
����������
�������

Citation: Lira, H.; Martí, L.;

Sanchez-Pi, N. A Graph Neural

Network with Spatio-Temporal

Attention for Multi-Sources Time

Series Data: An Application to

Frost Forecast. Sensors 2022, 22, 1486.

https://doi.org/10.3390/s22041486

Academic Editor: Fabio Leccese

Received: 29 November 2021

Accepted: 3 February 2022

Published: 15 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Graph Neural Network with Spatio-Temporal Attention for
Multi-Sources Time Series Data: An Application to
Frost Forecast †

Hernan Lira * , Luis Martí and Nayat Sanchez-Pi

Inria Chile Research Center, Las Condes 7550268, Chile; lmarti@inria.cl (L.M.); nayat.sanchez-pi@inria.cl (N.S.-P.)
* Correspondence: hernan.lira@inria.cl
† This paper is an extended version of our paper published in Lira, H.; Martí, L.; Sanchez-Pi, N. In Proceedings

of the AI: Modeling Oceans and Climate Change Workshop at ICLR 2021, May 2021, Santiago, Chile.

Abstract: Frost forecast is an important issue in climate research because of its economic impact on
several industries. In this study, we propose GRAST-Frost, a graph neural network (GNN) with
spatio-temporal architecture, which is used to predict minimum temperatures and the incidence of
frost. We developed an IoT platform capable of acquiring weather data from an experimental site, and
in addition, data were collected from 10 weather stations in close proximity to the aforementioned
site. The model considers spatial and temporal relations while processing multiple time series
simultaneously. Performing predictions of 6, 12, 24, and 48 h in advance, this model outperforms
classical time series forecasting methods, including linear and nonlinear machine learning methods,
simple deep learning architectures, and nongraph deep learning models. In addition, we show that
our model significantly improves on the current state of the art of frost forecasting methods.

Keywords: frost forecasting; graph neural networks; spatio-temporal attention

1. Introduction

Generating accurate weather forecasts from reliable localized data is a key feature of
precision agriculture that enables farmers to improve their resources in terms of efficiency,
productivity, sustainability, etc. Moreover, it is a tool for countering weather uncertainty
by reducing the risks posed by extreme weather that can impact the overall quality of the
production. Frost is one such threat that kills plant tissue, causing low production and
economic losses since it prevents the normal development of crops. During some periods
of the year, temperatures can drop considerably between day and night, with temperatures
reaching below freezing. A low temperature can cause the crop to flower early or if there is
frost it can cause a considerable reduction in production [1]. These negative consequences
could be prevented or mitigated with a frost forecast model that provides information to
the farmer regarding the probability of a frost event several hours in advance, so the farmer
can take action to protect the crops.

From a forecasting perspective, the prediction of frost events presents some challenges.
For instance, they are a complex meteorological phenomenon influenced by a combination
of environmental factors, including air temperature, humidity, radiation, and wind, and
local factors, including topography and field orientation. Since there are local factors
involved, frost events can occur in small areas even within the same crop field [2]. Therefore,
a method to collect high-resolution weather data is required.

Typical weather data sources such as open weather, used for global weather forecasts,
or national weather stations are useful to understand the weather dynamics across big
areas. Previous research used frost forecast models from these sources, but they are limited
to forecasting in the vicinity of the weather station [3]. Therefore, these methods do
not provide the resolution required when seeking to forecast the weather in a specific
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location/field. As a consequence, farmers use these forecasts as a reference, but most of
their decisions to prevent frost events are based on experience and intuition.

To collect data specifically from a field, we developed a low-cost and easy-to-install IoT
platform, with environmental sensors and cloud technologies for collecting and storing data.
Specifically, we measure air temperature, air humidity, and relevant metadata. In addition,
we use meteorological data collected from weather stations located near the field [4].
The purpose is to provide the farmer with relevant information so that they can make
informed decisions. The frost forecasting model requires an intelligent component that uses
field data to capture specific conditions about the field combined with weather stations
data to capture weather dynamics and possible future scenarios.

The majority of research relating to frost forecasting is based on simulating partial dif-
ferential equations or traditional statistical models to predict future weather conditions [5].
This approach is computationally expensive as it requires a recurrent theoretical upgrade
to incorporate weather and atmospheric assumptions. On the contrary, machine learn-
ing algorithms do not make any assumptions about weather behavior. Instead, they use
historical weather data as an input and train a model to predict future weather values [3].

There are some challenges related to machine learning models. Since frost can be
highly variable across a small area, the collection of temperature data usually from weather
stations is not available with sufficient frequency. In addition, the number of frost events
during the year is relatively small, making it difficult to build an accurate prediction model
due to limited available data [2]. Finally, by viewing the model as a binary classification
problem, i.e., Frost/No Frost, we need to consider that both errors are unwanted. If no frost
is predicted and the frost occurs, it may impact on the partial or total loss of production.
On the contrary, if frost is predicted and the frost does not occur, unnecessary resources
such as fuel and electricity used to mitigate the frost will be wasted.

In light of the aforementioned constraints, especially the scarcity of data and small
datasets, a range of machine learning models were evaluated, including models to learn
time series data as well as advanced deep learning architectures. In particular, graph neural
networks (GNN) and attention mechanisms were considered suitable for this problem,
since they incorporate spatial knowledge that can model field and environmental inter-
actions [6,7]. In addition, since the occurrence of frost is caused by a prior movement of
environmental factors, GNNs can be naturally extended to model this type of temporal
interaction. Therefore, in this paper we discuss a time series forecasting problem using
GNNs and attention.

In this study, we collected air temperature and humidity data from an experimental
site and from 10 weather stations. In particular, we propose GRAST-Frost, a GNN with
spatio-temporal attention architecture for frost forecast. We map weather stations’ locations
to nodes on a graph and construct the edges based on geographical proximity. Furthermore,
the adjacency matrix is optimized during the training phase, therefore other interactions can
be learned. We utilize spatio-temporal attention to incorporate similar locations and time.

To the best of our knowledge, deep learning and graph neural networks were so far
not applied to the frost forecasting problem. Although considerable research was devoted
to this area, most of the research focused on developing an IoT platform for collecting in-
place weather data. Consequently, little attention was paid to developing a model that can
take advantage of multiple data sources and spatio-temporal dynamics. However, GNN
models were recently adopted for traffic forecasting, epidemiology, and fraud detection.
The implementation of GNN models in these scenarios showed the potential for predicting
multivariate time series [8,9] and graph attentional networks for capturing spatio-temporal
dynamics [7,10,11].

Our contributions to this field are two-fold. First, we propose a full pipeline for the frost
problem, including the development of an IoT platform, data collection, and forecasting
model using two data sources. Second, we approach the frost problem by proposing a
multivariate time series forecasting method, GRAST-Frost, that computes each time series at
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the same time. This method is based on a graph data structure, and it uses a spatio-temporal
attention mechanism for weighted relevance according to time and/or space.

Moreover, this paper seeks to answer the following research questions:

1. Is a GNN capable of improving the time series forecasting of data sources from
different locations in comparison to state-of-the-art frost forecasting methods?

2. Does the spatio-temporal attention mechanism improve forecasts?
3. Does the combined use of different data sources improve forecasts?

To answer the first question, we compare our approach with classical time series,
machine learning, and deep learning methods by classification and regression metrics,
which are currently the state of the art for frost forecasting. With regard to the second
question, we compare our approach with GNN models proposed in previous studies that
do not use spatio-temporal attention mechanisms. For the final question, we compare the
forecasts using separate data sources.

The proposed model outperforms current state-of-the-art methods for predicting
temperature and classifying frost from 6 h, 12 h, 24 h and 48 h in advance. Furthermore,
graph-based modeling and spatio-temporal attention mechanisms are key factors to per-
form a more accurate prediction and minimize classification errors.

The rest of the paper is organized into the following sections: Section 2 examines
previous studies regarding machine learning for time series, weather, and frost forecasting.
Section 3 describes the platform and our proposed method. After that, Section 4 presents
the experiments and results, and then we offer a discussion of the results in Section 5.
Finally, Section 6 concludes the paper and presents possible directions for future work.

2. Related Work

Mort et al. [12] and Verdes et al. [13] are two research studies that address the frost
phenomenon using machine learning. In these studies, the authors use artificial neural
networks to create temperature prediction models based on weather time series data
and apply them to agricultural applications. Their principal objectives are to predict the
next day’s minimum temperature using historical data. In recent years, there were great
advances in the field of internet of things (IoT) systems and deep learning. Thanks to
these advancements, it was possible to install a wide variety of sensors and collect data
from almost any place of interest with the purpose of building accurate prediction models.
Regarding IoT systems designed for weather forecasting, Muck et al. [14] designed an IoT
based weather station using a Raspberry Pi, which provides short-term weather forecasting.
Similarly, Levin et al. [15] presents a weather forecasting system based on a Raspberry
Pi 3 Model B+ with environmental sensors and a weather forecasting algorithm. Their
systems monitor air temperature, humidity, pressure, and altitude at experimental locations.
Their weather forecast algorithms are based on a linear regression model. Other studies
such as Diedrichs et al. [3] and Castaneda–Miranda et al. [16] used IoT devices to extract
weather data from selected locations as well, but instead of focusing on weather, they
used classic applied machine learning techniques to predict frost events. Likewise, the
research group of Guillén–Navarro et al. [1,17] developed over the years an IoT platform
to predict frost events. This platform appears to be more robust than the previous studies
in terms of engineering and technological components. Although these studies made
interesting progress in terms of IoT and sensor data collection systems, the development of
their machine learning models was limited. Therefore, the resulting prediction results are
unsatisfactory in terms of error rates and/or classification metrics. In addition, the data
sources were constrained to the experimental field where the system is located.

Few studies attempted to focus on the development of the frost forecast model itself.
For example, Ding et al. [2] concentrated their efforts on the development of a causal-effect
machine learning model that uses locally collected temperature, humidity, and radiation
data to create frost prediction. They were able to describe causal relationships between
variables and outputs; however, their model requires improvements to minimize the false-
positive predictions. Another example is the study by Cadenas et al. [18], which was based



Sensors 2022, 22, 1486 4 of 19

on a soft computing framework that collects and stores weather data. They propose a data
preprocessing technique to build fuzzy time series from raw data and serve it as an input
to classification and regression problems. In addition, Guillén–Navarro et al. [19] used a
simple long short-term memory (LSTM) architecture to produce frost forecasts from data
collected using their IoT system. Although these studies provide interesting methods to
address the frost forecasting problem, there is still a wide range of solutions to investigate.
For example, exploring current developments within deep learning models that could
improve forecasts and include different data sources.

In contrast to frost forecasting, weather-related forecasting has plenty of studies
that use advanced deep learning techniques. For instance Shi et al. [20] proposed a fully
connected convolutional LSTM network to predict short-term future rainfall intensity in a
local area and extract spatio-temporal dynamics of the data. Likewise, Mehrkanoon et al. [21]
proposed a model for predicting temperature and wind speed 1 to 10 days in advance
using a convolutional neural network. They introduced an architecture based on 1D-
CNNs to process tensor 3D data and to extract spatio-temporal relations. In addition,
Hewage et al. [5] presented a weather forecasting model that uses an LSTM and a temporal
convolution network. The results obtained are better than classical time series forecasting
and classical machine learning. However, these models do not capture the complexities of
our specific problem. For instance, we need to deal with multivariate time series forecasting
of several time series at different locations. In the aforementioned approaches, there are no
spatial relations between the entities (e.g., different cities), the interaction is determined
by the entity order in the tensor. To capture the spatio-temporal dynamics of different
entities, a promising approach is to use GNNs, which have the capacity to model temporal
dynamics of nodes and spatial dynamics between them at the same time.

GNNs showed recent progress in the area of time series forecasting and spatio-
temporal relations. Moreover, a GNN can extract greater insights compared to that of
networks that can only analyze data in isolation. This is achieved by obtaining structural
relationships between the data [22]. There are a number of domains in which GNNs were
successfully applied in recent years, such as traffic flow forecasting, fraud detection, epi-
demiology, and forecasting weather-related events. In regards to the latter, Wilson et al. [23]
addressed the spatio-temporal correlation in the data by proposing a deep learning model
based on a weighted graph convolutional LSTM. The general goal was to capture temporal
autocorrelation with the LSTM and the spatial relationships with the graph convolution.
Similarly, Khodayar et al. [24] presented a spatio-temporal Graph convolutional net-
work (GCN) for short-term wind speed forecasting. Another example is the study by
Wang et al. [25], which proposed a graph-based model to predict PM2.5 particle concentra-
tion and capture the spatio-temporal dependencies.

The most recent advances in GNN were applied to other domains. For instance,
a study by Cheng et al. [7] presented a model using GNN for fraud detection in credit card
transactions. They implemented a spatio-temporal attention mechanism which produces
the input for a 3D convolution network. As per the previous study, Gao et al. [26] proposed a
GNN with spatio-temporal attention mechanism and a GRU architecture to forecast the
number of infected cases in a pandemic by considering local disease status and demo-
graphic and transmission dynamics. There were several GNN models applied to traffic flow
forecasting and urban planning. In particular, Song et al. [27] developed a spatio-temporal
GCN with a synchronous temporal mechanism to predict the flow of a network. Likewise,
the studies by Lu et al. [28], Kong et al. [10] and Li et al. [11] proposed different model
versions of a spatio-temporal GNN with attention mechanisms for urban sensor value
forecasting, traffic flow forecasting, and segment-level traffic prediction, respectively.

The goal of this study is to predict frost events by using air temperature and humidity
data obtained from an IoT system installed on an experimental field and weather stations
located around the field. We have two main sources of inspiration. First, we are inspired by
recent advancements in GNN models as detailed previously, especially the spatio-temporal
attention mechanism. Second, we are inspired by the study of Wu et al. [9], which is a
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model for multivariate time series forecasting using a GNN, and by the recent study of
Shang et al. [8], who proposed a model for multivariate time series forecasting using a GNN
in which they consider pairwise interactions between features in a node representation.
Therefore, the contribution of this paper is a multivariate frost forecasting model based on
a GNN with a spatio-temporal attention mechanism.

3. Proposal

In this paper, we propose a bivariate time series forecasting model to predict the
occurrence of frost. The benefit of such a model is that it can be trained with historical
time series data X = {xt1 , xt2 , . . . , xtm} with xt ∈ R2 the value of the bivariate variable
at time t is used to forecast future values of the variable in a certain time-window r,
Y = {xtm+1 , xtm+2 , . . . , xtm+r}. Then, the goal is to create a mapping function from X to Y
and minimize the loss, typically using a l2 regularization [9].

In particular, given a set of input data P = {n, temp, hum} and a derived label
F = {1, 0} which indicates the presence (1) or absence (0) of frost for each one of the
records. We aim to forecast the minimum temperature and the frost class for future time
windows {tm, . . . , tm+r} based on the historical time window {t1, . . . , tm−1}.

In addition to bivariate time series forecasting, we model the spatial and temporal
relationships of weather data from multiple locations. For that purpose we utilize GNNs
to describe and formalize those relationships. The following are important definitions for
graph modeling [9].

• Graph: a graph is represented as G = (V, E) where V represents the set of nodes and
E represents the set of edges. There are n number of nodes in a graph.

• Node neighborhood: describes a set of nodes connected by an edge. A singular node
v ∈ V and an edge e = (v, u) ∈ E maps from v to u describes the connection between
nodes. The neighborhood of v is defined as N(v) = u ∈ V | (v, u) ∈ E.

• Adjacency matrix: states the connections between nodes in a graph. It is denoted by a
matrix A ∈ Rn×n with Aij = q > 0 if (vi, vj) ∈ E and Ai,j = 0 if (vi, vj) /∈ E.

Then, the graph network is formally defined as G = (V, E, A), which represents the
relationships between nodes in the spatial dimension.

3.1. Data Sources

The model was trained and tested using data collected from our IoT platform and
10 meteorological stations, which are all located in the central region of Chile. Appendix A
lists the stations and their geographical location.

The 10 meteorological stations, which are within close proximity of the orchard,
provide structured temperature and humidity data in the form of a graph. Here, the data
are collected every hour. The 10 meteorological stations considered for this study and their
representation as a graph are shown in Figure 1.

The IoT platform was developed with both air temperature and air humidity sensors
and consists of 12 low-power wireless sensor nodes (motes). The latter are divided into
eight sensor data nodes and four repeaters, which are connected to a gateway through a
SmartMesh IP manager. The wireless sensor network is exposed directly to environmental
conditions (sun, dust, rain, and snow), and therefore all sensors are protected by an Internal
Protection 65 (IP65) rating enclosure. The IoT platform was installed in a local orchard
where data were collected every 10 s at four different heights above ground (one, two, three,
and four meters). An image of the IoT platform in situ in the orchard is shown in Figure 2.
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(a) (b)
Figure 1. Graph modeling based on location of experimental site and weather stations. (a) Map of
weather stations and experimental site; (b) Schematic version of a graph constructed at a single time step.

Figure 2. Internet of things (IoT) platform installed on experimental field composed by temperature
and humidity sensors.

Data were collected between 4 September 2020 until 5 April 2021. Training data were
taken from the months of September to February and the last two months of data were
used for training. It is assumed that environmental factors can have an accumulated impact
on frost; therefore, the prediction was performed using time series data. For this reason,
we need the model to learn time-related patterns, which is why we do not randomly split
training and testing data.

All the data are preprocessed for missing values and outliers. Data from the IoT
platform is downsampled using 1-min time-windows. In addition, to map the frequency of
both data sources, data from weather stations are linearly interpolated. Finally, in case of the
classification of frost, a label is created in the training data with two classes (Frost/No Frost)
and given the imbalance between them, the synthetic minority oversampling technique
(SMOTE) method was applied.

3.2. Forecasting Model

In this study, we develop a GRAST-Frost model, the architecture of which is shown
in Figure 3. First, we convert our input P into a 3D (spatial, temporal and features),
high-order tensor representation X . The tensor is then fed into the graph neural network,
which aims to correlate the IoT platform data with that of the meteorological stations.
For each t, we create a graph of nodes that relate to each of the stations (meteorological
and the IoT platform) and their corresponding edges. Then, we apply a spatio-temporal
attention mechanism and a 3D convolution layer to obtain a feature-learned tensor X C .
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With spatio-temporal attention and 3D convolution, the idea is to weigh the importance
of different dimensions and find hidden patterns from the input data. Finally, X C is fed
through a recurrent neural network to produce a forecast with two different loss functions
depending on the type of task. We present details of each part of this architecture in the
following subsections.

Table Spatial
attention 

Temporal
attention 

Recurrent
 graph

convolution

tim
efeatures

lo
ca

ti
on

tensor 
repr. 

Expected
outputs

 

distance- 
based 
graph

Predictions 

loss  
function

Training dataset Feature engineering Spatio-temporal attention Forecasting and loss function

Figure 3. Overview of GRAST-Frost model.

To forecast local weather conditions at the orchard using the aforementioned sensory
data, we predict at differing time intervals into the future (6, 12, 24, and 48 h). At a
single time step, the geographical locations of the nodes are graphed as can be seen in
Figure 1, where the blue dots represent the meteorological sites and the green dot depicts
the experimental site. For multiple time steps, the graph is expanded into a spatial-temporal
graph where feature values for a given node are related to its previous and future values
and its spatial neighbors. A schematic view of this idea is shown in Figure 4.

Figure 4. Schematic view of spatio-temporal graph network for modeling relationships between
experimental field and weather stations through time.

3.2.1. Feature Engineering

To represent the input data as a tensor X ∈ RT×S×F where T, S, and F denote the
temporal, spatial, and feature dimensions. In particular, for each spatio-temporal pair
composed of a certain time horizon and location, a feature vector is built ( f ∈ RF) based on
the measurements collected in that pair. There are a total of T × S spatio-temporal pairs,
each one of them are features of F dimensions. Based on [7], the feature vector is composed
of two parts: feature measurements and graph features. For measurements, we include raw
temperature, humidity data, mean, standard deviation, median, maximum, and minimum
values for a specific time horizon. For the graph related features, we include several metrics
obtained from the graph neural network processing described in the following section.
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3.2.2. Graph Construction at a Single Time Step

Given the tensor X, the geographical location (latitude, longitude) of the weather
stations and experimental field is obtained. This data are used to calculate the geographical
proximity, which in turn contributes to the development of the adjacency matrix. Nodes
are simply a subset of the tensor in time t. We utilize an aggregation function to reduce
the edge updates to a single element. Therefore, for a single node, we summarize the
interactions with other nodes.

The nodes in the graph G(V, E) are constructed to represent input data, by associating
features such as (temp, hum) and location (lat, lon). In total we have 11 nodes. Generally,
we have two types of nodes: v is the node corresponding to the experimental field, and u
is the node corresponding to the weather stations. Thus, fv and fu are the corresponding
feature vectors for each one of them.

The edges are constructed based on geographical distance between nodes. We con-
struct a weighted graph where the weight is inversely proportional to distance. Formally,
in a weighted graph G = (V, E, w) [6], that do not contain any cycle of negative weight, the
distance between node u and v is defined as d : V ×V → R as

d(u, v) = 0 if u = v, and
d(u, v) =‖ (locationu, locationv) ‖ otherwise ,

(1)

that corresponds to the Euclidean distance between the location of nodes u and v.
Therefore, the weight is,

wuv =
1

d(u, v)
(2)

For this study, all nodes are integrated, thus, there are edges between all the nodes.
Therefore, the feature vector of the edge is fe = wuv ∗ fgnn, which is the weighted measure-
ment of fgnn, features to be obtained by the graph neural network (GNN).

3.2.3. Spatial-Temporal Graph Construction

To represent the relationship between each node and its neighbors across time, inspired
by [27], we connect all nodes with themselves sequentially for each time step. This allows
us to create a spatial-temporal graph by sequentially connecting nodes from previous to
current and future time steps as shown in figure 5. Therefore, it is possible to understand the
relationships between nodes through time. In practice, we create a new adjacency matrix
AT ∈ Rn×T for the spatial-temporal graph. The new adjacency matrix can be formulated
simply as

AT
i,j =

{
1 if vi is related with vj ,
0 otherwise .

(3)

As illustrated in Figure 5 the new adjacency matrix has dimension N × T, where its
diagonal represents the adjacency matrix for a single time step and a relation of the nodes
through time.

For each time step a GNN consumes the graph described on the previous section.
The information of interactions between nodes is described in terms of nodes involved u, v,
time t, location l and measurement m. Based on it, the edges are constructed. Features for
nodes fv, fu and edges fe are initialized accordingly. Then, we iteratively include graph
constructed in subsequent time steps by updating the representation of nodes and edges
based on the previous time step and weighted by the adjacency matrix AT . Edge features
are updated following

f t
euv = FCe( f t−1

euv , idu, idv, AT
t,t−1) , (4)

where f t
euv is the edge feature between nodes u and v in time t, FCe is a fully connected

neural network with a ReLU activation function which computes all the edges updates.
In addition, idu, idv are the location on graph of node u and v. Then, for each time step we
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proceed to update the node features fu and fv. For each node, we sum all the edges that are
connected to that node. Regarding fv the equation is

f t
v = FCv(

N

∑
i

f t
ei

, f t−1
v , AT

t,t−1) . (5)

Here f t
v is the node feature in time t, N is the total number of nodes and FCv is a fully

connected neural network.

Figure 5. Spatio-temporal graph construction and adjacency matrix for including multiple time steps.

Finally, we calculate the feature vector of the graph fg which is the average of all the
updates of fe and fv for every time step.

The output of the GNN are the updated values of fv, fu, fe and fg. We use these values
to complete the feature vector F on the tensor X regarding the graph part, as described in
the previous section.

3.2.4. Spatio-Temporal Attention Mechanism

The idea of the attention network is to weigh the importance of spatial and tempo-
ral values from the current measurement for a specific node and time. We use the GAT
model [6] to extract Spatio-temporal similarity features. The idea is to update the embed-
ding information of each node using the aggregate data from its neighbors. Therefore,
weather stations and the IoT platform receive prior temperature and humidity data from
nearby areas. This allows us to hypothesize that a specific prediction is more likely due to a
higher importance being given to meteorological sites in close proximity to the orchard,
rather than those located further away, and recent measurements being given a higher
priority compared to that of older measurements. Given the feature tensor X , we can query
the temporal values ∀tXts f (t ∈ {1, 2, . . . , T}) to extract the time horizon, and the spatial
values ∀sXts f (s ∈ {1, 2, . . . , S}) to extract the location coordinates.

Temporal Attention

In the temporal dimension, there exist correlations between temperature and humidity
values in different time steps. Since weather is highly dynamic, temporal correlations are
variable under different conditions. Therefore, to have a mechanism for capturing those
correlations, we use attention to adaptively obtain the importance of previous data in
relation to current data.

Based on [7], considering a tensor X , the temporal attention layer is the temperature
and humidity values for a specific time multiplied by a weighted sum of the matrix
representation of all temporal values. Formally, it is described as

X t =
T

∑
t=1

atXts f with (6)
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at =
exp((1− λt)· FCt(Wt,Xts f ))

∑T
t=1 exp((1− λt)· FCt(Wt,Xts f ))

. (7)

Here at is the weight for each time step, FCt is a fully connected layer with ReLU
activation and the weight vector Wt ; λt ∈ [0, 1] is the temporal penalty factor to control the
importance of temporal attention; X t, the output of the temporal attention layer is a tensor
with X ∈ RT×S×F.

Spatial Attention

The spatial dimension, temperature, and humidity values from different nodes have
varying influences, and due to the weather, the behavior of these influences are highly
dynamic. In particular, we are interested in capturing correlations between the nodes on
the weather values in the spatial dimension. Therefore, we want to explicitly capture the
relationships between close and distant nodes.

Given the output from the temporal attention layerX t, the spatial attention mechanism
is applied. Formally, it is described as

X st =
S

∑
s=1

asX t
ts f with (8)

as =
exp((1− λs)· FCs(Ws,X t

ts f ))

∑S
s=1 exp((1− λs)· FCs(Ws,X t

ts f ))
, (9)

where Ws is the weight of the fully connected spatial network FCs, and X st is the output of
both self-attention layers. The output is reshaped into a tensor format with the same order
as X ; as is the weight for each spatial step; and λs ∈ [0, 1] is the spatial penalty factor to
control the importance of spatial attention.

3.2.5. Convolution Process

Several studies stated the benefits of applying convolutional neural networks to feature
tensors based on GNN modeling [29–31]. In our case, we used a 3D convolutional network
with the X st tensor as an input. The idea is to extract hidden patterns from spatio-temporal
features by stacking multiple layers in the architecture.

The 3D convolution is represented as

X c
k = ∑

k
X c−1(dt − ca, ds − cb, d f − cq)Kl

i(ca, cb, cq) . (10)

Here, Kl
i is a 3D kernel in the lth layer and ith kernel in a convolution with feature

X c−1. In particular, the 3D convolution kernel is (ca, cb, cq). The first layer of X c−1 is
the output of our attention mechanism X st. dt, ds, and d f are the dimensions of X st

considering temporal, spatial, and feature components, which equals to T, S, F of the first
convolution layer.

Finally, the output feature X c is

X c = σ(∑
k
X c

k + bc) , (11)

where bc is the bias parameter, and σ is the sigmoid function.

3.2.6. GNN Forecasting

In the last part of the forecasting model, we apply a recurrent neural network to
capture the sequential aspect of the problem and produce forecasts based on historical
data. Given the tensor X c we use a sequence-to-sequence model (seq2seq) [32] over each
node, i.e., ∀sX c

ts f . Thus, we extract the transformed series from the experimental field and
weather stations. The reason for using seq2seq is that in a graph structure, we can perform



Sensors 2022, 22, 1486 11 of 19

recurrent graph convolution to handle all series simultaneously [8]. In practice, for each
series we used {t1, . . . , tm−1} time values to train the model and {tm, . . . , tr} to forecast the
weather using r ∈ {6, 12, 24, 48} h in the future. Specifically, for each time t, the seq2seq
model takes X c

ts f ∀s for all series and updates the internal hidden state from Ht−1 to Ht.
The encoder recurrently updates the training data to be included, producing Ht+r as a
summary. The decoder takes that input and continues the recurrence to include all the
testing data for the forecasting phase.

Finally, we use two loss functions, one for classification and one for regression. The for-
mer loss function is defined as

L =
−1
N

N

∑
i=1

[yilog(Hi) + β(1− yi)log(1− Hi)] , (12)

where N is the total number of samples in the series, β is a sample weight regarding the
distribution of Frost/No Frost; yi ∈ {0, 1} is the real label and Hi is the value score produce
by the forecasting.

The regression loss function uses mean squared error

L =
1
N

N

∑
i=1

yi − H2
i . (13)

4. Results
4.1. Baselines and Evaluation Metrics

We use our model to solve a regression problem, to predict the minimum temperature
in all the nodes, and a classification problem, to predict two classes Frost and No Frost.
In case of regression, we compare with the following forecasting methods:

1. Non-deep learning methods: historical average (HA), ARIMA with Kalman filter
(ARIMA), vector auto-regression (VAR), and support vector regression (SVR). The his-
torical average accounts for weekly seasonality and predicts for a day by using the
weighted average of the same day in the past few weeks;

2. Deep learning methods that produce forecasting for each series separately (not graph-
based) such as feed-forward neural network (FNN) and LSTM;

3. Autoencoder forecasting method with attention mechanism (AC-att);
4. Graph convolutional network applied to the given graph without spatio-temporal

attention mechanism (GCN);
5. Variants of this architecture using convolutions [7] and GRU [26].

In case of classification, we do not use the non-deep learning methods described above,
but we use support vector machines (SVM) and tree-based classification algorithms such as
naïve Bayes and XGBoost.

For regression, all methods are evaluated with three metrics: mean absolute error
(MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE). For
classification, all methods are evaluated with precision, recall, and F1 metrics.

4.2. Hyperparameters

Several hyperparameters are tuned through grid search: initial learning rate in
{0.1, 0.01, 0.001}, dropout rate in {0.1, 0.2, 0.3}, embedding size of the LSTM layer was
set in {32, 64, 128, 256}, the k value in kNN in {5, 10, 20, 30}, and the weight of regulariza-
tion in {0, 1, 2, 5, 10, 20}. For other hyperparameters, the convolution kernel size in the
feature extractor is 10 and the decay ratio of learning rate is 0.1. After tuning, the best initial
learning rate for our dataset is 0.001. The optimizer is Adam.

All models are implemented in PyTorch and ran in the Google Colaboratory platform.
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4.3. Results for Regression Problem

Table 1 and Figure 6 show the evaluation of the proposed GSTA-RCN model compared
with that of the baselines. The tasks are to forecast the minimum temperature of the
experimental field with 6 h, 12 h, 24 h and 48 h in advance.

The proposed model outperforms all the compared baselines for frost forecast in 6 h,
12 h, 24 h and 48 h tasks. A nongraph model such as an autoencoder with an attention
mechanism outperforms GNN with spatio-temporal attention using convolution and GRU.
To improve these results, it is necessary to collect more weather data and weather variables
and to use more weather stations for modeling geographical and temporal interactions.

Table 1. Average mean absolute error (MAE), root mean square error (RMSE), and mean absolute
percentage error (MAPE) metrics of time series forecasting models applied to frost forecast. Best
values are highlighted in bold.

MAE RMSE MAPE

Model 6 h 12 h 24 h 6 h 12 h 24 h 6 h 12 h 24 h

VAR FNN 4.28 4.76 5.74 7.88 8.60 10.75 7.21 8.77 9.98
LSTM 4.03 4.76 5.46 6.93 7.35 9.11 6.95 6.89 8.61
AC-att 3.41 3.79 4.26 5.89 6.64 7.44 5.74 5.84 7.05
GCN 3.61 3.89 4.28 6.01 7.09 7.46 5.55 5.89 7.03
STA-C 3.77 4.02 4.83 6.55 8.02 8.71 6.11 7.87 8.30
STA-GRU 3.52 3.73 4.17 6.14 7.20 7.39 5.82 5.99 7.05

GRAST-Frost 3.08 3.25 3.86 5.42 5.79 6.19 5.39 5.44 6.04

6hr 12hr 24hr
Task
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3.5

4.0

4.5

5.0

5.5

6.0
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7.0
MAE

6hr 12hr 24hr
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12

14
RMSE

6hr 12hr 24hr
Task

6
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9
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11
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MAPE
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ARIMA
VAR
FNN
LSTM
AC-att
STA-C
STA-GRU
GSTA-RGC

Figure 6. MAE, MAPE, and RSME metric results for temperature forecasting on 6, 12, and 24 h
in advance.

In general terms, we can separate the results from non-deep learning models and
FNN from LSTM, autoencoder and graph-based neural network architectures. Non-deep
learning models (HA, ARIMA) and the simple deep learning architecture FNN only have
similar error scores with the other architectures on the 6 h task. For a greater time-window,
their performance drastically decreases. Then, we can compare results from LSTM with the
results from STA-C, the variation of the spatio-temporal GNN with attention mechanism,
and a convolution-based forecasting method. For this dataset, the complexity added by
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STA-C does not have an impact on the performance of the model and a simple LSTM
is preferable, especially for 6 h, 12 h, and 24 h predictions. As mentioned previously,
the autoencoder architecture with attention mechanism performs better than STA-C and
similar to STA-GRU for 6 h, 12 h, and 24 h tasks. Finally, our model outperforms all the
previous baselines. In our case, the complexity of the modeling successfully increases the
performance of the prediction for each time-window task.

Figure 7 shows model’s results in terms of RMSE for the experimental field node
and the three geographically closest node neighbors. By focusing on the prediction for
each node, instead of the average of all nodes, the results description remains the same.
In addition, the Pearson correlation statistic is calculated to compare model prediction
with time windows. The performance of all models decreases when the time-window
increases, and its results are variable in the different nodes. Therefore, the behavior of
models regarding time-window is different in each node, which is a result that could be
worth to continue studying.

5.0

7.5

10.0

12.5

15.0

RMSE Exp. field RMSE Station 1 RMSE Station 2 RMSE Station 3

6hr 12hr 24hr 48hr
Task

0.4

0.6

0.8

Pearson Exp. field

6hr 12hr 24hr 48hr
Task

Pearson Station 1

6hr 12hr 24hr 48hr
Task

Pearson Station 2

6hr 12hr 24hr 48hr
Task

Pearson Station 3
HA
ARIMA
VAR
FNN
LSTM
AC-att
STA-C
STA-GRU
GSTA-RGC

Figure 7. RMSE and Pearson statistic results regarding forecasting on the experimental field and
three nearest weather stations.

In addition, Figures 8 and 9 show real and predicted data for a specific day. In Figure 9 we
present the variation of our model prediction regarding 6 h, 12 h, 24 h, and 48 h tasks. Our
model’s best performance is in the 6 h window task, and then the performance decreases
gradually. Although the performance decreases for larger time windows, our model is
capable of detecting the temperature trend. The range of the error interval increases if we
want to make the prediction point by point, but if that range is detected, we can be sure
that the prediction is reliable. Figure 8 shows our model prediction and the second-best
prediction (STA-GRU) in the 6 h task. Both models detect the temperature trend, but in our
model the error range is smaller.

4.4. Results for Classification Problem

Table 2 and Figure 10 show the evaluation of the proposed GSTA-RCN model com-
pared with the baselines as a classification problem. In this problem, two classes are
predicted: Frost (temperature below 0 ◦C) and No Frost (temperature above 0 ◦C).
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Figure 8. On left, there is a comparison of GRAST-Frost model with real data; on right, a comparison
of STA-GRU model with real data.
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Figure 9. GRAST-Frost model results compared with that of real data for 6, 12, 24, and 48 h forecasts.

In this case our model also outperforms all the baselines for the 6 h, 12 h, 24 h, and
48 h tasks. In addition, similar to regression, models performance decreases when time-
window increases.
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Figure 10. Receiver operating characteristic (ROC) curve comparing GRAST-Frost with other mod-
els implementations.

Table 2. Average precision, recall and F1 metrics for classification of frost events according different
models implementations. Best values are highlighted in bold.

Precision Recall F1

Model 6 h 12 h 24 h 6 h 12 h 24 h 6 h 12 h 24 h

SVM 0.569 0.535 0.513 0.565 0.529 0.507 0.555 0.531 0.502
XGBoost 0.754 0.740 0.713 0.749 0.730 0.701 0.748 0.716 0.711
FNN 0.644 0.643 0.638 0.663 0.658 0.639 0.690 0.669 0.658
LSTM 0.675 0.666 0.652 0.695 0.650 0.632 0.682 0.647 0.641
AC-att 0.713 0.709 0.690 0.705 0.700 0.696 0.699 0.691 0.671
GCN 0.792 0.787 0.780 0.784 0.778 0.769 0.806 0.802 0.787
STA-C 0.814 0.797 0.794 0.837 0.810 0.809 0.830 0.826 0.784
STA-GRU 0.845 0.844 0.824 0.850 0.821 0.805 0.863 0.845 0.842

GRAST-Frost 0.891 0.876 0.848 0.898 0.882 0.845 0.908 0.869 0.863

For this dataset, Naive Bayes and SVM models provide the worst predictions, espe-
cially for recall score, which implies a high value of false-negative predictions. Compared
with regression, in classification, FNN and LSTM perform similar. The autoencoder with
attention mechanism is slightly better that the previous ones but performs worse than all
the graph-based models and even the XGBoost model. Figure 10 shows that for classifica-
tion in this dataset the graph-based models are preferable. In this case, the spatio-temporal
attention mechanism in the GNN, which captures the dynamics between the nodes, is a
key factor to improve the predictions. In particular, in our model the strategy to use the
spatio-temporal vectors to perform the prediction at the same time obtains the best results
by minimizing classification errors, which could be valuable for real-world applications.
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5. Discussion
5.1. GNN and Spatio-Temporal Attention Applied to Frost Forecast

The first research question pretends to evaluate the performance of the GNN against
current state-of-the-art models for frost forecasting. In other words, does the use of a deep
learning model with graph-based data improve the performance of a predictor?

The overall results indicate that our model outperforms previous frost forecasting mod-
els and most of the variations presented for graph neural networks. To statistically check
whether the models’ performance difference is significant, we conducted a t-test between our
model and each previously proposed frost forecasting model and other baselines presented.
Tables 3 and 4 shows the statistics results for regression and classification, respectively.

As can be seen in Tables 3 and 4, there is statistical significance for the results of our
model against all previously proposed frost forecasting models for 6 h, 12 h, 24 h, and 48 h
in advance predictions. More generally, for all the baselines presented, there are some
exceptions in the 48 h time-window prediction since there is no evidence of a difference
between our model and STA-GRU. This result can be used for future research with the
purpose of improving the performance in larger time-windows.

Table 3. t-test for comparing our regression model with baselines for 6 h, 12 h, 24 h and 48 h forecasts.

6 h 12 h 24 h 48 h

Model t p-Value t p-Value t p-Value t p-Value

HA 9.662 0.011 7.716 0.022 7.398 0.028 7.276 0.031
ARIMA 9.673 0.012 9.443 0.026 8.534 0.0036 8.139 0.033
VAR 10.330 0.017 8.247 0.041 7.831 0.045 7.172 0.044
FNN 5.946 0.020 5.722 0.025 5.595 0.030 4.239 0.041
LSTM 6.540 0.029 6.260 0.024 5.144 0.039 4.136 0.045
AC-att 4.293 0.017 3.674 0.020 3.562 0.025 3.179 0.035
STA-C 3.314 0.011 2.980 0.014 2.593 0.019 2.284 0.041
STA-GRU 1.387 0.030 1.271 0.038 1.009 0.041 0.766 0.081

Table 4. t-test for comparing our classification model with baselines for 6 h, 12 h, 24 h, and 48 h forecasts.

6 h 12 h 24 h 48 h

Model t p-Value t p-Value t p-Value t p-Value

SVM 9.610 0.015 9.042 0.036 7.946 0.038 7.939 0.049
NB 9.527 0.023 8.129 0.032 7.139 0.045 7.051 0.046
XGBoost 3.786 0.013 3.712 0.022 3.467 0.041 3.378 0.043
FNN 6.765 0.016 6.002 0.026 4.758 0.030 4.206 0.036
LSTM 6.095 0.018 5.245 0.018 4.586 0.026 4.488 0.046
AC-att 4.886 0.025 4.398 0.029 3.665 0.034 3.479 0.040
STA-C 3.018 0.023 2.579 0.029 2.152 0.047 2.084 0.048
STA-GRU 1.476 0.039 1.094 0.036 0.986 0.047 0.713 0.071

The second research question “Does the spatio-temporal attention mechanism im-
proves the forecast?” is approached similarly to the previous one. In this case, we are
interested to statistically check whether there is a difference between the performance
of our model with GNN models that do not use spatio-temporal attention mechanisms.
In particular, Table 5 shows the results of a t-test applied between our model, GCNreg
and GCNclas separately for regression and classification problems. As a result, we can
demonstrate that for our dataset, results are statistically different between our model and
non-spatio-temporal attention graph-based models.
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Table 5. t-test for comparing our model with graph-based models without spatio-temporal attention
for 6 h, 12 h, 24 h and 48 h forecasts.

6 h 12 h 24 h 48 h

Model t p-Value t p-Value t p-Value t p-Value

GCNreg 3.631 0.013 3.412 0.018 2.456 0.033 2.416 0.035
GCNclas 4.009 0.012 3.861 0.031 2.859 0.032 2.787 0.041

The last research question, regarding whether the combined use of different data
sources improve the forecast in comparison with using a single data source, can be answered
based on the first two questions. By answering the two first research questions, we are
implicitly answering the last one since the use of different data sources imply on the use
of weather data collected from different locations. Therefore, it is possible to construct
the graph and collect the spatial relationships between the nodes, which is crucial for the
model’s performance.

Finally, in terms of an evaluation for the IoT-based system in comparison with the
weather stations used, as shown in Figure 7 the overall results indicate that there is no
difference between sites. Concretely, Table 6 presents statistics by comparing the prediction
results of using our model in the experimental field against each weather station. There is
no statistical significance that indicates a performance difference. Therefore, data collected
from our system are reliable.

5.2. Limitations

The main limitation of this model is concerned with the decrease in performance
with larger time-windows. Despite that it is a problem for all the models studied in this
paper, the performance difference of our model in short-term windows with all models
cannot be established in 48 h time-windows. We suspect that this behavior is similar for
even larger time-windows. The lack of statistical significance, in those specific cases, is
probably a consequence of a constrained period of time in which we collected the data
from the experimental site and weather stations. Consequently, model performance should
be revisited when the amount of data collected is larger, one year and more. However,
deeply studying the deep learning architecture used and investigating whether further
improvements can be made to obtain better results for long-term predictions are of interest.

Table 6. t-test for comparing our model forecast results from experimental site with weather stations.

6 h 12 h 24 h 48 h

Model t p-Value t p-Value t p-Value t p-Value

WS1 0.963 0.075 0.810 0.070 0.764 0.098 0.665 0.093
WS2 0.843 0.071 0.683 0.061 0.629 0.069 0.540 0.084
WS3 0.802 0.075 0.676 0.075 0.568 0.081 0.501 0.083
WS4 0.821 0.064 0.731 0.064 0.691 0.078 0.593 0.088
WS5 0.915 0.09 0.025 0.102 3.921 0.136 4.326 0.119
WS6 0.817 0.111 0.660 0.081 0.607 0.105 0.535 0.116
WS7 0.930 0.087 0.703 0.099 0.669 0.092 0.653 0.099
WS8 0.915 0.078 0.025 0.083 3.921 0.118 4.326 0.139
WS9 0.924 0.060 0.918 0.086 0.740 0.111 0.723 0.118
WS10 0.903 0.094 0.794 0.097 0.741 0.126 0.602 0.137

6. Conclusions

We presented our frost forecasting model that uses and optimizes a graph structure
between multiple time series using a graph neural network (GNN) architecture with a
recurrent graph convolution mechanism to process each series simultaneously. The model
concludes with spatio-temporal attention to consider spatial relations and extract tempo-
ral dynamics.

Frost forecast is an important area of climate research because of its economic impact
on several industries. In this study, a GNN with spatio-temporal architecture was proposed
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to predict minimum temperatures at an experimental site. The model considers spatial
and temporal relations and processes multiple time series simultaneously. Performing
predictions of 6, 12, 24, and 48 h this model outperforms statistical and nongraph deep
learning models.

To further improve this model, we will continue our research by studying deep learn-
ing architectures to specifically adapt to different time-window forecasts. In addition,
we aim to include domain knowledge from climate sciences that could help in the construc-
tion of the graph to transit from a statically defined graph to a dynamically defined one.
Finally, by including domain knowledge or by applying new methods, we want to extract
the influences of the nodes with each other for the purposes of explaining the dynamics of
the graph and, as a consequence, to provide better practical insights to users of the system.
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Appendix A. Weather Stations Considered in the Study

The following public weather stations were used in the paper:

1. Campanacura (36◦12′48.0′′ S, 71◦44′15.0′′ W)
2. Copihue (36◦04′32.0′′ S, 71◦45′29.0′′ W)
3. Longavi Norte (36◦02′13.0′′ S, 71◦40′60.0′′ W)
4. Los Despachos (36◦03′44.0′′ S, 72◦22′17.0′′ W)
5. Monte-flor Tucapel (36◦14′41.0′′ S, 71◦56′03.0′′ W)
6. Parral (36◦12′48.0′′ S, 71◦44′15.0′′ W)
7. Odjfell (36◦08′24.0′′ S, 72◦16′12.0′′ W)
8. Parral Norte (36◦13′49.0′′ S, 71◦43′56.0′′ W)
9. Ñiquen (36◦17′37.0′′ S, 71◦53′17.0′′ W)
10. CE Arroz (36◦24′33.0′′ S, 72◦00′24.0′′ W)
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