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Abstract: With the decrease in the cost and size of drones in recent years, their number has also
increased exponentially. As such, the concerns regarding security aspects that are raised by their
presence are also becoming more serious. The necessity of designing and implementing systems
that are able to detect and provide defense actions against such threats has become apparent. In this
paper, we perform a survey regarding the different drone detection and defense systems that were
proposed in the literature, based on different types of methods (i.e., radio frequency (RF), acoustical,
optical, radar, etc.), with an emphasis on RF-based systems implemented using software-defined
radio (SDR) platforms. We have followed the preferred reporting items for systematic reviews and
meta-analyses (PRISMA) guidelines in order to provide a concise and thorough presentation of the
current status of the subject. In the final part, we also describe our own solution that was designed
and implemented in the framework of the DronEnd research project. The DronEnd system is based
on RF methods and uses SDR platforms as the main hardware elements.

Keywords: drone; UAV; RF methods; software-defined radio; detection system; defense system

1. Introduction

Technical innovations continue to manifest at an ever-increasing speed, causing fast
and drastic changes to modern society. These changes, driven by the possibilities offered by
new technologies, affect citizens, governments, and all public and private industry sectors.

As a result, the development of small, low-cost unmanned aerial vehicles (UAVs),
commonly known as drones, has resulted in an ever-increasing number of these devices
being utilized in a variety of applications [1]. UAVs have introduced new participants
in aviation, quickly evolving beyond their military origin to become powerful business
tools [2,3].

Applications of UAVs range from recreation to commercial and military applications,
including enjoyment, hobbies, games with drones, homemade entertainment videos, recre-
ational movies [4–6], low altitude flying base stations [7], and the operation of UAVs for
military purposes [8–13].

The following research questions were developed for this project:

• What functions should a drone detection and defense system (DDDS) have in order to
prove its functionality?

• Which are the most popular methods used in the implementation of DDDSs?
• Which are the main parameters that should be taken into consideration in research?
• What gaps are in the current research of DDDSs?

A widely-used methodology was utilized to conduct a systematic literature review
based on preferred reporting items for systematic reviews and meta-analyses (PRISMA) [14]
in order to obtain the answers to our study questions. We conducted a literature search in
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scientific databases that encompass prominent computer science journals and conferences,
such as IEEE Xplore, ACM digital library, ScienceDirect, SAGE Journals Online, and
Springer Link, to discover key articles on the drone detection and defense systems topic.
We used the following search string to discover the relevant publications and papers for
our research: (‘Drone’ OR ‘UAV’) AND (Counter) in the domains of electrical engineering,
applied physics, telecommunications, defense, and computer information systems, for
the previous six years (2016–2021). In total, we gathered a set of 7349 potentially relevant
publications, excluding grey literature and pre-prints.

We next looked at the titles, keywords, and abstracts of the publications in order to
find the papers and articles that described at least one distributed ledger modeling or
simulation approach. We chose a total of 99 publications in the process. We examined the
references of the selected publications for other papers that were relevant to our inquiry
in order to expand our literature collection. Figure 1 shows the overall number of articles
produced as a result of this approach.
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Figure 1. PRISMA 2020 flow diagram for systematic reviews.

The additional references that were identified in the bodies of the selected publications,
or referencing those, were added to the literature list. We carefully studied the selected
publications once the literature selection procedure was completed in order to determine
the described applications and problems. The results of our analysis are reported in the
following sections, which represent the core of the topical literature review.

The main contributions of our paper can be summarized as follows:

• We provide a detailed review regarding the drone defense systems based on RF
methods, focusing on the solutions that are based on software-defined radio (SDR)
platforms. To our best knowledge, other reviews that were performed concerning
drone defense systems have not detailed that particular category of solutions;

• We discuss the current worldwide status of the legal issues regarding the jamming
function, that enables the systems to annihilate the drones after they are detected;

• We present our own solution for an RF-based drone defense system that was designed
and implemented within the framework of the DronEnd research project. The system
was developed using several SDR platforms and a custom-made mount for dynami-
cally adjusting the orientation of the jamming antenna, which enables the detection,
localization, and annihilation of drones in a given monitored area.
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The rest of this article is organized as follows: Section 2 reviews the most recent
incidents that involved the reckless flying of UAV systems and the regulations taken by
different governments and agencies around the world.

Section 3 describes the system requirements of a drone defense system in correlation
with their basic mechanism/sensing technologies, considering their advantages and draw-
backs. Also, this section highlights the specific models and architectures used in research
for drone detection and defense systems. Section 4 details aspects regarding RF-based
DDDSs and the use of SDR platforms in such systems. Section 5 contains a discussion
regarding the challenges and the future research directions related to DDDSs. In Section 6,
a solution for a drone detection and defense system based on SDR platforms, developed by
the authors, is proposed and detailed, also highlighting the novel elements that are brought
about, compared to the other existing solutions. The last section concludes the paper and
includes the future perspectives of this work.

2. The Necessity of Drone Detection and Defense Systems: Incidents and Regulations

The drone industry’s rapid rise has outpaced the rules for safe and secure drone
operation, making them a symbol of illegal and destructive terror and crimes [15].

Drones have gained attention as a threat to safety and security since their entrance
into civilian technology, which has fueled the development of anti-drone (or counter-
drone) technologies. Anti-drone systems are designed to protect against drone accidents or
terrorism, but they will need to evolve in order to deal with future drone flight systems [16].

UAVs have been used in a variety of military actions. Non-military UAVs have been
accused of endangering airplanes, as well as persons and property on the ground. Due to
the potential of an ingested drone to quickly damage an aircraft engine [17], safety concerns
have been raised. Multiple near-misses and verified collisions have occurred involving
hobbyist UAV pilots operating when violating the aviation safety standards [18].

2.1. Recently Reported Incidents

The necessity of anti-drone defense systems has gained importance, considering the
large number of dangerous occurrences that are mentioned in Table 1.

Table 1. List of the recent UAV-related incidents.

Incident Type Time and Place of the Event Short Description of the
Incident Aftermaths References

Aircraft collisions

17 April 2016/UK, London,
Heathrow International
Airport

An Airbus A320 collided with
a Metropolitan Police UAV as
it approached landing

There were no serious issues
reported. [19]

21 September 2017/USA,
Staten Island, New York City

A civilian UAV collided with a
Black Hawk helicopter

The helicopter was able to
continue flying and landed
in a safe manner.

[20]

12 October 2017/Canada,
Jean Lesage Airport, Quebec
City

A Skyjet Aviation Beech King
Air A100 collided with a UAV

The plane landed safely, with
only minor damage to its
wings.

[21]

13 December 2018/Mexico,
Tijuana International Airport

On a Boeing 737–800 operating
as Flight 773, a “quite loud
noise” was heard

After a safe landing, the
aircraft’s nose was
discovered to be damaged.
The reason for the incident
has not been identified;
however, it was examined as
a drone strike by the airline.

[22]

10 August 2021/UK,
Buttonville Municipal
Airport

A Cessna 172 registered
C-GKWL collided with a drone
operated by the York Regional
Police

The Cessna landed safely but
with significant damage. [23]
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Table 1. Cont.

Incident Type Time and Place of the Event Short Description of the
Incident Aftermaths References

Near-miss
incidents

January 2017/P.R. China,
Hangzhou Xiaoshan
International Airport

A 23-year-old Xiaoshan UAV
operator was arrested after
taking footage with a drone
that flew too close to planes
landing

DJI, China’s biggest drone
manufacturer and the
producer of the Mavic Pro
drone (which was discovered
to have been used in the
event), issued a statement
expressing its “strong
condemnation” of the illegal
filming.

[24]

25 March 2018/New
Zeeland, Auckland Airport

A UAV approached within 5 m
of an Air New Zealand Boeing
777–200 on final approach to
airport

The pilots spotted the UAV
as the plane was
approaching a position when
evasive action was
impossible, and they initially
worried it would be pulled
into an engine.

[25]

19 December 2018/UK,
Gatwick

A repeated deliberate intrusion
of UAVs of “industrial
standards” occurred

The suspension of all takeoffs
and landings began at 9:03
p.m. on 19 December due to
UAV sightings over the
runway. Flights were briefly
restarted the next morning
but were banned again after
more UAV sightings.

[26]

Other incidents
that targeted
officials and
strategic
objectives

April 2015/Japan

A small drone carrying
radioactive materials was
dropped on the roof of Japan’s
Prime Minister’s mansion

The drone was not only able
to fly to the Prime Minister’s
home, but it was also left
unattended for over two
weeks. Due to the
characteristics of the area,
notably privacy, it may have
been difficult to deploy
intensive detecting
technology.

[27]

October 2016/Syria

ISIL used two ultra-small
drones purchased from
Amazon to assassinate two
Iranians in Syria

The first incidence of
commercial drone terrorism,
significant since commercial
off-the-shelf drones were
employed, demonstrating
that a wide variety of drone
terrorism was achievable
because the drones could be
cheaply bought without
having the expert-level skill
to fly.

[28]

August 2018/Venezuela

Two bomb-carrying drones
had a failed attempt to
assassinate Venezuelan
President Nicolas Maduro
during a national outdoor
celebration

The first time a drone was
used to try to assassinate the
country’s leader. This
incident emphasizes the
importance of anti-drone
technology for avoiding a
traumatic event. Temporary
anti-drone systems require
rapid installation and
deployment.

[29]
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In addition to the highlighted incidents, the number of small mishaps caused by
unauthorized or illegal drones invading restricted regions is increasing by the day [30].
This is another reason for anti-drone technology becoming increasingly important. As the
regulations concerning drone usage are also a significant aspect to be considered when
designing a DDDS, we review in the following subsection several aspects in this matter.

2.2. Regulations Regarding the Use of Drones

The most important agencies that regulate the use of drones (e.g., European Union
Aviation Safety Agency (EASA), Federal Communication Commission (FCC), Australian
Communication and Media Authority (ACMA), Civil Aviation Authority (CAA), etc.)
have adopted action plans in order to ensure critical objectives against the illegal usage of
UAVs [30–32].

For example, in order to address the hazards and threats posed by drones, European
Union members in EASA have endorsed a counter-unmanned aerial systems (counter-UAS)
action plan, proposed by the agency in 2019, which has subsequently been included in the
European Plan for Aviation Safety (EPAS) [32].

The EASA’s EPAS is applicable to all of the national and appropriate agencies, and it
has resulted in the effective control of UAV hazards.

Furthermore, the EU has approved EASA’s standard European guidelines in order to
enable UAV integration and safe operation in the aviation system. The rules that apply
to drones are outlined in Regulation (EU) 2019/94735 on the rules and procedures for the
operation of unmanned aerial vehicles (UAVs) and Regulation (EU) 2019/945 on unmanned
aerial vehicles and third-country operators of unmanned aerial vehicles (UAVs).

According to the document, there are three primary types of drone incident offenders
that endanger civil aviation, as follows: non-criminal motivation, gross negligence, and
criminal/terrorist motivation [30]. They relate to the drone’s remote pilot’s intention, as
described in Table 2.

Table 2. EASA categorization of intention/motivation of pilots of unauthorized drones.

Negligence

Individuals Who Are Oblivious to or Are Unaware of the
Appropriate Regulations and Constraints. As a Result,
They Fly Their Drones across Sensitive or Forbidden
Terrain. They Have a “Clueless” Mentality and Have No
Intention of Disrupting Regular Aviation.

Gross negligence

Individuals who are reckless because they are aware of the
appropriate regulations and constraints yet choose to
break them for personal or professional advantage (e.g.,
aggressive spotters). Their actions can be described as
“reckless”, as they disrupt civil aviation while completely
ignoring the implications of their conduct.

Individuals who intentionally strive to use drones to
disrupt aerodromes and flight operations, regardless of
whether they are aware of the applicable legislation and
limits. These individuals may even act as a group to
maximize their impact. While their actions may have
unexpected repercussions for aviation safety, they do not
seek to put human lives in jeopardy.

Criminal/terrorist motivation

Criminals and terrorists are persons who intentionally
strive to utilize drones to interfere with the safety and
security of civil aviation, regardless of whether they are
aware of the applicable legislation and limits. These
persons should be considered criminally motivated or
even terrorists because their actions are purposeful and
show no concern for human lives and property.
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3. Drone Detection and Defense Systems: Classification, Sensors, Countermeasures

In this section, we focus on the classification of drone detection and defense systems
depending on different criteria, on the comparison of the different sensor types that can be
used in order to detect the presence of the drones in the monitored area, on the classification
of the countermeasures that can be adopted in order to annihilate the detected drones, and
on the regulations regarding the use of jamming as countermeasure.

3.1. Classification of Drone Detection and Defense Systems

Firstly, it is necessary to classify DDDSs in order to understand their capabilities, as it
is summarized in Table 3.

Table 3. Classification of DDDSs.

Category Definition

Ground-based: fixed Systems designed for usage in fixed locations [33]

Ground-based: mobile Systems designed to be installed on automobiles and operated while
they are in motion [33]

Hand-held Systems designed to be operated by a single person using their hands;
the majority of these systems resemble rifles [34]

UAV-based Systems designed to be mounted on unmanned aerial vehicles
(UAVs) [34]

UAV-swarm-based Systems designed to use multiple drones [35]

A DDDS implies different available technologies for detection, tracking, and classifica-
tion, in addition to neutralization techniques. The most essential elements recommended
for the DDDS are considered to be detection, tracking, and classification of the target
drones [30,34]. The different technologies that are used for allowing drone detection are
summarized in Table 4.

Table 4. Technologies used for drone detection in DDDSs.

Technology Description References

Acoustic UAVs are detected and tracked by using an
array of microphones [36–53]

Imaging (EO/IR) UAVs are detected and tracked by using
EO/IR cameras [54–72]

Radar UAVs are detected and tracked using their
radar signature [73–102]

Radio frequency (RF)

UAVs are detected, tracked, and identified by
monitoring the radio frequencies used for

communications; this technology could
localize the UAV and the pilot

[103–113]

Hybrid Combination of two or more of the
above-mentioned technologies [104,114]

3.2. Classification of Detection Sensors

All of the types of sensors that are currently used in DDDS present specific advantages
and limitations and, as a direct consequence, such a system must incorporate more sensors
of different types in order to achieve a higher detection rate [33].

A brief description of each category of sensors is given below and the different pros
and cons for each category are summarized in Table 5.
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Table 5. Pros and cons of sensors used in DDDSs.

Type Pros Cons References

Acoustic

• Covers the spectrum of
20 Hz–20 kHz;

• Acoustic signature library could be
updated easily from flight to flight;

• Lightweight and can be easily
associated with other types of
sensors.

• Limited range;
• Vulnerable to ambient noise;
• Susceptible to decoys.

[36–53]

Imaging

• Covers all of the visible and IR
spectrum (3 MHz–300 GHz);

• IR cameras could operate in cloudy
weather and in day or night;

• Could be assisted by
computer-vision technologies.

• Provides 2D images;
• Limited performances by weather

conditions and background
temperature;

• Dependent of georeference data
• LoS is required.

[54–72]

Radar

• Bandwidth used: 3 MHz–300 GHz;
• Could operate in all weather and

day/night conditions;
• Offers information regarding the

velocity of the target;
• Can recognize micro-Doppler

signatures (MDS)
• Offers high coverage;
• Good accuracy;
• Compact and high mobile, required

for tactical applications;
• High reliability.

• Large radar cross-section is desired;
• Difficult to differentiate UAVs from

birds;
• Limited performance for low

altitudes and speeds (death cone);
• Could interfere easily with small

objects, especially birds;
• LoS is required;
• High cost.

[73–102]

RF

• Capturing the communication
spectrum and signals UAV and
operators;

• Low complexity and easy to
implement;

• Could operate in all weather and
day/night conditions;

• Easier to improve due to modular
implementation of receivers and
digital signal processing units used
in implementation;

• Possibility to localize the pilot.

• Knowledge regarding UAV
communication specifications (e.g.,
frequency bands, modulations, etc.)
is required;

• Difficult to accurately determine
AoA;

• Difficult to use in urban areas due to
fading and multipath phenomena;

• Vulnerable to malicious or illegal
modified RF that will exceed
receiver capabilities.

[103–113]

3.2.1. Radio Frequency Sensors (RF)

UAV RF detection is a technique that involves the interception and analysis of the
signals transmitted (Tx, Rx) between the UAV and the ground station. Usually, these signals
consist of uplink (from the ground station) control signals and downlink (from the drone)
data signals (position and video data) [103]. A detailed analysis of the DDDSs that are
based on RF methods are presented in Section 4.

3.2.2. Radar

The Radar solution for drone defense systems represents an active method to identify
and localize a potential UAV threat. In order to determine the range, angle, or velocity of
a UAV, radar is widely used as an active sensor in sensing systems in a DDDS. A radar
system consists of a transmitter, a receiver, and a processor [73].
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3.2.3. Imaging Sensors

This technology involves the use of cameras that take images from a designated area
in order to determine the presence of a target drone.

Electro-Optical (EO) Cameras

Some DDDS use imaging sensors (EO/IR), which could be led by other sensors (such
as radar and RF) in order to obtain images of the drone and its main characteristics (e.g.,
payload). These images can be recorded and analyzed by specialists in order to determine
the threat level [55].

The main disadvantage of this method is its low performance under dark and foggy
conditions. Moreover, the quality of the images depends on the quality of the lenses and
the angle of the photography (LoS is mandatory).

Infrared (IR) Cameras/Thermal

This method employs thermal IR cameras that are able to detect the heat produced by
a UAV’s hardware components, such as the motors, batteries, and processors.

This detection method presents disadvantages related to detection range and environ-
ment caused by the sensibility of the sensors that measure the thermal difference between
the drone and the background. In consequence, the detection of drone presence depends
on the drone’s motor temperature, angle (LoS is mandatory), distance, and the temperature
of the IR sensors [58].

3.2.4. Acoustic Sensors

This technology involves the use of a microphone array that captures the noise gener-
ated by the propellers and rotors of a UAV and compares it with an intern acoustic signature
database [42].

Table 5 summarizes the advantages and limitations of each of the different technologies
that were mentioned above.

3.3. Classification of Countermeasures

The necessity of DDDS arose for the first time in military applications under special
regulations that exceed other governmental or structure capabilities and responsibilities.
In consequence, the neutralization techniques are more numerous than the detection
techniques [30].

The most important DDDS countermeasures are as follows:

• Electromagnetic pulse (EMP)—a beam generated with the goal to damage the internal
electronics of the target drone [115–117];

• Interceptor drone/Collision Drone—a drone used to force the target drone to land or
return home [118–123];

• Lasers—directed rays used to destroy the target or blind the camera (dazzler) [124–129];
• Magnetic—use powerful magnets in order to create a magnetic field around a protected

area [130];
• Prey birds—eagles or falcons specially trained to attack the enemy’s drone [131];
• Shooting nets—a net is launched towards the target drone to prevent the propellers

from rotating [132];
• Projectiles—large-caliber ammunition used to destroy the target [133];
• Missiles—conventional ammunition, could be guided or unguided [133];
• Guns—conventional weapons and ammunition [133];
• Water cannons—a stream of water is directed towards the target drone [134];
• RF/GNSS jamming—disrupt the communication of the target drone with the control

station and/or global navigation satellite system (GNSS) [135–139];
• Spoofing—decoys the drone by using imitation GNSS and control signals in order to

take over the command [140–145];
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• Mixed countermeasure techniques—use two or more countermeasures in order to maxi-
mize the neutralization rate.

The main advantages and drawbacks of each of the different countermeasure technique
are presented in Table 6.

Table 6. Characteristics and limitations of countermeasure techniques.

Type Pros Cons References

Electromagnetic pulse
(EMP)

• Could burn or interfere with the
internal electronics of the drone,
disrupting its operation;

• Could operate in both narrowband
and wideband domains.

• Accurate direction of jamming is
necessary;

• Difficult to know the effectiveness
of jamming.

[115–117]

Interceptor drones
• Searching and tracking capabilities;
• Could carry weapons and

ammunition.

• Requires a relatively close
approach to the target;

• Have a considerable delay.
[118–123]

Lasers

• Could operate at low powers
(dazzlers) to blind the UAVs cameras
or high power, which could
burn/destroy the target;

• Easy to track the target;
• Cheaper and safer than projectiles or

another physical countermeasure.

• Sensitive to weather conditions;
• It is necessary to have an accurate

measurement of the target’s
position;

• High power lasers could interfere
with other systems.

[124–129]

Magnetic • Cost effective;
• Could respond to multiple threats.

• Small protected area;
• Could interfere with other

systems.
[130]

Prey birds • Does not require complex technology;
• Fewer humans are required.

• Applicable only to slower and
small UAVs;

• Could harm the falcons.
[130]

Projectiles/
shooting nets/
water cannons

• Effective against any type of UAV;
• Work in all weather conditions;
• Quick reaction method.

• Might cause collateral damage;
• High costs;
• Requires professional operators.

[131–134]

RF/GNSS jamming

• Could neutralize grouped targets
simultaneously, degrading their
received signal-to-noise ratio (SNR);

• GNSS frequencies and bands are
widely known and relatively easy to
jam;

• The directivity diagram of the
jamming signal can be oriented and
directed as desired.

• Ineffective against autonomous
UAVs;

• Ineffective against drones that use
inertial navigation
systems/sensors (INS);

• Ineffective against UAVs that use
encrypted communications;

• Effective only for short distances;
• The jamming could interfere with

other sensible equipment.

[135–139]

Spoofing

• DSP and AI algorithms could copy
and reproduce the control
communication signal with high
accuracy in a relatively short time;

• Could exploit the vulnerabilities of
various systems of UAVs.

• It is necessary to have a consistent
analysis of the targeted UAVs
regarding their operation
frequencies;

• Spectrum sensing systems are
desirable.

[140–145]
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However, as pointed out in [35], destroying the drone does not mean that the problem
is solved. Even if a drone is destroyed using one of the methods listed above, it is just half
of the answer. It is critical to discover and detain the operator of the illegally flying UAV in
order to resolve the problem completely. Without this, a motivated operator will almost
certainly return with a newer and better UAV capable of causing even more disruption
and damage.

3.4. Regulations Regarding the Use of Jamming in DDDSs

For most of the above-mentioned categories of countermeasures, there are not currently
any regulations in force. However, in the case of RF jamming, several existing regulations
apply, which will be detailed in the following paragraphs.

The neutralization of drones using jammers is still (in most countries) not legally
permitted and is currently the subject of numerous regulatory and legal discussions.

The EU authorities were among the first organizations that took a position regarding
the use of jamming devices. The Directive 2014/53/EU prohibits the use of such devices
that could cause harmful interferences to the authorized radiocommunications and prevent
the normal operation of the communications using radio frequencies [146]. This directive
was transposed in all of the member state’s legislations.

The Directive 2014/53/EU was transposed into Romanian legislation by Government
Decision no.740/2016. According to this decision, the manufacture, importation, possession,
advertising, placing on the market, making available on the market, putting into service
and/or use of radio equipment or devices designed to cause harmful interference (jammers)
are all prohibited and sanctioned with contravention [147].

In the UK, there were a lot of concerns regarding the collateral damage and the safety
risks that must be taken into consideration when using jamming, because of the radio
signal interference and the impact on other airspace users. However, only a few regulations
have stated that such technology should not be used in any circumstances [148].

The FCC (Federal Communications Commission) in the United States does not merely
state that the manufacture, sale, importation, and operation of jammers are all forbidden
(Communications Act of 1934, Section 301), but that there are some exceptions, such
as institutions under the US government. There is always the risk of a drone losing
control, crashing, and causing property damage, or personal harm, when a drone jammer
is deployed. This means that anyone using a drone jammer, even government-authorized
workers, could be held liable. As a result, the deployment of drone jammers by private
entities, such as power companies or airports, is still sporadic but strictly regulated. Only
the federal government has the ability to approve the use of drone jammers, and this
rigorous restriction extends to their manufacture, importation, and sales [149].

In the Russian Federation, flying a drone is legal. However, most Russian cities are
equipped with GPS jammers, which create radio interference, preventing electronics, such
as drones, from operating normally. As a consequence, drone users have to keep a safe
distance from them because all of the major cities have integrated GPS jammers that can
interfere with their drone positioning [150]. Also, there are some regulations that prohibit
flying a drone within 500 m of a military installation.

In P. R. China, only the local authorities can use jammer “guns” and other RF DDDSs [151].
Despite of the lack of regulations regarding the use of RF jamming signals against

drones, and some risks that should be taken into consideration, this method has to be
considered to be among the most efficient.

4. Drone Detection and Defense Systems Based on RF Methods

As was mentioned in Section 3, one of the most used methods for drone detection is
the identification of the RF signals that are exchanged by the drones with another entity
(ground station/operator). Moreover, the annihilation of the detected drones can also be
obtained by RF methods, by means of transmitting strong enough jamming signals that
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can interrupt the communication between the drone and its operator (as mentioned in
Section 3.3).

Usually, drones operate on different frequencies, but most commercial drones operate
in Industrial, Scientific, and Medical (ISM) frequency bands of 433 MHz and 2.4/5.8 GHz.
The simple power detection in these bands will not work due to the presence of other
legitimate users in the same geographical area. Therefore, most of the modern RF detection
systems provide the detection and identification of the special and unique signals that are
generated by the UAV or the data protocols implemented in a UAV.

There are two main functions that are necessary for the detection of the drones, as
follows: The identification of the presence of the drones by scanning the frequency spectrum
and localization of the drones. The annihilation function, which is necessary in order to allow
the defense against the detected drones, can be performed by means of RF jamming, in
order to interrupt the communication between the drones and their operators. Table 7
summarizes the main elements regarding the implementation of such systems. In the
following paragraphs, each of the below mentioned categories will be detailed.

Table 7. RF-based drone detection and defense systems.

References Implemented
Functions Methods SDR Platform Used (Including Manufacturer,

City and Country)

[152] Identification
Localization

RF fingerprinting (SFS, WEE, PSE)
AoA (MUSIC, RAP MUSIC) USRP-X310 (Ettus Research, Santa Clara, CA, USA)

[153] Identification RF fingerprinting (DRNN) USRP-X310 (Ettus Research, Santa Clara, CA, USA)
[154] Identification RF fingerprinting (CNN) USRP-X310 (Ettus Research, Santa Clara, CA, USA)
[155] Identification RF fingerprinting (KNN) USRP-B210 (Ettus Research, Santa Clara, CA, USA)
[156] Identification RF fingerprinting (KNN, XGBoost) -
[157] Identification RF fingerprinting (Wi-Fi) -

[158] Identification RF fingerprinting LimeSDR (Lime Microsystems, Guilford,
UK)(customized)

[159] Identification RF fingerprinting -
[160] Localization Received-signal strength (RSS) USRP N210 (Ettus Research, Santa Clara, CA, USA)

[161] Localization RSS AD-FMCOMMS5-EBZ Evaluation Board (Analog
Devices, Wilmington, DC, USA)

[162–164] Annihilation RF jamming BladeRF (Nuand, San Francisco, CA, USA)
[165] Annihilation RF jamming Great Scott Gadgets HackRF One

Most of the RF-based solutions that are described in the literature focus only on the
detection of the drones and do not propose countermeasures for the annihilation of the
detected drones. One of the reasons behind this might be the increase in the complexity
and price of the system that will be generated by the inclusion of such countermeasures
in the designed system. A second reason might be related to the fact that most of the
references that will be commented on in this section include academic research, in which
the target was not the design of a complete commercial system. A third reason could be
the fact that jamming equipment is not legal in many areas worldwide, as discussed in
Sections 2 and 3. However, as mentioned previously, the jamming solution can be used in
most of the countries if the system that generates it is used for national security or public
order purposes.

Almost all of the implementations that were used for validating the solutions that are
proposed in the literature are based on SDR platforms because of some of the significant
advantages that are offered by this category of platforms, such as the following:

• Low to moderate cost;
• Extended frequency range, which can usually cover all of the frequency bands that are

used by commercial drones;
• Scalability, allowing the extension of the platform, depending on the functions that are

foreseen, to be implemented;
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• Flexibility, allowing the processing of RF signals corresponding to different communi-
cation standards.

Only a few of the existing works include aspects that are related to both of the functions
that were mentioned previously as necessary for the detection of the drones, identification
and localization. Such an example is [152], where the authors proposed a drone detection
system based on multi-dimensional signal feature identification. After identifying the
channel on which the drone communicates with the controller, features, such as signal
frequency spectrum (SFS), wavelet energy entropy (WEE), and power spectral entropy
(PSE), are extracted in order to allow a precise identification of the drone. In a subsequent
step, MUSIC and RAP-MUSIC algorithms are used for performing the localization of the
drone, by using information, such as azimuth and elevation. The proposed solution is
implemented and tested using USRP X310 SDR platforms and a circular antenna array,
obtaining an average detection rate of more than 95%.

In most of the papers that are concerned with the identification of the drones RF
fingerprinting techniques are used, which rely on the unique characteristics of the RF
signal waveforms captured from different drones [153–157]. In [153], a classification of
the detected drones is made using a deep residual neural network (DRNN), the results
being validated using a USRP X310 SDR platform as a receiver and nine different drones as
targets. The authors of [154] separate Wi-Fi and Bluetooth signals from UAV transmitted
signals based on their bandwidth and modulation features and classify the UAV signals
using machine learning (ML) techniques. In [155], the detection of multiple drones is
performed using the k-nearest neighbor (KNN) algorithm after performing a short-time
Fourier transform (STFT) on the received signal. A real-time testbed based on the USRP
B210 SDR platform is also used for evaluating the performance of the proposed method. A
combination of RF fingerprints and hierarchical learning is used in [156] for the classification
of the detected drone signals. A Wi-Fi statistical fingerprint approach is proposed in [157],
which accounts for the particular characteristics of the Wi-Fi control traffic produced by
drones and their remote controllers.

In [158], a solution that is based on the low cost LimeSDR platform is developed
for detecting the presence of drones in the 2.4–2.5 GHz ISM band. The authors use the
LMS7002M RF chip from the LimeSDR module but customize the firmware of the FPGA
located on the same SDR platform in order to implement the signal processing steps that are
necessary for the identification of the RF signals that are transmitted by different drones.

The authors of [159] apply a STFT on the RF signals that are collected using a spectrum
analyzer and calculate the time guards associated with the different hopping sequences
using the autocorrelation function (ACF) in order to obtain an accurate differentiation of
the different UAV remote control (RC) signals.

The following paragraphs will detail the different approaches that were proposed for
the implementation of the localization function.

A received-signal strength- (RSS-) based 3D localization system utilizing a software-
defined radio is proposed in [160], using the recursive least squares (RLS) algorithm in
order to numerically estimate the drone’s 3D position.

The authors of [161] propose a localization approach based on the arrays of directional
antennas, for obtaining the direction of arrival (DoA) of the NTSC signal that is transmitted
by the drones.

Although the articles that were mentioned above only focused on the detection of
drones based on RF methods, there are also papers that present implementations of the
annihilation function using RF jamming as a countermeasure against drones [163–165].

In [162,163], a low-cost SDR platform, BladeRF X40 (Nuand, San Francisco, CA, USA),
was used as hardware to implement a jamming system against unauthorized UAVs. The
GNU Radio toolkit was used as a software environment for performing the necessary signal
processing tasks. In [162], the communication of the drone with the remote control in the
2.4 GHz ISM band was targeted, whereas in [164] the GPS navigation system was targeted.
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The authors of [164] implemented a protocol-aware jammer using the BladeRF SDR
platform as hardware. Tests were made to target the Futaba Advanced Spread Spectrum
Technology (FASST) and the Advanced Continuous Channel Shifting Technology (ACCST)
UAV remote control systems.

In [165], a portable jammer is proposed, based on the HackRF One SDR platform
and a Raspberry Pi as a host computer. Multiple tests were made in order to validate the
proposed solution, in both the 2.4 GHz and 5.8 GHz ISM bands and in the GPS L1 band.

5. Challenges and Future Perspectives for Drone Detection and Defense Systems

The previous sections contained a review of the different approaches that can be used
for implementing a DDDS. In this section, the challenges that currently have to be faced
when developing such a system will be detailed, together with a discussion regarding the
future perspectives of this domain.

One of the challenges that is faced when implementing a DDDS is the ability to identify
and, in a further step, to annihilate not only one, but several different target drones. In
recent years, many applications have used multiple drones [166], therefore, such a feature
becomes an important characteristic for a DDDS. Depending on the sensors that are used
in the system, the possibility of detecting several target drones may or may not exist. A
few examples of systems that include such a feature exist in the literature. In [167,168],
algorithms are developed in order to allow multi-UAV detection using video streams.
In [169], an RF-based deep learning (DL) algorithm is proposed for performing multiple
drone detection. The possibility of a simultaneous annihilation of several drones is an even
more challenging task. Electromagnetic pulses (EMP) have been proposed as a possible
solution for defense against drone swarms [170]. RF jamming performed using antenna
arrays could also generate, by means of signal processing methods (beamforming), multiple
beams that could be targeted towards multiple target drones.

Another challenge that a DDDS would have to face, especially if the area in which
the system is installed is a residential area, and there are several households in the close
neighborhood, is to avoid interference or damage to nearby equipment (in the case of
RF jamming and EMP) and to respect the privacy of the nearby neighbors (in the case of
imaging sensors). In the case of RF jamming, this could be solved if the antennas that are
used or the beams, in the case of using a beamforming approach, are very directive and
targeted directly towards the target drone(s).

When referring to a DDDSs based on RF methods, one of the main challenges that has
to be addressed is related to the legal issues around the use of jamming as a countermeasure,
as was also commented on in Section 3.4. For the time being, in most of the regions
worldwide, such a countermeasure can only be legally used when it is integrated into
a system that is used for the defense of national security or for public order objectives.
However, as the number of situations when such a system would be necessary also applies
to the defense of private areas that cannot be included in the above mentioned categories, it
is to be expected that the legislation in this domain might be modified in the near future in
order to include the possibility of private users also legally using such a system, as long as
the interference caused to the nearby areas is kept below certain well-defined thresholds.

An important limitation of RF-based DDDSs is related to the impossibility of detecting
and annihilating autonomous drones in cases when they have a predefined flying path and
do not have any active data communication with an operator located on the ground.

As mentioned in Table 5, each of the different types of sensors (RF, radar, imaging,
and acoustic) has its own drawbacks and limitations. As such, the performance of a DDDS
that is implemented using a single type of sensor is directly affected by the disadvantages
and limitations of that particular category. By combining several different sensor types
in a single hybrid DDDS, the system could benefit from the advantages of each different
category of sensors. A first benefit would be the increase in accuracy that such a hybrid
system could achieve, when the information regarding the identification and localization
of the drone would be obtained from multiple different sensors. A second benefit would be
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related to the possibility of detecting the target drone in situations when one of the sensor
types would not allow the detection on its own. For example, if we consider a hybrid
DSSS that is implemented using both RF and imaging sensors, the imaging sensors could
be used for detecting autonomous drones (that cannot be identified using the RF sensors)
and the RF sensors could be used for detecting drones in low visibility conditions (when
the imaging sensors could not provide the detection). Very few implementations of such
hybrid systems are described in the literature (for example those in [105,115]), and we
consider that such an approach is a promising future research and development direction
for DDDSs.

6. DronEnd Detection and Defense System

In the current section, a drone detection and defense system, designed and imple-
mented by the authors, together with a research team from the cybersecurity company
Cyberwall [171], will be presented. The system was developed within the framework of the
DronEnd research project [172]. The preliminary details regarding the project were given
in [173].

The goal of the DronEnd ground defense system is to secure a certain area against
the unauthorized presence of drones. In order to achieve this goal, the DronEnd system
scans the RF spectrum in order to detect the presence of the drones in the supervised area,
identifies the location of the drone by means of AoA algorithms, and annihilates the drone
by using RF jamming methods. The block diagram of the implemented DronEnd ground
defense system is presented in Figure 2.
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Figure 2. Block diagram of the DronEnd ground defense system.

In the following subsections, all of the elements of the system will be detailed, high-
lighting the steps that are necessary in order to perform the functions of detection, localiza-
tion, and annihilation of the drone through jamming.

6.1. Detecting the Presence of the Drone Using Spectrum Sensing Algorithms

A first step required for detecting the presence of a drone in the case of RF-based drone
defense systems is to monitor the radio spectrum through a spectrum sensing process in
order to identify the signals that are transmitted by the drone. For the implementation of
the spectrum sensing process in the DronEnd system, spectrum sensing algorithms based
on the energy detection method have been used. Algorithms, such as 3EED [174] and 3EED
with an adaptive threshold [175], that were previously developed, provide improved perfor-
mance compared to the classical energy detection (CED) [176] algorithm and were used to
identify the presence of the drones in the monitored area. The above-mentioned algorithms
were implemented on SDR platforms from the USRP family (USRP X310 (Ettus Research,
Santa Clara, CA, USA) [177] equipped with Twin-RX RF Daugterboards (Ettus Research,
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Santa Clara, CA, USA) [178], 10–6000 MHz frequency range). The frequency bands that
are used by the drones that were used to test the DronEnd system (DJI Mavic Air (SZ DJI
Technology Co., Ltd., Shenzhen, China) [179], DJI Phantom 4 Pro v2.0 (SZ DJI Technology
Co., Ltd., Shenzhen, China) [180], and DJI Mini 2 (SZ DJI Technology Co., Ltd., Shenzhen,
China) [181]) were the 2.4 GHz (2400–2500 MHz) and the 5 GHz (5730–5830 MHz) ISM
bands, which can be covered using the above-mentioned SDR platforms that can receive
signals on frequencies up to 6 GHz. Because the position of the target drones was not
initially known, omnidirectional antennas were used in this step.

Figure 3 shows the graphical user interface that was implemented in order to view
the results of the spectrum sensing. The signal that was transmitted by the DJI Mavic
Air drone on channel four of the ISM 2.4 GHz band can be seen as captured using the
USRP X310 SDR platform. In the following subsections, the other elements of the DronEnd
system will be detailed, highlighting the steps that are necessary in order to perform the
functions of localization and annihilation of the drone through jamming. The capture
of the RF data was performed using a GNU Radio python script. As the instantaneous
bandwidth captured using the Twin-RX RF daughterboard is smaller than 100 MHz, in
order to cover the 100 MHz bandwidth of the 2.4 GHz and 5 GHz ISM bands, several
sub-bands were concatenated.

1 
 

 

Figure 3. Graphical user interface of the spectrum sensing process implemented in the DronEnd
system, showing the signal transmitted by the DJI Mavic Air drone in the 4th channel of the 2.4 GHz
ISM band.

Once the signal that is transmitted by the target drone is detected, the next step is
triggered, which is to localize the angle of arrival of the received signal, as will be discussed
in the next subsection.

6.2. Localization of the Drone Using AoA Algorithms

Once the frequency that is used by the drone to communicate has been identified, a
second necessary step is to obtain information about the position of the drone. This step
was performed using AoA algorithms for detecting the angle of incidence of the detected
RF signal. Such algorithms exploit the phase difference of the signals that are received from
the drone using a multi-antenna system. The SDR platform that was used as the hardware
for providing the RF receive front-end was the USRP X310 [177], on which two Twin-RX
RF modules [178] were mounted (covered frequency range of 10–6000 MHz, instantaneous
bandwidth 80 MHz). Each of the Twin-RX modules offers two coherent reception channels,
and the local oscillator that was used can be shared by the two boards, so that in the end,
a total of four coherent reception channels are obtained and are aligned in phase. The
antenna system that was used was a linear system of four antennas, spaced at a distance
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equal to half the wavelength of the minimum frequency that the drones used for testing
could transmit (2.4 GHz). In order to estimate the initial phase difference between the four
reception channels, a calibration step was required after each system restart, which involves
the transmission of a test signal that will be received through the RF cables of equal length
on all four of the reception channels. A 5-port RF splitter (Mini-Circuits ZN4PD1-63HP-S+
(Mini-Circuits, New York, USA) [182]) was used in order to distribute the signals. Figure 4
shows both the antenna system that was used and the USRP X310 SDR platform during the
calibration stage.
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Figure 4. The linear antenna system that was used and the USRP X310 SDR platform during the
calibration procedure of the Twin-RX RF modules.

Once the calibration step was completed, the four dipole antennas (VERT2450 [183])
that make up the antenna system were connected to the four receive channels of the USRP
X310 SDR platform and, based on the phase difference of the signals that were received,
the angle of incidence that corresponds to the drone location could be identified by using
AoA algorithms. We used one of the classical AoA algorithms, the MUSIC algorithm, and
the result was both displayed on a graphical user interface, as shown in Figure 5, and
forwarded as an input to the software module that is responsible for setting the orientation
of the jamming antenna, which will be detailed in the next subsection.
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The positioning that was thus obtained was one in azimuth, as the antenna system
that was used was placed horizontally. By using a second system that was located in a
vertical plane, the elevation of the drone could be also estimated.

6.3. Annihilation of the Drone Using RF Jamming

A final step is to transmit a jamming signal to the identified target drone in order to
disrupt the communication between the drone and its operator. As the jamming signal
should only be transmitted in the direction of the target drone, in order to avoid interference
with other equipment in the area, a directional antenna was used for the jamming operation.
Figure 6 shows the following components that were used to implement this step: the
transmitting antenna, the motorized antenna mount, the stepper motor control module
that was used to move the antenna mount, and the power amplifier.
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The angle of incidence that was detected by the AoA algorithm was processed (filtered)
using a script implemented in the Matlab environment in order to remove any erroneous
indications related to the position of the drone and was subsequently transmitted using a
serial interface (UART) to the motor control module (MCM), which controls the stepper
motors that are used to move the motorized support for positioning the jamming antenna.
The MCM was based on a Microchip ATMega328p processor, which, using the angle
information that is obtained using the AoA algorithm, controls the stepper motors. Two
Nema 17 stepper motors, controlled using Texas instruments DRV8825 drivers, were used;
one to adjust the azimuth and one to adjust the elevation of the jamming signal antenna.
In the current configuration, given that the drone’s position was estimated only in the
azimuth plane, the commands were transmitted only to one of the two motors (the one that
was responsible for the azimuth movement).

The SDR platform that was used to generate the jamming signal was a USRP B200mini
platform (70–6000 MHz frequency range) (Ettus Research, Santa Clara, CA, USA) [184].
Given that the maximum power that can be obtained at the output of the SDR platform is
10 dBm, a power amplifier (Mini-Circuits ZHL-2W-63-S+ (Mini-Circuits, New York, NY,
USA) [185]) was used to amplify the jamming signal in order to extend the range of the
system, which offers a 42 dB gain and a maximum output power of 2 W. The antenna that
was used to transmit the jamming signal was a Ubiquiti UMA-D (Ubiquiti Inc., New York,
NY, USA) directional antenna [186], which covers the 2.4–2.5 GHz and 5.1–5.9 GHz bands



Sensors 2022, 22, 1453 18 of 27

and offers a 10 dBi gain in the 2.4 GHz band and a 15 dBi gain in the band of 5.8 GHz.
By using a directional antenna that targets the location of the drone for the transmission
of the jamming signal, the interferences that are caused to other communication systems
that are operating in the neighborhood are minimized. Moreover, the transmit gain can
be adjusted depending on the size of the area that has to be protected. Figure 7 shows
the jamming signal with a 10 MHz bandwidth emitted in channel four of the 2.4–2.5 GHz
ISM band, captured using an Anritsu MS2690A (Anritsu Corporation, Atsugi, Japan)
spectrum analyzer.
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The tests were performed in an outdoor suburban scenario using the DJI Mavic Air,
the DJI Phantom 4 Pro v2.0, and the DJI Mini 2 drones as targets and the annihilation of
the drone, which resulted in a forced landing on the position where the drone was located
when the jamming signal was turned on, was possible for distances of 40 m from the area
where the DronEnd ground system was located.

6.4. Conclusion and Future Research Directions

To conclude, the main novel elements that are introduced by the DronEnd system,
when compared to other drone detection and defense systems based on RF methods that
were mentioned in Section 4, can be summarized as follows:

• Incorporates all of the three functions (identification, localization, and annihilation)
that are necessary for a drone detection and defense system in an integrated and scal-
able platform, which can be reconfigured depending on the requirements of different
use cases;

• Includes an agile and accurate identification subsystem, based on improved spectrum
sensing algorithms, which performs a real-time identification of the signals that are
transmitted by the drone and, moreover, allows a dynamic tracking of the signal
transmitted by the drone, even when the transmit frequency is changed;

• Annihilates the detected drone by means of jamming, avoiding at the same time
significant interference with nearby devices, as a directional antenna, targeted directly
towards the target drone using a motorized antenna mount, is used.

Several aspects are considered as future research directions, in order to improve the
performance of the proposed system.
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The first direction is related to the possibility of replacing the mechanical motorized
antenna mount that was used for targeting the directional jamming antenna with an
equivalent static planar antenna array. By using such an approach, the orientation of
the resulting antenna beam that was necessary for following the target drone would
not involve any moving parts, as the steering would be obtained only by using signal
processing methods. The advantages of such an approach would include a smaller delay,
the possibility of adjusting the beamwidth by signal processing means, depending on the
application necessity, and the absence of aging effects that might affect mechanical parts.
However, as the transmit power level that is needed in order to obtain a large enough range
for the system might be high, a challenge that would have to be addressed is the design of
a power amplification stage for supplying the planar antenna array.

The second direction is related to the addition of a second antenna array, in an orthog-
onal plane, compared to the one in which the current antenna array is located. By using
such a setup, the identification of the target drone could be performed both in azimuth and
elevation, allowing for a more precise steering of the directional antenna that is used for
transmitting the jamming signal.

The third research direction is related to a subject that was also commented on in
Section 5, which is the implementation of a hybrid DDDS in order to improve the overall
performance of the system. The addition of imaging sensors is considered, as such an
approach would have a twofold contribution; it would improve the accuracy of the detected
targets for the situations in which the target drone would be detected by both types of
sensors, and it would allow the detection of the target drones also in the situations when
only one type of sensor would be able to identify them.

7. Conclusions and Future Work

In this paper, a survey related to the current status of drone detection and defense
systems was performed and our own solution for a drone defense system based on SDR
platforms (DronEnd) was presented. Different aspects, such as regulatory issues and
reported incidents that involved drones, were included in the survey. A classification of the
drone detection systems that were based on the type of sensors that are used was performed.
A detailed description of the RF-based drone detection and defense systems was made,
with an emphasis on the use of SDR platforms for the implementation of such systems.
The drone defense system that was developed by the authors within the framework of the
DronEnd research project is presented in the final part of the paper. As future work, we
intend to conduct a detailed testing of the DronEnd ground system, in order to verify the
performance of our solution from the detection, localization, and annihilation points of
view and we also plan to develop a flying version of the DronEnd system, by mounting
an embedded SDR platform on a support drone and approaching the target drones from
the air.
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Abbreviations

ACCST Advanced Continuous Channel Shifting Technology
ACF Autocorrelation Function
ACMA Australian Communication and Media Authority
AI Artificial Intelligence
AoA Angle of Arrival
CNN Convolutional Neural Network
DDDS Drone Detection and Defense Systems
DoA Direction of Arrival
DRNN Deep Residual Neural Network
DSP Digital Signal Processing
DL Deep Learning
EASA European Union Aviation Safety
EMP Electromagnetic Pulses
EO Electro-optical
FASST Futaba Advanced Spread Spectrum Technology
FCC Federal Communications Commission
FPGA Field-Programmable Gate Array
GNSS Global Navigation Satellite System
GPS Global Positioning System
INS Inertial Navigation Systems/Sensors
IR Infrared
IS Islamic State
ISM Industrial, Scientific, and Medical
KNN K-Nearest Neighbor
LoS Line of Sight
MDS Micro-Doppler Signatures
MCM Motor Control Module
ML Machine Learning
MUSIC MUltiple SIgnal Classification
NTSC National Television Standards Committee
PSE Power Spectral Entropy
RC Remote Control
RF Radio Frequency
RLS Recursive Least Squares
RSS Received-Signal Strength
SDR Software-Defined Radio
SFS Signal Frequency Spectrum
SNR Signal-to-Noise Ratio
STFT Short-Time Fourier Transform
UAS Unmanned Aerial Systems
UAV Unmanned Air Vehicle
WEE Wavelet Energy Entropy
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