates are employed, as in [21]:

tx = x−ax
ad

, t∗x = x∗−ax
ad

, ty =
x−ay

ad
, t∗y =

x∗−ay
ad

tz =
x−az

ah
, t∗x = x∗−az

ah
, tw = log(w

aw
), t∗w = log(w∗

aw
)

tl = log(l
al
), t∗l = log(l∗

al
), tz = log(h

ah
), t∗z = log(h∗

ah
)

tθ = gθ − aθ , t∗θ = g∗θ − aθ

(6)

where ad = w2
a + w2

b. The box’s center coordinates and its width, length, height, and angle
are, respectively, denoted as x, y, z, w, l, h, θ. Parameters x, x∗ and ax are for the predicted
box, ground truth box, and anchor box, respectively. Likewise, y, z, w, l, h, θ.

One-stage 3D object detection faces an extreme imbalance during training. Thus,
we commonly use focal loss [31] to deal with this problem by assigning well-classified
examples with lower weights:

FL(pi) = −α(1− pi)
rlog(pi) (7)

For box regression, SmoothL1 loss is adopted, as shown as follows:

SmoothL1 =

{
0.5x2, |x| < 1
|x| − 0.5, otherwise

(8)

Thus, the box loss can be defined as:

Lloc =
1

Npos
∑N

i∈Pos ∑m∈x,y,z,w,l,h,θ SmoothL1(t− t∗) (9)

where t, t∗ indicate the predicted encoded value and ground truth encoded value in
Formula (1), respectively.

We use the discrete approach by introducing sin function sin(tθ − t∗θ) and direction
classifier cross-entropy.

Sensors 2022, 22, 1451 11 of 18

Hence, the multi-task loss function of our KASSD for end-to-end training is calculated
as follows:

Ltotal = λ1Lcls + λ2Lloc + λ3Lkp + λ4Ldir (10)

where λ1, λ2, λ3, λ4 are hyper-parameters that weight each loss term of multi-task learning.

4. Experiments
4.1. Dataset and Evaluation Metrics

We comprehensively conduct experiments on the KITTI dataset [32], a large-scale
dataset for LiDAR point-cloud object detection. The dataset contains 7481 training samples
and 7518 test samples. Following previous work [13,26,33] the training samples are split
into a training set consisting of 3712 samples and a validation set consisting of 3769 samples,
which is about a 1:1 ratio.

Furthermore, the KITTI datasets have three levels: easy, moderate, and hard, which
depend on the size, occlusion, and truncation levels. To facilitate comparison with previous
work, we use the car category and calculate the average precision (AP) to evaluate the
result for different difficulty levels.

AP is the common evaluation metric for 3D object detection in the KITTI. Specifically,
the AP summaries the shape of the precision/recall curve, and is defined as the mean
precision at a set of equally spaced recall levels. In KITTI, 41 recall positions are official
evaluation protocol. For example, AP11 is calculated according to the following equation:

AP =
1

11

∫ 1

0
p(r)dr (11)

where r is a set of 11 recall values linearly spaced between [0, 1].
Following the metrics used in the previous paper, we calculate AP with 11 recall

positions to evaluate the validation set.
In addition, practical application of research is one of the important criteria for judging

work. Thus, we establish a dataset of 3D object detection for our school scene named the
WHUT dataset. Our dataset contains 2000 frames of samples, annotated over one month.
Furthermore, we use 1500 frames for training and 500 frames for validation. Moreover, we
adopt the same metrics as KITTI without difficulty division.

4.2. Implementation Details

We use the most commonly voxelization with grid of [0.05, 0.05, 0.1] meters and crop
the original point cloud in ranges [0, 70.4], [−40, 40], [−3, 1] meters along the x, y, z axes.
Every point on the last layer of feature corresponds to two pre-defined boxes, which have
the same size (width = 1.6 m, length = 3.9 m, height = 1.56 m) and different orientations
(0◦ and 90◦).

The network is trained by Adaptive Moment Estimation (Adam) [34] with the cosine
annealing learning rate. In addition, our model is trained for 80 epochs with a batch size
of two on four 2080Ti GPU cards. In the experiments, we set λ1, λ2, λ3, λ4 to 2, 1, 1, and
0.2, respectively.

4.3. Evaluation with the KITTI Dataset

We evaluate the performance of our KASSD with the KITTI dataset by submitting the
detection results to the KITTI server for evaluation. As shown in Table 1, our proposed
method outperforms most existing methods, such as 3DSSD, DVFENet, SECOND, STD,
PointRCNN, and TANet, by roughly 0.04 to 3.0 points, but is slightly inferior to 3D-SSD on
hard AP. The performance of KASSD in the validation set of the car category is shown in
Table 2.

Sensors 2022, 22, 1451 12 of 18

Table 1. Results of the KITTI test set using the car category.

Type Method Modality
AP

Easy Mod Hard

2-stage

MV3D [13] LiDAR + Camera 74.97 63.63 54.00
F-PointNet [11] LiDAR + Camera 82.19 69.79 60.59
PI-RCNN [35] LiDAR + Camera 84.37 74.82 70.03

PointRCNN [8] LiDAR 85.94 75.76 68.32
Fast Point

RCNN [36] LiDAR 84.28 75.73 67.39

STD [18] LiDAR 87.95 79.71 75.09
VoxelNet [20] LiDAR 77.49 65.11 62.85
DVFENet [37] LiDAR 86.20 79.18 74.58
3D IoU-Net [8] LiDAR 87.96 79.03 72.78

1-stage

SECOND [21] LiDAR 87.44 79.46 73.97
PointPillars [22] LiDAR 82.58 74.31 68.99

TANet [33] LiDAR 84.39 75.94 68.82
Associate-3Ddet [38] LiDAR 85.99 77.40 70.53

Point-GNN [39] LiDAR 88.33 79.47 72.29
3DSSD [23] LiDAR 88.36 79.57 74.55
HCNET [40] LiDAR 81.31 73.56 68.42

AVEF [41] LiDAR 84.41 75.39 69.89
Ours LiDAR 88.92 79.75 72.17

Table 2. Results of the KITTI validation set using the car category.

Type Method Modality
AP

Easy Mod Hard

2-stage

MV3D [13] LiDAR + Camera 86.55 78.10 76.67
F-PointNet [11] LiDAR + Camera 88.16 84.02 76.44
PI-RCNN [35] LiDAR + Camera 88.27 78.53 77.75

PointRCNN [8] LiDAR 88.88 78.63 77.38
Fast Point RCNN [36] LiDAR 89.12 79.00 77.48

STD [18] LiDAR 89.7 79.8 79.30
VoxelNet [20] LiDAR 81.97 65.46 62.85
DVFENet [37] LiDAR 89.81 79.52 78.35
3D IoU-Net [8] LiDAR 89.31 79.26 78.68

1-stage

SECOND [21] LiDAR 87.43 76.48 69.10
PointPillars [22] LiDAR 88.91 79.88 78.37

TANet [33] LiDAR 87.52 76.64 73.86
CIA-SSD [10] LiDAR 90.04 79.81 78.80

Associate-3Ddet [38] LiDAR 89.29 79.17 77.76
Point-GNN [39] LiDAR 87.89 78.34 77.38

3DSSD [23] LiDAR 89.71 79.45 78.67
HCNET [40] LiDAR 88.45 78.01 77.72
EPGNet [42] LiDAR 89.30 78.98 77.79

AVEF [41] LiDAR 87.94 77.74 76.39
PSANet [43] LiDAR 89.02 78.70 77.57
RAVD [44] LiDAR 89.61 79.04 77.81

Ours LiDAR 90.14 80.06 78.91

From the results, it can be observed that our method outperforms several other
methods across all difficulty levels. Our method performance outperforms other methods
on moderate and hard levels. The lack of labeling on the distant and heavily occluded
object is the primary difference in cause. In some cases, despite the fact that the network
learns features, the object detected in certain situations is deemed to be incorrect. Another
cause is the dataset’s inconsistent distribution, as mentioned in CIA-SSD [10]. In addition,
3D IoU-Net [8] uses a single point to predict IOU, whereas our approach employs richer

Sensors 2022, 22, 1451 13 of 18

regional information to increase the network’s ability to estimate the confidence scores of
the bounding box. In Table 1, it is obvious that our method achieves better performance. We
also show some qualitative result of validation and test sets in Figures 8 and 9, respectively.

Sensors. 2022, 14, x FOR PEER REVIEW 14 of 19

Figure 8. A visualization result of cars using the KITTI validation set. We present paired samples,
where in each pair, row 1 is the 3D bounding boxes projected into the image for clearer visualization,
while row 2 is the detection result of the LiDAR point cloud. We use red and green boxes to denote
detections and ground truth boxes, respectively.

Figure 9. A visualization result of cars using the KITTI test set. The detection results are indicated
by a red box.

4.4. Evaluation on the WHUT Dataset
We show the performance of our model and SECOND in Table 3 and compare their

AP. In addition, the WHUT dataset is recorded by 32-beam LiDAR, which has a lower
resolution than the 64-beam LiDAR utilized by KITTI. However, our model still outper-
forms SECOND 0.97 AP. It demonstrates that our proposed KASSD object detector is still
effective in low-resolution LiDAR.

Table 3. Results on the WHUT dataset using the car category.

Method Modality AP
SECOND LiDAR 72.31

Ours LiDAR 73.28

4.5. Ablation Study
To demonstrate the effectiveness of the proposed module, we compare the proposed

KASSD to a baseline detector. Table 4 presents the results of AP with algorithms equipped
with various submodules. First, we investigate the effect of LLM by substituting the pro-
posed module for the convolution component. Compared with the baseline, easy, moder-
ate, and hard Ap are 0.32, 0.4, and 0.27 higher than the baseline, respectively, demonstrat-
ing that the LLM module better retains spatial information and fuses high-resolution and
sematic features to concentrate more on discriminative information. We further conduct
experiments on KAM. The validation results show that the proposed module significantly
outperforms the baseline methods with 0.85, 0.89, and 1.21 on all difficulty levels.

Figure 8. A visualization result of cars using the KITTI validation set. We present paired samples,
where in each pair, row 1 is the 3D bounding boxes projected into the image for clearer visualization,
while row 2 is the detection result of the LiDAR point cloud. We use red and green boxes to denote
detections and ground truth boxes, respectively.

Sensors. 2022, 14, x FOR PEER REVIEW 14 of 19

Figure 8. A visualization result of cars using the KITTI validation set. We present paired samples,
where in each pair, row 1 is the 3D bounding boxes projected into the image for clearer visualization,
while row 2 is the detection result of the LiDAR point cloud. We use red and green boxes to denote
detections and ground truth boxes, respectively.

Figure 9. A visualization result of cars using the KITTI test set. The detection results are indicated
by a red box.

4.4. Evaluation on the WHUT Dataset
We show the performance of our model and SECOND in Table 3 and compare their

AP. In addition, the WHUT dataset is recorded by 32-beam LiDAR, which has a lower
resolution than the 64-beam LiDAR utilized by KITTI. However, our model still outper-
forms SECOND 0.97 AP. It demonstrates that our proposed KASSD object detector is still
effective in low-resolution LiDAR.

Table 3. Results on the WHUT dataset using the car category.

Method Modality AP
SECOND LiDAR 72.31

Ours LiDAR 73.28

4.5. Ablation Study
To demonstrate the effectiveness of the proposed module, we compare the proposed

KASSD to a baseline detector. Table 4 presents the results of AP with algorithms equipped
with various submodules. First, we investigate the effect of LLM by substituting the pro-
posed module for the convolution component. Compared with the baseline, easy, moder-
ate, and hard Ap are 0.32, 0.4, and 0.27 higher than the baseline, respectively, demonstrat-
ing that the LLM module better retains spatial information and fuses high-resolution and
sematic features to concentrate more on discriminative information. We further conduct
experiments on KAM. The validation results show that the proposed module significantly
outperforms the baseline methods with 0.85, 0.89, and 1.21 on all difficulty levels.

Figure 9. A visualization result of cars using the KITTI test set. The detection results are indicated by
a red box.

4.4. Evaluation on the WHUT Dataset

We show the performance of our model and SECOND in Table 3 and compare their AP.
In addition, the WHUT dataset is recorded by 32-beam LiDAR, which has a lower resolution
than the 64-beam LiDAR utilized by KITTI. However, our model still outperforms SECOND
0.97 AP. It demonstrates that our proposed KASSD object detector is still effective in low-
resolution LiDAR.

Table 3. Results on the WHUT dataset using the car category.

Method Modality AP

SECOND LiDAR 72.31
Ours LiDAR 73.28

Sensors 2022, 22, 1451 14 of 18

4.5. Ablation Study

To demonstrate the effectiveness of the proposed module, we compare the proposed
KASSD to a baseline detector. Table 4 presents the results of AP with algorithms equipped
with various submodules. First, we investigate the effect of LLM by substituting the pro-
posed module for the convolution component. Compared with the baseline, easy, moderate,
and hard AP are 0.32, 0.4, and 0.27 higher than the baseline, respectively, demonstrating
that the LLM module better retains spatial information and fuses high-resolution and
sematic features to concentrate more on discriminative information. We further conduct
experiments on KAM. The validation results show that the proposed module significantly
outperforms the baseline methods with 0.85, 0.89, and 1.21 on all difficulty levels. Moreover,
our proposed method outperforms baseline model by 1.05, 1.11, and 1.24, especially when
all submodules are combined.

Table 4. AP of different module settings.

LLM Keypoints
AP

Easy Mod Hard

89.09 78.95 77.67√
89.41 79.35 77.94√
89.94 79.84 78.82√ √
90.14 80.06 78.91

To further highlight the performance of the LLM relative to other feature extraction
modules, we compare it with other advanced approaches in Table 5. TANet [33] is a new
feature fusion method that has been proposed recently, using pyramid modules. Moreover,
we replaced the LLM modules with PSA modules for training. The result shows that the
PSA improves the AP significantly on the easy level. However, for the moderate and hard
levels, the AP value drops over 0.3. This is proof that our method has more powerful spatial
and semantic information extraction capabilities compared to other advanced methods.

Table 5. AP of different feature extraction modules.

Module
AP

Easy Mod Hard

PSA 90.14 79.61 78.35
DENSEASPP 89.74 79.12 78.08

SPP 89.62 79.42 78.32
Ours 90.14 80.06 78.91

We also exploit the impact of the receptive field to verify the suitability of traditional
enhancement techniques in point clouds. The astrous convolution is an effective method for
enlarging the receptive field and play an important role in object detection. Thus, we insert
SPP [45] and DENSEASPP [46] separately into the intermediate convolution layer to test the
effect of receptive field. We can find that the AP in each difficulty level drops dramatically.
In other words, a direct increase in the receptive field using astrous convolution does not
contribute to the performance, which also validates the difference between sparse point
clouds and dense image features.

In Table 6, we delve into the representational power of various parts of the bounding
box and different numbers of sampling points. Firstly, we analyze the effect of the four
boundary corner points, which enhance the easy, moderate, and hard AP by 0.33, 0.35, and
0.48, respectively. In addition, experiments on the increase of boundary points were also
conducted. The detection performance was improved again when the number of boundary
points was increased to 18; the easy, moderate, and hard AP was increased by 0.23, 0.15,
and 0.16. However, when the number of boundary points was increased to 28, the easy

Sensors 2022, 22, 1451 15 of 18

and moderate AP dropped slightly. Based on the results of the proceeding experiments, it
is clear that the representation capability of the predicted bounding box is improved by
increasing the number of keypoints.

Table 6. AP of different keypoint settings.

Boundary Points Center Points
AP

Easy Mod Hard

0 0 89.09 78.95 77.67
4 0 89.42 79.30 78.15

18 0 89.65 79.45 78.31
28 0 89.62 79.42 78.32
0 11 89.89 79.76 78.45

18 13 89.94 79.84 78. 82
28 19 89.66 79.32 78.43

Next, we examine the best performance in the case of using inner keypoints. We divide
the internal area evenly into grids and take joints as keypoints for sampling. Following
the previous convention of the score, we still add predefined anchor points as one of
the sampling points. As a result, we were able to obtain 11 keypoints. For the inner
points, we observe a huge AP improvement of 0.8, 0.81, and 0.78 for easy, moderate,
and hard levels, demonstrating the importance of describing the inner area for an object
representation method.

Table 6 further shows how employing a variety of sampling points over the entire
area improves the AP. We combine the sampling of the inner keypoints with the boundary
keypoints and call it mixed keypoints sampling. Compared to boundary keypoints (Row 3),
mixed keypoints sampling outperforms it by 0.29, 0.39, and 0.51 AP on the easy, moderate,
and difficult levels. To inner keypoints (Row 5), mixed keypoints sampling brings an
improvement of 0.37 on the hard level of difficulty. This indicates that mixed keypoints
sampling achieves higher performance than sampling with only boundary or internal
key-points. Thus, we are able to conclude that boundary keypoints and inner keypoints
can complement each other to improve the performance of 3D object detector.

In addition, we note that varying the number of keypoints sampling has an impact
on the results. In Row 7, we can find that performance degrades when too many mixed
keypoints sampling are extracted.

4.6. Runtime Analysis

Running speed, particularly in autonomous driving, plays an important role in object
detection. Furthermore, the speed of inference fluctuates in a small range. Thus, all
runtimes were averaged from ten runs of the algorithm.

The average inference time of our method is 45.9 ms. The inference time is calculated
as follows. The point cloud must first be loaded and preprocessed (2.3 ms). The data
tensor is then processed by KASSD (42.9 ms). Moreover, post-processing was done to
get the final result (0.7 ms). Because real-time detection is critical in autonomous driving,
we examine the detection speeds of several approaches. In Table 7, we can find that our
proposed KASSD is 597.1 ms, 14.1 ms, and 0.4 ms faster than point-GNN, Associate-3Ddet,
and SECOND, respectively. Compared with 3DSSD, the inference speed of our model is
slightly slower. However, our model outperforms 3DSSD by 0.43, 0.89, and 0.24 AP on easy,
moderate, and hard levels of difficulty, respectively. In other words, KASSD improves the
3D object detection performance with tolerable computation overhead.

Table 7. AP of different keypoint settings.

Method Point-GNN Associat-3Ddet Second 3DSSD Ours

Speed (ms) 643 60 46.3 38 45.9

Sensors 2022, 22, 1451 16 of 18

4.7. Discussion

We proposed a simple keypoint-aware module for 3D object detection, which has
four advantages. Firstly, our proposed KAM (keypoint-aware module) solves the problem
that the relative position of the predefined anchor point and predicted bounding box is
uncertain in the traditional 3D single-stage object detection. Secondly, experimental results
show that both boundary and inner points can improve the performance of the 3D object
detector. This also illustrates that the predefined anchor points of conventional 3D object
detectors lack sufficient information, which may lead to a decrease in performance. Thirdly,
the ideal option is to use sampling of a mix of keypoints. It indicates that inner keypoints
and boundary keypoints adequately capture the context of the predicted bounding box and
effectively produce high-quality object description. Finally, our proposed method achieves
competitive performance.

However, there are some limits to our method. Our proposed method uses a fixed
keypoints sampling mechanism for all predicted objects and cannot adaptively select the
best keypoints. It may impede the ability of the 3D object detectors to perform well. In the
future, we will focus on a learnable keypoint-aware module, which may result in more
significant improvements.

5. Conclusions

This paper presents a novel KASSD for one-stage object detection in point clouds.
The feature reuse strategy (FRS) and location attention module (LAM) maintain spatial
information flowing smoothly and extract representative features in order to predict an
accurate 3D bounding box. Then, we reveal the limitations of traditional single-stage 3D
object detection and proposed the Keypoint-Aware Module (KAM), which projects the
3D bounding box to the feature map of the corresponding channel to adequately capture
the context of the predicted bounding box. Experimental results on the KITTI dataset
demonstrate that our method outperforms many 3D object detection methods on KITTI
benchmark, which suggests that the proposed method is suitable for 3D object detection in
the point cloud. The learnable keypoint-aware module, which can adaptively select the
location and determine the placement of keypoints to further improve the performance of
the 3D object detector, will be the focus of a future study.

Author Contributions: Conceptualization, J.H.; methodology, J.H. and W.X.; validation, R.C. and
Y.A.; formal analysis, W.X. and Y.A.; funding acquisition, J.H.; project administration, J.H.; soft-
ware, W.X.; visualization, W.X., Z.X. and H.L.; writing—original draft preparation, W.X.; writing—
review and editing, W.X. and Y.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the Special Project on new generation artificial intelligence
technology of Hubei Province of China (Grant Nos. 2019AEA169) and Intelligent and connected
Vehicle technology of Hubei Province of China (Grant Nos. 2020AAA001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: http://www.cvlibs.net/datasets/kitti/eval_3dobject.php (accessed on 18 May 2021).

Acknowledgments: The authors would like to thank the support of the laboratory, university,
government. anonymous reviewers and editors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Christine, D.; Rung-Ching, C.; Hui, Y.; Xiaoyi, J. Robust detection method for improving small traffic sign recognition based on

spatial pyramid pooling. J. Ambient. Intell. Humaniz. Comput. 2021. [CrossRef]
2. Zhang, S.; Wang, C.; Lin, L.; Wen, C.; Yang, C.; Zhang, Z.; Li, J. Automated Visual Recognizability Evaluation of Traffic Sign Based

on 3D LiDAR Point Clouds. Remote Sens. 2019, 11, 1453. [CrossRef]

http://www.cvlibs.net/datasets/kitti/eval_3dobject.php
http://doi.org/10.1007/s12652-021-03584-0
http://doi.org/10.3390/rs11121453

Sensors 2022, 22, 1451 17 of 18

3. Bayoudh, K.; Hamdaoui, F.; Mtibaa, A. Transfer learning based hybrid 2D-3D CNN for traffic sign recognition and semantic road
detection applied in advanced driver assistance systems. Appl. Intell. 2020, 51, 124–142. [CrossRef]

4. Wu, L.; Zhang, R.; Zhou, R.; Wu, D. An edge computing based data detection scheme for traffic light at intersections. Comput.
Commun. 2021, 176, 91–98. [CrossRef]

5. Lee, E.; Kim, D. Accurate traffic light detection using deep neural network with focal regression loss. Image Vis. Comput. 2019,
87, 24–36. [CrossRef]

6. Xiang, Z.; Chao, Z.; Hangzai, L.; Wanqing, Z.; Sheng, Z.; Lei, T.; Jinye, P.; Jianping, F. Automatic Learning for Object Detection.
Neurocomputing, 2022; in press. [CrossRef]

7. Shi, S.; Jiang, L.; Deng, J.; Wang, Z.; Guo, C.; Shi, J.; Wang, W.; Li, H. PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object
Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
13–19 June 2020; pp. 10526–10535.

8. Li, J.; Luo, S.; Zhu, Z.; Dai, H.; Krylov, A.; Ding, Y.; Shao, L. 3D iou-net: Iou guided 3D object detector for point clouds. arXiv 2020,
arXiv:2004.04962.

9. Qian, R.; Lai, X.; Li, X. Boundary-Aware 3D Object Detection from Point Clouds. arXiv 2021, arXiv:2104.10330. [CrossRef]
10. Zheng, W.; Tang, W.; Chen, S.; Jiang, L.; Fu, C. CIA-SSD: Confident IoU-Aware Single-Stage Object Detector from Point Cloud.

arXiv 2020, arXiv:2012.03015.
11. Qi, C.; Liu, W.; Wu, C.; Su, H.; Guibas, L. Frustum PointNets for 3D object detection from RGB-D data. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June
2018; pp. 918–927.

12. Wang, Z.; Jia, K. Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 1742–1749.

13. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3D Object Detection Network for Autonomous Driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6526–6534.

14. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S. Joint 3d proposal generation and object detection from view aggregation.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019, Macau, China, 3–8
November 2019; pp. 1–8.

15. Liang, M.; Yang, B.; Chen, Y.; Hu, R.; Urtasun, R. Multi-task multi-sensor fusion for 3d object detection. In Proceedings of the
IEEE/CVF Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 7345–7353.

16. Pang, S.; Morris, D.; Radha, H. CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection. In Proceedings
of the 2020 International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020;
pp. 10386–10393.

17. Shi, S.; Wang, X.; Li, H. PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud. In Proceedings of the
IEEE/CVF Conference Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 770–779.

18. Yang, Z.; Sun, Y.; Liu, S.; Shen, X.; Jia, J. Std: Sparse-to-dense 3d object detector for point cloud. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 1951–1960.

19. Su, Z.; Tan, P.; Wang, Y. DV-Det: Efficient 3D Point Cloud Object Detection with Dynamic Voxelization. arXiv 2021,
arXiv:2107.12707.

20. Zhou, Y.; Tuzel, V. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 4490–4499.

21. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
22. Lang, A.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J. PointPillars: Fast Encoders for Object Detection from Point Clouds. In Proceedings

of the IEEE/CVF Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 12689–12697.
23. Yang, Z.; Sun, Y.; Liu, S.; Jia, J. 3DSSD: Point-Based 3D Single Stage Object Detector. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11037–11045.
24. He, C.; Zeng, H.; Huang, J.; Hua, X.; Zhang, L. Structure Aware Single-Stage 3D Object Detection from Point Cloud. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June
2020; pp. 11870–11879.

25. Yang, B.; Luo, W.; Urtasun, R. PIXOR: Real-time 3D Object Detection from Point Clouds. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7652–7660. [CrossRef]

26. Xu, J.; Ma, Y.; He, S.; Zhu, J. 3D-GIoU: 3D Generalized Intersection over Union for Object Detection in Point Cloud. Sensors 2019,
19, 4093. [CrossRef] [PubMed]

27. Wang, B.; An, J.; Cao, J. Voxel-FPN: Multi-Scale Voxel Feature Aggregation for 3D Object Detection from LIDAR Point Clouds.
Sensors 2020, 20, 704.

28. Wang, G.; Tian, B.; Ai, Y.; Xu, T.; Chen, L.; Cao, D. CenterNet3D: An Anchor free Object Detector for Autonomous Driving. arXiv
2020, arXiv:2007.07214.

29. Song, Q.; Mei, K.; Huang, R. AttaNet: Attention-Augmented Network for Fast and Accurate Scene Parsing. arXiv 2021,
arXiv:2103.05930.

30. Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. arXiv 2016, arXiv:1605.06409.

http://doi.org/10.1007/s10489-020-01801-5
http://doi.org/10.1016/j.comcom.2021.05.014
http://doi.org/10.1016/j.imavis.2019.04.003
http://doi.org/10.1016/j.neucom.2022.02.012
http://doi.org/10.1016/j.patcog.2022.108524
http://doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196
http://doi.org/10.1109/CVPR.2018.00798
http://doi.org/10.3390/s19194093
http://www.ncbi.nlm.nih.gov/pubmed/31546704

Sensors 2022, 22, 1451 18 of 18

31. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2017, arXiv:1708.02002.
32. Andreas, G.; Philip, L.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012;
pp. 3354–3361.

33. Liu, Z.; Zhao, X.; Huang, T.; Hu, R.; Zhou, Y.; Bai, X. Tanet: Robust 3d object detection from point clouds with triple attention. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 11677–11684.

34. Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2017, arXiv:1608.03983.
35. Xie, L.; Xiang, C.; Yu, Z.; Xu, G.; Yang, Z.; Cai, D.; He, X. PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based

Attentive Cont-conv Fusion Module. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12
February 2020; pp. 12460–12467.

36. Chen, Y.; Liu, S.; Shen, X.; Jia, J. Fast point R-CNN. In Proceedings of the IEEE/CVF Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 9775–9784.

37. He, Y.; Xia, G.; Luo, Y.; Su, L.; Zhang, Z.; Li, W.; Wang, P. DVFENet: Dual-branch voxel feature extraction network for 3D object
detection. Neurocomputing 2021, 459, 201. [CrossRef]

38. Du, L.; Ye, X.; Tan, X.; Feng, J.; Xu, Z.; Ding, E.; Wen, S. Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point
Cloud Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, 13–19 June 2020; pp. 13326–13335.

39. Shi, W.; Rajkumar, R. Point-GNN: Graph neural network for 3d object detection in a point cloud. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1711–1719.

40. Zhang, J.; Wang, J.; Xu, D.; Li, Y. HCNET: A Point Cloud Object Detection Network Based on Height and Channel Attention.
Remote Sens. 2021, 13, 5071. [CrossRef]

41. Li, H.; Zhao, S.; Zhao, W.; Zhang, L.; Shen, J. One-Stage Anchor-Free 3D Vehicle Detection from LiDAR Sensors. Sensors 2021,
21, 2651. [CrossRef] [PubMed]

42. Chen, Q.; Fan, C.; Jin, W.; Zou, L.; Li, F.; Li, X.; Jiang, H.; Wu, M.; Liu, Y. EPGNet: Enhanced Point Cloud Generation for 3D Object
Detection. Sensors 2020, 20, 6927. [CrossRef] [PubMed]

43. Li, F.; Jin, W.; Fan, C.; Zou, L.; Chen, Q.; Li, X.; Jiang, H.; Liu, Y. PSANet: Pyramid Splitting and Aggregation Network for 3D
Object Detection in Point Cloud. Sensors 2021, 21, 136. [CrossRef] [PubMed]

44. Choi, H.; Jeong, J.; Choi, J.Y. Rotation-Aware 3D Vehicle Detection from Point Cloud. IEEE Access 2021, 9, 99276–99286. [CrossRef]
45. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2015, 37, 1904–1906. [CrossRef]
46. Yang, M.; Yu, K.; Zhang, C.; Li, Z.; Yang, K. DenseASPP for Semantic Segmentation in Street Scenes. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June
2018; pp. 7345–7353.

http://doi.org/10.1016/j.neucom.2021.06.046
http://doi.org/10.3390/rs13245071
http://doi.org/10.3390/s21082651
http://www.ncbi.nlm.nih.gov/pubmed/33918952
http://doi.org/10.3390/s20236927
http://www.ncbi.nlm.nih.gov/pubmed/33291527
http://doi.org/10.3390/s21010136
http://www.ncbi.nlm.nih.gov/pubmed/33379254
http://doi.org/10.1109/ACCESS.2021.3095525
http://doi.org/10.1109/TPAMI.2015.2389824

	Introduction
	Related Work
	Multi-Modal Fusion Detector
	LiDAR-Based Detector
	Location Quality Estimation

	Approach
	Framework
	Voxelization
	D Backbone Module
	Lightweight Location Attention Module
	Keypoint-Aware Module
	Loss Function

	Experiments
	Dataset and Evaluation Metrics
	Implementation Details
	Evaluation with the KITTI Dataset
	Evaluation on the WHUT Dataset
	Ablation Study
	Runtime Analysis
	Discussion

	Conclusions
	References

