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Abstract: Successful applications of deep learning technologies in the natural language processing
domain have improved text-based intent classifications. However, in practical spoken dialogue
applications, the users’ articulation styles and background noises cause automatic speech recognition
(ASR) errors, and these may lead language models to misclassify users’ intents. To overcome the
limited performance of the intent classification task in the spoken dialogue system, we propose a
novel approach that jointly uses both recognized text obtained by the ASR model and a given labeled
text. In the evaluation phase, only the fine-tuned recognized language model (RLM) is used. The
experimental results show that the proposed scheme is effective at classifying intents in the spoken
dialogue system containing ASR errors.

Keywords: intent understanding; task-oriented dialogue system; spoken dialogue system; speech
recognition; spoken language modeling

1. Introduction

Spoken language understanding (SLU) focuses on catching semantic meanings from
voice signals, such as the user’s orders. In other words, the main goal of the SLU task is
to understand the meaning of the entire sentence alongside each word, accurately, from
the users’ speech. Intent classification, a part of the SLU work, aims at understanding and
classifying users’ intents. As advances in artificial intelligence (AI) technology have been
widely adapted to natural language processing (NLP), it has improved the performance of
text-based SLU systems.

Although several text-based SLU models have been proposed [1–6], their approaches
are difficult to realize in practical scenarios, where unexpected text errors obtained by
automatic speech recognition (ASR) systems are prevalent. This is because erroneous
ASR results make the intent classification model unable to accurately understand the
users’ intents and orders. Due to the diverse users’ speech in various speaking styles and
additive background noise, the ASR system may not be able to properly understand the
users’ intents. For these reasons, utilizing the intent classification model trained only from
the text-formatted dataset for the spoken dialogue system is not effective. To be used in
practical dialogue-oriented systems, an automatic speech recognition-spoken language
understanding (ASR-SLU)-based approach that is able to handle the various conditions
will be required.

To address the aforementioned problem, several ASR-SLU-based studies [7–12] have
strived to understand users’ intents based on jointly training with both speech and corre-
sponding text (labeled text). To improve the users’ intents classification, however, these
approaches are still vulnerable to the faults in the recognized text obtained by the ASR
models. Consequently, it could be considered that there is a fatal flaw in understanding the
users’ intentions in practical dialogue-oriented systems. In addition, many speech recog-
nition errors occur, and these cause the SLU systems to have difficulty finding the users’

Sensors 2022, 22, 1509. https://doi.org/10.3390/s22041509 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041509
https://doi.org/10.3390/s22041509
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0111-300X
https://orcid.org/0000-0002-1507-5967
https://orcid.org/0000-0003-0398-831X
https://doi.org/10.3390/s22041509
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041509?type=check_update&version=2


Sensors 2022, 22, 1509 2 of 18

intents. These problems eventually lead the SLU systems to misclassify users’ intents and
could cause critical errors in practical spoken dialogue systems. In light of this, it appears
that improved language models are still required for the accurate intent classification in the
final state of the spoken dialogue systems.

In this paper, we focus on exploring and analyzing why the recent SLU models in
spoken dialogue situations are still weak at understanding utterances from various users
and in various conditions. To this end, for each utterance in two SLU datasets [7,13], we
obtain the recognized text utilizing a Wav2vec 2.0 ASR model [14], which is the current
state-of-the-art. We then report correlations between both character error rate (CER) and
word error rate (WER), and intent classification accuracy, where the higher CER and WER
lead the intent classification models to yield low performances. In addition, we show the
failure case where the language model that is only trained on labeled text performs poorly
on the recognized text that contains speech recognition errors.

To cope with the difficulty of intent classification in the practical spoken dialogue
systems, we propose a novel and simple method that jointly fine-tunes two pre-trained
language models using both labeled text and recognized text. The recognized text includes
recognition errors obtained from the user’s speech using ASR systems, and the labeled
text means an original script corresponding to the speech. When the labeled text and the
recognized text from the users are provided in the training phase, a labeled language model
(LLM ) and a recognized language model (RLM) of the proposed model are trained to
classify users’ intents gradually and jointly. In contrast, we only use the RLM (spoken
language model) in the evaluation phase. Methods introduced in previous studies, such as
BERT [15], ALBERT [16], XLNet [17], ELECTRA [18], RoBERTa [19], etc., can be adapted as
the two language models of the proposed method.

Figure 1 shows the performance limitations of a spoken dialogue system with ASR
errors and presents the process by which our method solves the problem. Our approach
could optimally map both speech and the corresponding text to users’ intents by using the
pre-trained language models, which have powerful representations in the downstream task.
Furthermore, our proposed method could find the users’ intents rapidly and accurately
by leveraging pre-trained language models trained on large-scale datasets while previous
ASR-SLU-based studies required large computational cost and complex methods.

Figure 1. The overall flow of the spoken dialogue system in practical scenarios. Our proposed
method could optimally map both recognized text and labeled text to users’ intents.

We show that the proposed scheme outperforms the conventional approach, which
is trained on labeled text, and would have achieved low performance on the recognized
text dataset with ASR errors. In other words, the results of our experiments explicitly show
that the proposed method is flexible in the dialogue-oriented ASR-SLU system. In addition,
users are able to transfer their intents to the spoken dialogue system by using only speech
or text alone if necessary. As a result, our method is able to contribute to the development
of the future spoken dialogue-oriented system for smart home apparatus and portable
devices that all humans can enjoy.

The subsequent sections of this paper are organized as follows: In Section 2, we
describe the studies related to the SLU and intent classification that are composed of both
text-based and speech-text-based approaches. The observations of the issues we raised
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are illustrated in Section 3 and the proposed method is demonstrated in Section 4. The
experimental results and analysis are presented in Section 5. Finally, the conclusion of this
paper is drawn in Section 6.

2. Related Work

Conventionally, the intent classification task was conducted with models that are solely
based on the text datasets. In this section, the traditional methods on intent classification
are introduced, and approaches using speech data itself are presented to improve the intent
classification of spoken dialogue systems.

2.1. Text-Based Intent Classification

With the introduction of the attention mechanism [20], various NLP applications,
including the SLU, have used this computation technique. In Liu et al. [1], the advantages
of recurrent neural network (RNN) and the attention mechanism were fully realized. As
a follow-up study, Goo et al. implemented dual attentions for both slot filling and intent
classification tasks with a BiLSTM mechanism for both left and right directions [2]. Unlike
previous research that relied heavily on RNN architectures, capsule neural networks have
focused on hierarchical relationships between words of token level, allowing the network
to naturally catch the most important words conveying the intent of the input sequences [3].
Slot filling and intent detection network [6] applied the statistical conditional random field
(CRF) [21] method. The last output of this model is used to finally estimate the CRF for
decoding the slots that have the highest probabilities.

On the other hand, with the advancement of parallel computation models based on
transformer [22], there have been significant increases in the NLP tasks performances
including the SLU field. Owing to the self-attention mechanism with multi-head transform-
ers, NLP problems, such as translation, question and answering, and intent classification,
were solved quickly. Bidirectional encoder representations from transformers (BERT) [15]
is one of the most successful techniques studied among the language models. BERT is a
large-scale data-based language model that learns powerful representation by contaminat-
ing the input token with a masked language modeling (MLM) approach and training to
reconstruct the corresponding parts. Stack-propagation [4] has not been fully implemented
in the whole body of the BERT, but it has shown how effective bidirectional encoders and
hierarchical propagation can be. Due to the stacking of the encoder, and both intent classifi-
cation and slot filling decoders, the stack-propagation model naturally learned semantic
knowledge of the input sequence. Chen et al. have shown the powerful performance of its
BERT-based model in the intent classification task [5]. Unlike previous studies, which have
stacked modules, this method first calculated the slot filling, then utilized its hidden states
to classify the intents. The improvement of performance is attributed to BERT, which is
pre-trained with an enormous vocabulary.

So far, the aforementioned previous studies have worked to improve the performance
of the intent classification from text alone. Since they are not trained with the real human
voice, low adaptability in the spoken dialogue systems is expected. Therefore, an approach
that can classify the intent using both speech and text is required.

2.2. ASR-SLU-Based Intent Classification

Several studies were recently introduced, to solve the limitations of the text-based SLU
model for the spoken dialogue system. Chen et al. suggested an end-to-end SLU approach
to extract representations from given speech without the ASR system [23]. This architecture
is composed of CNN-RNN based networks to allow the model to only use speech signals to
find users’ intents directly. Haghani et al. have successfully shown predicting the domains,
intents, and orders from audio [24]. Lugosch et al., for an ASR-SLU-based approach,
introduced a method to decrease the data requirement of the pre-trained ASR model [7].
Further, they introduced the ASR-SLU dataset, called the fluent speech commands (FSC)-
dataset, which was used in our experiments.
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As unsupervised learning approaches to extract powerful representations with large-
scale datasets have become widely used, many studies have been utilized for the SLU
task. Wang et al. used an unsupervised pre-training method with the masking policy
for each audio frame to learn acoustic representations [8]. They then fine-tuned the pre-
trained model as a downstream task for SLU. Huang et al. proposed a confusion-aware
fine-tuning method, which had a similar motivation to ours [9]. Their scheme reduced the
similar semantics for phonology of hardly distinguishable words with fine-tuning. Cao et al.
showed the pre-trained method for conversational language modeling that enabled the SLU
networks to catch the linguistic representations in dialogue styles with the ASR errors [10].
Chung et al. utilized a masking policy approach for the SLU task to jointly pre-train
the unpaired speech and text via aligning representations [25]. SpeechBERT was trained
via a semi-supervised method, not only representation learning, but also for the intent
classification and slot-filling [13]. This model is tested for its demonstration of robustness
against ASR errors and extraction of semantic meaning in the input sequence. Qian et
al. proposed to integrate an end-to-end ASR encoder and a pre-trained language model
encoder into a transformer decoder for the SLU task [26].

As the earlier studies show, ASR-SLU-based methods are widely explored. However,
conventional methods not only require pre-training with large-scale datasets of the spoken
language model, but they also are incredibly time-consuming to fine-tune. Meanwhile,
the proposed method in this paper is very simple and could solve the aforementioned
problems without complex computation.

3. Observations and Analyses of Intent Understanding Performance Regarding
ASR Errors

In this section, we analyze the errors of utterances based on recognized text obtained
from the recent state-of-the-art ASR model, Wav2vec 2.0 [14]. To this end, we use the
FSC [7] dataset and the Audio-Snips [13] (the authors denoted it as “SNIPS-Multi”, but it
will be referred to in this paper as “Audio-Snips”) dataset, which is a widely used SLU
benchmark dataset. In the models, which were trained using labeled text and evaluated
with labeled and recognized text, we show the issues of the conventional spoken dialogue
system that motivate this work through the correlation between the ASR errors and the
intent classification performance.

3.1. Dataset

The FSC dataset, which is mainly used for the ASR-SLU tasks, contains utterances
spoken by both native English speakers and non-native English speakers, but the number
of utterances is less than the Audio-Snips dataset. We omitted 34 speech data (31, 3, 1)
that were not recognized by the ASR model from the training, validation, and test set,
respectively. Consequently, we used 23,101 samples from the training set, 3084 samples
from the development set, and 3791 samples from the test set. Each sample contained
one sentence.

The Audio-Snips dataset is an audio-recorded version of the text-based intent classifi-
cation dataset SNIPS [27]. The recorded voice files in the Audio-Snips datasets are made
via an AI synthesizer, Amazon Polly. There are adults, children, and native speakers whose
mother tongues are rooted in the United States and non-native speakers who are born
in the USA but their parents are from non-English speaking countries. In other words,
Audio-Snips contains a total of 16 speakers; 8 are synthesized with US English and the
rest speak other varieties of English. These attributes of the datasets are able to lead the
ASR system to generate various features of errors in the recognized text. The speech data
for each speaker is composed of 13,084 training samples, 700 development samples, and
700 test samples, each of which contains one phrase. More information is available on-
line: https://github.com/aws-samples/aws-lex-noisy-spoken-language-understanding
(accessed on 29 September 2020).

https://github.com/aws-samples/aws-lex-noisy-spoken-language-understanding
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3.2. Dataset Statistics

Figure 2 shows the statistics of the two datasets. Overall samples in the FSC dataset
have a range of one to ten words. In particular, samples that contain two to four words
are the most common. Since the FSC dataset is aimed at operating smart home devices,
such as AI speaker appliances, the samples have shown that they are used in limited
locations in a house, such as a kitchen, a living room, and a bathroom. For the same reason,
the average utterance length of the FSC dataset is relatively short in comparison to the
Audio-Snips dataset.

Figure 2. Distribution of words per sample in the FSC and the Audio-Snips datasets.

Here, since the Audio-Snips dataset was synthesized into the same text, we analyzed
only one of them. As shown in the bottom part of Figure 2, most of the training, de-
velopment, and test samples of the Audio-Snips dataset are three times longer than the
FSC dataset. As with the FSC dataset, the Audio-Snips dataset contains samples that are
mainly spoken to start and awake smart home devices. However, the respective training,
development, and test files have more pronouns compared to the FSC dataset. In particular,
the commands in the Audio-Snips dataset have names of singers, restaurants, and locations,
respectively. Therefore, we conjecture that the ASR errors will be bound to occur more
frequently in the Audio-Snips dataset than the FSC dataset.

3.3. Analyses on ASR Errors of Two Datasets

To observe the recognition errors in the spoken dialogue system, we report the ASR
errors of the two datasets recognized by the Wav2vec 2.0 model. As shown in Table 1, in
Audio-Snips, languages that Amazon-Polly provide are diverse, so the recognition results
of native English speakers and non-native speakers were obtained separately. In the FSC
dataset, however, since the types of speakers were not separated clearly, we denoted them
as ‘All’.
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Table 1. Observations of both CER and WER of Audio-Snips and FSC dataset, respectively. The
lower the CER and WER means the better performance of the ASR. Note that both CER and WER are
measured without punctuation (e.g., !, ?, ., ‘).

Dataset Speaker Language Gender
Training Set Test Set

CER (%) WER (%) CER (%) WER (%)

Audio-Snips

Aditi Hindi Female 18.04 41.71 17.60 40.92
Amy English (British) Female 15.25 35.55 14.66 34.72
Brian English (British) Male 25.22 52.94 24.44 50.72
Emma English (British) Female 14.89 34.84 14.16 33.76
Geraint English (Welsh) Male 21.81 48.37 21.04 45.93

Ivy English (US) Female (child) 14.85 35.30 14.48 34.95
Joanna English (US) Female 14.15 33.06 13.41 32.03

Joey English (US) Male 19.83 43.39 19.16 42.28
Justin English (US) Male (child) 19.44 44.06 18.38 42.17

Kendra English (US) Female 13.78 33.06 13.11 32.18
Kimberly English (US) Female 13.49 32.89 12.85 31.90
Matthew English (US) Male 20.96 45.62 20.12 43.87

Nicole English (Australian) Female 19.69 43.99 19.00 42.02
Raveena English (Indian) Female 18.24 41.69 17.93 41.42
Russell English (Australian) Male 24.00 51.17 22.57 48.40

Salli English (US) Female 14.19 33.87 13.54 32.68
En-US (average) 16.34 37.66 15.63 36.51

Non En-US (average) 19.64 43.78 18.93 42.24
All (average) 17.99 40.72 17.28 39.37

FSC All 12.75 27.20 5.58 14.26

In Table 1, it is observed that the WER of the US English speakers is 6.12% and 5.73%
lower than that of non-US English speakers in the Audio-Snips training and test sets,
respectively. In addition, we find that the ASR errors of male speakers are higher than that
of female speakers, and this trend also applies to children. In particular, the lowest WER
is from Kimberly who speaks US English, while the highest WER belongs to Brian whose
mother tongue is British English. The higher WER of the recognized text indicates that the
ASR system is still vulnerable to variation in the style of speech.

On the other hand, compared to the Audio-Snips dataset, the FSC dataset shows much
lower WER and CER. However, in the cases where the commands are shorter, the ASR
error rates clearly indicate the shortcomings of conventional ASR systems.

Table 2 demonstrates examples of the labeled text, corresponding recognized text, and
the intent class, respectively. The Audio-Snips example sentences of Table 2 are from the
training files of Nicole whose WER was 43.99% on the training set. The five examples of
two datasets demonstrate that ASR errors mainly occur on verbs and nouns. The most
serious problem of the Audio-Snips dataset is the ASR errors in the pronouns that indicate
the intents of the whole sentence. In addition, the words that refer to the names of locations
show notable errors. These errors on those locations lead to critical misunderstandings
for the agents who have to respond to its owner’s request. For example, because of
errors in Table 2, such as By blon (Bedroom), Internal (Kitchen), and Vilum (Volume), the
location information cannot be understood correctly. In addition, the errors in verbs such
as Bigly (Decrease) and Ese (Use) that indicate the main intent cause the NLP model to
misunderstand the meaning of the location words.
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Table 2. Examples of the labeled text, the recognized text, and the intent label of the Audio-Snips and
FSC dataset, respectively.

Dataset # Labeled Text Recognized Text Intent

Audio-Snips

1 Rate this album a 1 Great thi salbumawan RateBook

2
Can you tell me the

weather forecast for six
am in grenada

Can ye tell me the
wether folcasfa seek

samin grenado

GetWeather

3 Book a spot for oneat the
wolseley at elevenses

Bokust spot for one at
the wosli atalevanses

BookRestaurant

4 Book a table for doris
and i in new tulsa

Bucetabu fidarus
and iin neutalsa

BookRestaurant

5
Use groove shark to play
the today and tomorrow

album

Ese grieve shock to
play the to day and
to morrow album

PlayMusic

FSC

1 Decrease the heating
in the bathroom

Bigly then heaping
in the budroom

Decrease-heat-
washroom

2 Kitchen heat up Internal heed of Increase-heat-kitchen

3 Volume up Vilum a Increase-volume-none

4 Bedroom heat down By blon heap don Decrease-heat-
bedroom

5 Switch off the lights Of the lats Deactivate-lights-none

These errors in the recognized text frequently lead the AI agent to repeat the same
dialogue, which finally causes user dissatisfaction. When the environmental noise is mixed
with the users’ voices, the ASR errors become more critical than the errors provided in
Table 2. Through this, it seems that unless the language models are trained with additional
information of frequent ASR errors, impeccable understanding of the users’ intents is still
stuck at the limited level in the spoken dialogue condition.

3.4. Correlation between ASR Errors and Intent Classification

Here, we explore the relationships between ASR errors and intent classification perfor-
mance in dialogue-oriented conditions. We train the intent detection model with labeled
text, then evaluate with both test sets of labeled and recognized text. To this end, we
fine-tune a language representation for intent classification using the pre-trained language
model [15].

Table 3 reports the correlations between ASR errors from the current state-of-the-art
recognizer and intent classification performance. As we have hypothesized, the higher the
WER, the lower the classification performance of the model. In Table 3, the highest WER
is 52.94%, and the corresponding Brian’s intent classification performance is 75.86%. In
addition, the models trained on the dataset of Joanna, Kendra, Kimberly, and Salli whose
WER scores are among the lowest in Audio-Snips achieved relatively high performance.
Consequently, as the ASR errors increase in spoken dialogue conditions, the performance
of the intent detection model significantly decreases.



Sensors 2022, 22, 1509 8 of 18

Table 3. Observations of correlations between recognized errors (WER) and intent classification per-
formance. Each intent accuracy (Acc) in table was obtained by the BERT model that was trained with
labeled training text and evaluated with the test set of each labeled and recognized text, respectively.

Dataset Speaker
WER (%) Intent Acc of the BERT

Trained with Labeled Text (%)

Training Set Test Set Test with Labeled
Set

Test with
Recognized Set

Audio-Snips

Aditi 41.71 40.92

98.43

84.71
Amy 35.55 34.72 90.86
Brian 52.94 50.72 75.86
Emma 34.84 33.76 90.43
Geraint 48.37 45.93 82.29

Ivy 35.30 34.95 93.85
Joanna 33.06 32.03 92.29

Joey 43.39 42.28 87.42
Justin 44.06 42.17 85.29

Kendra 33.06 32.18 93.86
Kimberly 32.89 31.90 94.57
Matthew 45.62 43.87 84.57

Nicole 43.99 42.02 85.43
Raveena 41.69 41.42 83.57
Russell 51.17 48.40 80.71

Salli 33.87 32.68 94.86
En-US 37.66 36.51 90.84

Non En-US 43.78 42.24 84.23
Average 40.72 39.37 87.54

FSC All 27.20 14.26 100 89.63

3.5. Need for Language Representation Using Recognized Text

So far, we found that the higher the WER, the lower the intent classification accuracy.
Furthermore, we showed that the problems of misunderstanding the users’ intents in the
spoken dialogue systems frequently occurred due to the errors of the recognized text. As
shown in Table 3, the intent accuracy of the test with labeled text is close to perfect.

To solve these problems, it is required to construct language models that are not only
robust to errors in recognized text, but also work well in the labeled text corresponding to
the original text dataset. To this end, we propose the method that jointly fine-tunes two
language models with both labeled text and recognized text.

4. Methodology

In Section 3, we reported explicit results and analyzed each fine-tuned BERT model
with both labeled and recognized text, and the corresponding intent classification result. In
this section, we propose our model to elevate the limited ability of the spoken dialogue
system.

4.1. Reasons for Utilizing the Pre-Trained Language Model

Models that are employed for our proposed method are pre-trained language models
whose main architectures are composed of the encoder of the transformer. There are some
reasons for employing pre-trained language models. Scratch training of a language model
not only consumes a lot of computational resources, but it also requires an enormous
amount of training datasets. Since our proposed method is aimed at improving the perfor-
mance of language models using small amounts of data in pairs of labeled and recognized
text, pre-trained models are an essential part of the downstream training phase.

In addition, the advantage of using the upstream model as a downstream task is that
it absorbs additional information easier than other language models trained from scratch.
The language model that has been pre-trained for powerful representation learning with a
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large amount of data can adapt to the recognized texts where errors are prevalent, and the
fine-tuned model may be able to keep a good performance for any dialogue task.

4.2. Training Phase

In this section, we propose a method to improve the performance of the intent classifica-
tion model in spoken dialogue conditions. Hereafter, given the user’s voice v = [v1, ..., vT ],
the labeled text sentence corresponding to v is s = [s1, ..., sN ], recognized text sentence of v
obtained by the ASR system is ŝ = [ŝ1, ..., ŝM], (s, ŝ) ∈ (S, Ŝ), and the intent label of both S
and Ŝ is Y.

Training the language model with the MLM approach, as is done in BERT is a self-
supervised learning method to extract powerful representations, making it easy to leverage
them in several downstream tasks. In this paper, we only consider the MLM, not the
next sentence prediction task used in BERT. The objective function of the MLM scheme in
pre-training BERT is

L(θ; S) =
1
|S| ∑

s∈S
log P(ss|sm; θ), (1)

where ss is the selected tokens of each sentence s in the dataset, sm is the masked or replaced
token of s selected by MLM policy, and θ is the model parameters. Equation (1) can be
represented as

M =
1
|S| ∑

s∈S
log

N

∏
n=1

P(ss
n|ss

<n, sm; θ). (2)

The goal of the downstream task of classifying the intents is to find the optimal
mapping function as follows:

f : S→ Y. (3)

Suppose the “well-trained” of the intent classification model usingM in Equations (2)
and (3) is obtained as

f (M) = argmax P(Y|S). (4)

Here, if the recognition errors are included in S, the model f (M) cannot perform well
owing to

P(Y|Ŝ) ≤ P(Y|S). (5)

Ŝ can have insertion, deletion, substitution and transposition errors compared to S, so
the model f (M) in Equation (4) cannot know the perceived ASR errors in the spoken
dialogue conditions.

To cope with the confusing problems of intent classification in the dialogue system,
our goal was to make the intent classification models f (M) achieve robust performance for
Ŝ without losing information on S. To this end, we suggest a method that jointly fine-tunes
two pre-trained language models. As shown in Figure 3a, the proposed model is composed
of two main components, which are LLM (labeled language model) and RLM (recognized
language model). The proposed method optimizes with S and Ŝ to find f (M) : S + Ŝ→ Y.

During training, both labeled text (S) and recognized text (Ŝ) are given, the LLM and
the RLM of the proposed model are gradually and jointly trained to classify the intents. In
other words, the main purpose of fine-tuning two pre-trained models is to set the RLM as a
handler for Ŝ. The purpose of the handler is formulated as

P(Y|Ŝ) ≈ P(Y|S). (6)

Given the input sentences from Ŝ, the handler works to guess the misspelled words
that are defined in the pre-trained tokenizer. Common errors in spelling are largely cate-
gorized into four parts; insertion, deletion, substitution, and transposition of characters
in a word. Specifically, insertion in misspelling means unexpected characters are added
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in a word, deletion in the spelling errors is the omission of certain characters in a word,
and substitution means a character in a word is replaced with another character, which
causes misspelling errors. Lastly, transposition in misspelling errors means that the order
of words is changed.

(a) Training phase

(b) Evaluation phase

Figure 3. Model architecture of our proposed model. The training phase of our model shown in
(a) uses the labeled text and recognized text jointly to train the users’ intents. In the evaluation
process, we only use the RLM to find optimal users’ needs as illustrated in (b). As shown in (b), the
input of the proposed model can be any combination of text and voice (recognized text).

To set up a robust language model that is sufficient to guess the wrong words in
the spoken dialogue system, two language models are fine-tuned with both S and Ŝ. In
particular, the backpropagation process is important because each model can become aware
of the text information from S and Ŝ. To this end, the loss from the LLM and RLM is
essential to update the models to handle the two mismatched types of texts. When the
losses are computed from two models, the final loss is summed with weight coefficients
denoted as λ, which has a certain ratio for the respective LLM and RLM. The objective
function of the proposed model is formulated as

L = Llλl + Lrλr, (7)

where both Ll and Lr are as

Ll = −
N

∑
i=1

ti log( f (ol)i) (8)

Lr = −
M

∑
j=1

tj log( f (or)j), (9)
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where ol and or are the final outputs of the LLM and RLM before the softmax function. The
outputs of softmax f (ol)i and f (or)j are as below:

f (ol)i =
eoli

∑K eolk
(10)

f (or)j =
eorj

∑K eork
. (11)

Then, the calculated loss is passed to both of the models so that they simultaneously
learn S and Ŝ. The two models are gradually trained to notice the unseen information,
which was not provided during the forwarding process. λl and λr in Equation (7) are the
hyper-parameters of adjusting the ratio of each logit and they are designed as follows:

λl + λr = 1.0. (12)

The effects of different applications of the λ ratio on the proposed method are demon-
strated in Section 5.5.

To sum up, the proposed approach can optimally map both speech and text corre-
sponding to the users’ intents in practical scenarios. Furthermore, while most of the earlier
ASR-SLU-based studies required large computational costs and complex methods to un-
derstand users’ intents with end-to-end architecture, our proposed method circumvents
substantial computation costs and complicated methods. Our model is able to quickly and
accurately perform the downstream tasks using the pre-trained model, which is learned
with the large-scale dataset.

4.3. Evaluation Phase

Our evaluation process is shown in Figure 3b. Since the LLM and RLM are jointly
updated using the objective function, the RLM is gradually exposed to these values and can
learn linguistic information. Due to the advantages of this downstream task, the RLM shows
strong intent classification performance on Ŝ without deterioration on S. Furthermore,
users can input their intents to our suggested model by using speech (recognized text),
text, or together. In practice, the proposed method will show results that overcome the
shortcomings and outperform the existing solutions in Section 5.

5. Experiment and Result Analysis
5.1. Experiment Setting

We used the FSC dataset and Audio-Snips dataset, which are described in Section 3.
For ASR, we directly applied the pre-trained Wav2vec 2.0 (available online: https://
huggingface.co/docs/transformers/model_doc/wav2vec2, accessed on 9 June 2021) from
huggingface [28] without additional training. In addition, the BERT used in all of our
experiments was fine-tuned until 20 epochs with a learning rate of 1e-4, using the batch
size of 64 with the Adam optimizer [29]. To fine-tune BERT, we set λl = 0.55 and λr = 0.45
in the FSC dataset experiments, and, λl = 0.85 and λr = 0.15 in the Audio-Snips dataset.

We also utilized the following models that were released on the huggingface [28]:
ALBERT [16], XLNet [17], ELECTRA [18], RoBERTa [19].

5.2. Results

Table 4 illustrates the experimental results of applying our method to Audio-Snips and
FSC datasets. Further, four evaluation results of the conventional single model approach
are provided (two of them were obtained by the model trained with S and the others from
the model trained with Ŝ). Consequently, we show the performance evaluation using
three methods (trained with S, Ŝ, and (S + Ŝ) (Ours)) to compare intent classification on
five pre-trained language models. The symbol “→ ” in Table 4 means an operation that
is trained with the preceding training set and evaluated with the following test set. For

https://huggingface.co/docs/transformers/model_doc/wav2vec2
https://huggingface.co/docs/transformers/model_doc/wav2vec2
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example, “S→ Ŝ” refers to the process of training with S and evaluating with Ŝ. In the case

of our proposed model, the operations are denoted as (S + Ŝ) Ours−−→ S and (S + Ŝ) Ours−−→ Ŝ.

Table 4. Experiment results on both the Audio-Snips dataset and FSC dataset.

Intent Classification Acc (%)

Dataset Used
Model

S→ S S→ Ŝ Ŝ→ S Ŝ→ Ŝ
(S +

Ŝ) Ours−−→ S

(S +

Ŝ) Ours−−→ Ŝ

Audio-Snips

BERT 98.29 89.77 98.29 96.96 99.43 98.62
ALBERT 97.86 87.29 97.71 96.84 98.29 97.97
XLNet 98.14 89.41 97.57 97.31 99.29 98.43

ELECTRA 98.57 89.58 98.14 97.21 99.14 98.52
RoBERTa 97.71 85.15 97.31 96.44 98.57 97.76
Average 98.11 88.24 97.80 96.95 98.94 98.26

FSC

BERT 100 88.81 98.50 96.23 100 98.63
ALBERT 100 85.65 98.39 95.86 100 98.68
XLNet 100 88.16 99.14 96.97 100 98.66

ELECTRA 100 85.73 96.94 93.38 100 98.63
RoBERTa 100 89.40 97.68 94.99 100 98.60
Average 100 87.55 98.13 95.49 100 98.64

In the Audio-Snips dataset, there are five models that achieved an average of 98.11%
and 88.24% accuracy on both S → S and S → Ŝ. In the FSC dataset results, the average
accuracy of S → S and S → Ŝ are 100% and 87.55%. In each dataset, fine-tuned models
trained on S show about 10% accuracy difference in the evaluations of S and Ŝ.

According to these results, we strongly conjecture that the performance of S → Ŝ
would be significantly decreased in practical spoken dialogue scenarios where more noise
and extreme conditions exist. In other words, these results indirectly explain why the
text-based intent classification system cannot be used in the practical spoken dialogue
system and the reasons that recent studies focused on the ASR-SLU-based approaches.
Therefore, it is required to improve the spoken language model performance, not only to
satisfy users’ needs, but also to overcome the limitations of conventional SLU approaches.

On the other hand, in the Audio-Snips dataset, the average accuracy of Ŝ → S and
Ŝ→ Ŝ achieved 97.80% and 96.95%, respectively. Compared to both average accuracy of
S→ S and that of S→ Ŝ, the accuracy of Ŝ→ S is 0.31% lower and that of Ŝ→ Ŝ is 8.71%
higher. In the FSC dataset, the average accuracy of Ŝ→ S and Ŝ→ Ŝ are 98.13%, 95.49%.
The results of the FSC dataset show the same trend as with the Audio-Snips. Although the
average intent classification performance of Ŝ is significantly enhanced in Ŝ→ Ŝ compared
to the models trained with S, there is a problem that the average accuracy of Ŝ → S is
lower than that of S→ Ŝ. Moreover, it is still a concern that Ŝ→ Ŝ results are not robust.
Compared to the average performance of S → S (100%) in the FSC dataset, the average
Ŝ → Ŝ performance is 4.51% lower (95.49%), which can be a critical problem in special
intent understanding. Therefore, it is important to incorporate the linguistic information of
S in training of Ŝ.

In the results of our proposed method, we achieve the average accuracies from both
S and Ŝ as 98.94% and 98.26% in the Audio-Snips dataset. These results show that the
proposed method yields better performance than the matched condition S → Ŝ. In the
results of the FSC dataset, our method gets the highest average performances, which are

100% and 98.64%. In particular, (S + Ŝ) Ours−−→ Ŝ outperforms S→ Ŝ by 11.09%. In view of
practical spoken dialogue systems, the proposed method demonstrates that the difference
between the performance of S and Ŝ has narrowed significantly compared to the other
results. Through the results on the two datasets, it is clear that the proposed method can
generalize to the various conditions in spoken dialogue systems. Our proposed method
showed the performance on the recognized text that outperforms the other approaches,
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while the performance on labeled text did not deteriorate, but rather improved. Owing
to the linguistic information from RLM and the attributes of the pre-trained language
models, our proposed method demonstrated robustness and efficiency in both S and Ŝ of
Audio-Snips and FSC dataset.

In addition, unlike the non-explainable end-to-end process of the ASR-SLU models,
the proposed model is able to clarify the error analysis in a dialogue-oriented system.
Moreover, it enables the user interfaces to use both speech and text. We expect the proposed
method to show strong performance even in practical scenarios where unexpected noise
and various speakers exist.

5.3. Comparisons to Other Studies

To validate the effectiveness of our proposed method, we compare it to other ap-
proaches using the Audio-Snips dataset.

In the experiments based on the Audio-Snips dataset, three earlier studies were se-
lected. Table 5 demonstrates the results of the proposed method and the conventional
methods. Note that both Huang et al. [9] and Cao et al. [10] used the recognized text, and
Lai et al. [13] set the input as speech. For the case using recognized text from the ASR
system, the proposed method outperforms other methods. It shows the best performance
when speech data itself are used as input, but this end-to-end method requires a lot of
computation. The proposed method shows comparable performance to Lai’s approach [13]
through a simple spoken language representation. As shown in Table 5, the average accu-
racy of our proposed model achieved the highest performance in the Audio-Snips dataset.

Table 5. Intent classification performances of comparative models and ours in the Audio-Snips
dataset experiments.

Model Intent Acc (%) Input

Huang et al. [9] 89.55 Recognized text
Cao et al. [10] 98.60 Recognized text
Lai et al. [13] 98.65 Speech

Ours (BERT)

(S + Ŝ) Ours−−−→ S 99.43 Labeled text

(S + Ŝ) Ours−−−→ Ŝ 98.62 Recognized text
Average 99.03 Labeled & Recognized text

5.4. Analysis

In this section, we analyze the effects of the proposed models, focusing on the per-
formance of recognized text. To this end, we compare using the prediction results and

confusion matrices of S→ Ŝ and (S + Ŝ) Ours−−→ Ŝ, respectively. In the Audio-Snips dataset,
we select the two speakers with the worst WER. In the FSC dataset, we visualize all results.

Table 6 shows the test samples of Brian, Russell, and the full FSC dataset for analysis.
In both Brain and Russell, Ŝ is significantly different from S. In particular, as we observed
in Section 3, the recognized text of verb and noun parts have many ASR errors. As shown
in Table 6, Ŝ is not predicted well from the model trained with S. These lead to weak SLU
models and cause misclassifying of users’ intents in practical spoken dialogue systems.

On the other hand, our results ((S + Ŝ) Ours−−→ Ŝ) in Table 6 demonstrated better
results. Although many ASR errors exist in Ŝ, our proposed method can find the users’
intentions well owing to the RLM. However, we conjecture that the word “see” in Russell’s
fourth sample makes the model confused; this made the proposed model misclassify
“AddToPlaylist” as “SearchScreeningEvent”.
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Table 6. Detailed results analysis of Brian, Russell, and the FSC dataset.

Dataset Speaker # Labeled Text Recognized Text Label
Prediction

S→ Ŝ (S + Ŝ) Ours−−→ Ŝ

Audio-Snips

Brian

1 Book a reservation at

tavern for noodle

Bork te resurvation

of tavernfemoodl
BookRestaurant PlayMusic BookRestaurant

2 Add brazilian flag anthem to

top 100 alternative tracks on spotify

Ad brazilian flagamthum to

top 100 alternative tracks on spotify
AddToPlaylist PlayMusic AddToPlaylist

3 Tell me the weather

forecast for gibsland

Tell me the worther

forecast for gibsland
GetWeather SearchCreativeWork GetWeather

4 Rate this current album 0 starts Break this caran talbon’s ero stars RateBook PlayMusic RateBook

5 Add abacab to beryl’s

party on fridays playlist

A dabicabto

party on friday’s playlist
AddToPlaylist PlayMusic AddToPlaylist

Russell

1 Let’s hear good mohammad

mamle on vimeo

Lets heer good mahammed

mammelon venier
PlayMusic AddToPlaylist PlayMusic

2 What is the weather

forecast for burundi

Orders the wore forme

cost or branby
GetWeather BookRestaurant GetWeather

3 Where can i find the

movie schedules

Where can i find the

murvy schedules
SearchScreeningEvent SearchCreativeWork SearchScreeningEvent

4 Add farhad darya song

in virales de siempre

Out far hou die your songs

in the rowls to see em prey
AddToPlaylist SearchScreeningEvent SearchScreeningEvent

5 Add we have a theme song

to my house afterwork

Ad we have a theme song

to my house off to wor
AddToPlaylist SearchScreeningEvent AddToPlaylist

FSC All

1 Turn down the heat

in the washroom

Turn down we heet in

the wateroom
decrease-heat -washroom decrease-volume -none decrease-heat -washroom

2 Heat down Keep down decrease-heat -none decrease-volume -none decrease-heat -none

3 Volume up Fall him up increase-volume -none deactivate-lights -none increase-volume -none

4 Washroom lights off Washed him lights off deactivate-lights -washroom deactivate-lights -none deactivate-lights -washroom

5 I need to practice my korean

switch the language

I need to practice my careean

which the language

change language

-Korean-none

change language

-English-none

change language

-Korean-none
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Figure 4 provides the confusion matrices corresponding to both the results of Brian
and Russell in Table 6 for a more detailed analysis. As shown in Figure 4a,b, even though
there are only seven intent classes, more than half of them do not exceed 90% accuracy.
Specifically, in Figure 4a,b, the accuracy of label “AddToPlaylist” are 0.50 and 0.76, and that
of “SearchScreeningEvent” are 0.68 and 0.50. This is due to the recognition errors and it
means that it is difficult to accurately classify the users’ intents in the noisy environment
using models trained only with labeled text.

(a) S→ Ŝ (Brian) (b) S→ Ŝ (Russell)

(c) (S + Ŝ) Ours−−→ Ŝ (Brian) (d) (S + Ŝ) Ours−−→ Ŝ (Russell)

Figure 4. Confusion matrices of intent accuracy from Brian and Russell in the Audio-Snips dataset.

(a,b) are S→ Ŝ of Brian and Russell and (c,d) are their (S + Ŝ) Ours−−−→ Ŝ, respectively.

On the other hand, the results of (S + Ŝ) Ours−−→ Ŝ in both Figure 4c,d show that all of
the intent classes in each speaker achieved more than 92% accuracy. While the accuracy
of “AddToPlaylist” in Figure 4a and that of “SearchScreeningEvent” in Figure 4b have
0.50, our results in Figure 4c,d are 0.99 and 0.92, respectively. In addition, while S → Ŝ
operation for Brian and Russell achieved 75.86% and 80.75% accuracy, the proposed method
achieved 96.71% and 97% accuracy, which outperformed by 20.85% and 16.29%, respectively.
Consequently, these results validate that the proposed method is effective for classifying
intents in the spoken dialogue system containing severe ASR errors.
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5.5. Ablation Studies

In this section, we provide the results of the ablation studies to explicitly investigate
the performance of our proposed model under various configurations. The first ablation
study is focused on different hyperparameter values, and the second one utilizes different
methods in the fine-tuning procedures, such as masking, token-level mix-up [30].

For better reproducibility, we report specific values of hyperparameters. Table 7 shows
the performance comparisons for two different λ values. In the case of the Audio-Snips
dataset, the optimal values for λl and λr are 0.85 and 0.15 for BERT, ELECTRA, and
RoBERTa, while for ALBERT and XLNet, they are 0.55 and 0.45. For all models in the FSC
dataset, the optimal values for λl and λr are 0.55 and 0.45.

As described in Table 7, all accuracies are similar regardless of the hyperparameters.
Since the proposed method is evaluated using RLM, we found that the best accuracy is
obtained when the value of λl is higher than that of λr in order to share more attributes of
the LLM with the RLM.

Table 7. Performance comparison of intent classification according to the different values of hyperpa-
rameters in two datasets.

Dataset λ (S + Ŝ) Ours−−→ Ŝ Performance (%)

λl λr BERT [15] ALBERT [16] XLNet [17] ELECTRA [18] RoBERTa [19]

Audio-Snips

0.85 0.15 98.62 97.72 98.10 98.52 97.76
0.55 0.45 98.08 97.97 98.43 98.34 93.34
0.50 0.50 98.07 97.77 98.13 98.17 96.63
0.45 0.55 98.19 97.83 97.74 98.33 96.98
0.15 0.85 98.29 97.75 97.72 98.14 96.38

FSC

0.85 0.15 98.60 98.44 98.66 98.55 98.55
0.55 0.45 98.63 98.68 98.66 98.63 98.60
0.50 0.50 98.43 98.44 98.58 98.52 98.52
0.45 0.55 98.52 98.37 98.47 98.52 98.47
0.15 0.85 98.49 98.18 98.47 98.39 98.52

Table 8 shows the results of using various augmentation methods to make a robust
SLU model. First, we applied the masking method in fine-tuning. To this end, in the
training phase, 10%, 20%, and 30% of the total words were replaced with “<MASK>” token,
while no masking was used in the evaluation phase. Second, we used the mix-up [30]
approach at the token level and applied it within the range allowed by the vocabulary size
of the pre-trained tokenizer. Both mentioned methods were applied to S and evaluated
on Ŝ. In addition, the experiment was conducted with a single BERT model, and the two
methods are denoted as SMask[10,20,30]

→ Ŝ and SMix → Ŝ, respectively.
As shown in Table 8, the performance of the models fine-tuned with the different

ratio of masking approaches (SMask10 → Ŝ, SMask20 → Ŝ, SMask30 → Ŝ) are higher than

that of S → Ŝ, but lower than ours ((S + Ŝ) Ours−−→ Ŝ). Furthermore, training with the
mix-up approach (SMix → Ŝ) yielded the worst performance. According to this analysis,
we find that neither the mix-up approach nor the masking method is effective for the
improvement of performance. Consequently, the results in Table 8 show that our proposed
model outperforms the other augmentation-based methods.



Sensors 2022, 22, 1509 17 of 18

Table 8. The results of different augmentation approaches used in the downstream task.

Method (BERT)
Acc (%)

Audio-Snips FSC

S→ Ŝ 89.77 88.81

SMask10
→ Ŝ 93.78 93.06

SMask20 → Ŝ 94.28 92.51
SMask30 → Ŝ 93.81 93.01

SMix → Ŝ 77.92 89.61

(S + Ŝ) Ours−−−→ Ŝ 98.26 98.63

6. Conclusions

Thus far, we have observed the limited ability of existing spoken dialogue systems in
practical scenarios. In this paper, we suggested a method to address a significant problem
involving the spoken dialogue system due to recognized errors that are generated by
the ASR system in practical scenarios. Our novel and simple method fine-tunes spoken
language models jointly using recognized text and labeled text. The experimental results
show that our proposed RLM maintains high accuracy on labeled text while improving
the performance of intent classification on recognized text. Our proposed method can
successfully understand users’ intentions for practical dialogue-oriented systems and allow
users to transfer their intents to the spoken dialogue system with only speech or text alone,
if necessary.
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