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Abstract: The monitoring of environmental pollution requires fast, reliable, cost-effective and small
devices. This need explains the recent trends in the development of biosensing devices for pollutant
detection. The present review aims to summarize the newest trends regarding the use of biosensors
to detect environmental contaminants. Enzyme, whole cell, antibody, aptamer, and DNA-based
biosensors and biomimetic sensors are discussed. We summarize their applicability to the detection
of various pollutants and mention their constructive characteristics. Several detection principles are
used in biosensor design: amperometry, conductometry, luminescence, etc. They differ in terms of
rapidity, sensitivity, profitability, and design. Each one is characterized by specific selectivity and
detection limits depending on the sensitive element. Mimetic biosensors are slowly gaining attention
from researchers and users due to their advantages compared with classical ones. Further studies
are necessary for the development of robust biosensing devices that can successfully be used for the
detection of pollutants from complex matrices without prior sample preparation.

Keywords: environmental quality monitoring; emerging contaminants; detection; biosensing;
mimetic biosensors

1. Introduction

The modern world faces a major problem today—environmental pollution, which
is caused by the release and accumulation of various harmful substances due to current
industries’ extreme development, rapid urbanization, and population growth. Pollutants
are very diverse, ranging from chemical to physical, biological, and radiological compounds,
and are widely spread in the air, soil, and waters, affecting all living systems, especially
human health and life [1]. The safety and security of the environment is a major concern
worldwide; therefore, prudent monitoring and management of it constitute two of the
global and European priorities [2]. Researchers are interested in finding durable solutions to
environmental monitoring, as the control of toxic substances is a fundamental condition for
pollution remediation. Usually, the classical chromatographic [3–5] and spectroscopic [6–9]
methods are used to detect contaminants, which are generally characterized by high
sensibility and selectiveness. However, these methods are laborious, need several sample
preparation steps, use toxic chemicals, and are time-consuming; and the equipment needs
well-qualified operators.

The necessity of using some rapid, selective, sensitive, accurate, and real-time devices
for detecting and screening pollutants led to the development of advanced biosensing
devices. These must combine the analytical techniques with biotechnology in careful
and reliable ways, at a low cost [10–12]. A special use of biosensors is in the evaluation
of ecological risks. Biosensors are in such cases essential in complementing the specific
chemical analyses [13,14]. For the construction of the biosensors should be considered the
complexity of the environmental samples, as their use for technological applications is
highly demanded [15–17].
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Environmental pollutants can be monitored using specific biosensors. The detection
principle must be based on a suitable physical/chemical transducer integrated with a
compatible biological or biomimetic element that reversibly binds the analyte. The detector
identifies and converts the resulting reactions into qualitative and quantitative sensing
signals for the targeted pollutants from the sample [11,16].

The pollutants released from industrial, agricultural, and other intense human activ-
ities [11] are organic and inorganic. Biosensors’ usage is essential for monitoring actual
conditions of soil, water, and air samples to detect pollutants such as pesticides, potentially
toxic elements, pathogens, toxins, and endocrine-disrupting chemical compounds [2]. The
major and long-lasting environmentally relevant toxicants can be separated into four cate-
gories: organochlorine pesticides (aldrin, chlordane, DDT (dichlorodiphenyltrichloroethane),
dieldrin, endrin, heptachlor, mirex, and toxaphene); fungicides (i.e., hexachlorobenzene);
industrial chemicals (PCBs—polychlorinated biphenyls and their by-products), and heavy
metals. The possibility of their quantification by using specific biosensors constitutes a
significant advantage in controlling them [11]. Even though biosensors have proved their
abilities to measure air pollutants in various sample types, their efficiency is often poor [10].

The capacity of these small devices to offer reliable analytical results productively and
profitably should be highlighted [18]. Another characteristic that needs to be underlined is
the possibility offered by to perform ongoing in-field monitoring of various pollutants [19].

Biosensors are analytical devices that each incorporate a biological sensing element
to detect a targeted analyte from complex samples [20]. Biosensors convert a biological
signal into a detectable electrical, optical, or thermal signal. They provide high sensitivity
even with miniscule analyte concentrations [1,21,22]. A schematic diagram of the typical
components of a biosensor is presented in Figure 1.
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Figure 1. Operation of a biosensor.

A biodetection device consists of some distinct components: a bioreceptor, a trans-
ducer, a system for signal processing, and a display [16,21]. The entire unit produces a
measurable detection signal relating the analyte’s concentration in the target [23]. The
biochemical receptor is used to recognize biological or chemical elements from the ana-
lyzed sample, being intimately associated with the transducing element, which converts
the biochemical outcome into quantized electrical, optical, or thermal signal [21,22,24].
The biorecognition element might be a biological material, such as enzymes or a multien-
zyme system, microbes, recombinant microorganisms, functional nucleic acids, antibodies,
antigens, aptamers, or an animal or plant tissue [21,24]. New alternatives use biomimetic
materials (biomimetic catalysts, molecularly imprinted polymers, combinatorial ligands,
etc.) [25]. Even if the biosensor is a complete, independent unit, the term specifically refers
to the component that provides precise, complex bioanalytical measurements in simple
formats and in real-time [10,20,24]. Biosensors must allow reuse and not be affected by pH
and temperature [26].

Biosensors are classified by the most important components involved in the detection
process: the bioreceptor and the transducer. Regarding the bioreceptor type, biosensors
can be grouped as follows: the biocatalytic group (enzymatic biosensors), the bioaffinity
group (immunosensors, aptasensors, genosensors), and the microbial group (microbial
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biosensors) [2,26]. Based on the transducer’s physicochemical features and its working
principle, biosensors are categorized as: electrochemical (potentiometric, amperometric,
impedimetric, conductometric biosensors), optical (fiber-optic, surface plasmon resonance,
Raman spectroscopy-based, and FTIR-based biosensors), and mass-based (magnetoelectric
and piezoelectric biosensors) (Figure 2) [16].
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Biosensors present some advantages in analytical chemistry. They expedite the pro-
cesses of the traditional laboratory and analytical monitoring procedures—that is, taking
various analytes from diverse samples. They are small and simple devices with high sensi-
tivity and bioselectivity for targeted analytes, precision, rapidity, and continuity in monitor-
ing. Several factors for users must also be considered when designing them, such as easy
manipulation and operation, safety functioning, suitability for in situ detection (no complex
sample preparation), real-time detection, cost efficiency, and eco-friendliness [27,28].

Biosensors have seen rapid and varied development in the past few decades [10] due
to their ability to identify a wide range of analytes, such as pollutants, bacteria, fungi,
drugs, and food additives [16]. Such attributes demonstrate their great applicability in
various fields—pharmaceutics, medicine, industry, environmental monitoring, agriculture,
food, forensic chemistry, security and defense, robotics, etc. [24,27]. The main uses of a
biosensor depend on the specific tasks of the application area. Their utility in the food
industry was demonstrated in quality and safety control, by discerning natural and artificial
components, monitoring fermentation processes, etc. Their applicability in industry is
mainly in control processes. In drug discovery and clinical and medical sciences, their use
is recommended for rapidly detecting chemicals or viruses that cause various diseases,
including cancer [20,26].

Currently, there is increasing interest in developing highly accurate and efficient
systems for identifying and screening environmental pollutants (Figure 3) [29].

Compared to other types of biosensors, e.g., biomedical ones, biosensors for environ-
mental monitoring have a nonaged phase due to the complexity of the analysis, such as the
complex ecological matrix, which interferes with pollutant recognition.

A biosensor’s characteristics are directly related to its biorecognition element and its
transducer’s properties. Therefore, the materials used for the construction of the biosensor
play an important role. Recently, laminated composites have become of great interest to
various industries and applications [30–42]. The development of new composite materials
is grabbing researchers’ attention, as these materials are characterized by high surface-
to-volume ratios, high catalytic activity, good electrical conductivity, and good magnetic
properties [43–47]. Yang et al. [47] extensively presented the synthesis of carbon nanotubes
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(CNT) (arc discharge, laser ablation, chemical vapor deposition (CVD), etc.) and the
possibilities for their functionalization.
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Nanocomposites represent a promising technology that enhances the sensitivity and
flexibility of analyses of environmental complex samples. Nanostructures such as tubes,
wires, rods, and particles modify biosensors’ characteristics toward achieving this goal.
However, as Nigam et al. [10] noticed, there is still a real need for innovations in biosensors
for environmental purposes, to assure high output of analysis for continuous, automated,
and real-time results. Still, accuracy must also be considered the primary priority.

2. Sensors Used for Environmental Monitoring Overview
2.1. Enzyme-Based Biosensors

Enzymes are macromolecules with a complex 3D structure consisting of proteins
that act as biological catalysts. An enzyme-based biosensor uses a specific enzyme as a
biological sensing element, combined with a transducer that converts the signal generated
by the enzymatic reaction into a measurable response proportional to the analyte concentra-
tion [48]. The enzymatic reaction signal can be generated in different forms: thermal release,
proton concentration changes, oxygen emission or uptake, light emission or absorption,
etc. The transducer (optical, electrochemical, thermal, piezoelectric) transforms this signal
into potential, current, temperature exchange, light absorption, etc.—all of these being
measurable by different means [49].

Enzymatic biosensors have earned massive interest in the last few years due to their
multiple advantages, such as the high specificity and selectivity of enzymatic reactions,
their wide range of detectable analytes, flexibility in detection, and the high purity of the
available enzymes [50].

Naresh et al. [51] present in their paper the operating principles of enzymatic biosen-
sors. There are two possible categories of mechanism of action: metabolization of the
target analyte by the enzyme; or the activation, inhibition, or alteration of the enzyme by
the analyte.

The essential requirements of an enzymatic biosensor are the immobilization the
enzymes to the transducer’s surface and maintenance of their activity after immobiliza-
tion [48]. The immobilized enzymes are more stable than the mobile versions and can be
repetitively and continuously used [52]. The main methods for enzyme immobilization are
presented in Figure 4, and in Table 1 are the characteristics of these.
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Table 1. Methods of enzyme immobilization for biosensors [52,53].

Immobilization of Enzymes Method’s Characteristics

Adsorption Simple, inexpensive, less destructive to enzymatic activity, no
additional reagent necessary

Microencapsulation Preservation of structural and acting integrities of enzymes,
due to their protection against environmental conditions

Entrapment High stability conferred to the enzymes

Cross-linking Improved efficiency and stability of enzymes by strong and
stable bindings

Covalent bondings More stability for enzymes and enzymes-support complexes,
meanwhile stronger bindings than in adsorption case

Enzyme-based biosensors are widely used in food, medical, agricultural, and en-
vironmental fields. As shown in Table 2, the development of enzymatic biosensors for
environment monitoring represents a subject of considerable interest.

Table 2. Examples of enzyme-based biosensors used for environmental monitoring.

Analyte Enzyme(s) Immobilization
Method Transducer Target LOD Linearity Reference

Hg2+,
Cu2+,
Cd2+

Urease Entrapment in
sol-gel matrix Optical River water

10 nM,
50 µM,
500 µM

- [54]

Chromium GOx

Cross-linking
with GA and
covering with

aniline
membrane

Amperometric Soil 0.49 µg L−1 0.49–95.73 mgL−1

95.73–8.05 mgL−1 [55]

Paraoxon AChE

Dropping on
the multiwall

carbon
nanotubes

Amperometric Water 0.5 nmol L−1 6.9 nM [56]
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Table 2. Cont.

Analyte Enzyme(s) Immobilization
Method Transducer Target LOD Linearity Reference

Paraoxon-ethyl,
diisopropyl fluo-

rophosphates
AChE

Cross-linking
with BSA in a
saturated glu-
taraldehyde

vapor

Conductometric Soil 1 × 10−8,
5 × 10−11 - [57]

Atrazine Tyrosinase Cross-linking
with PVA-SbQ Amperometric

Spiked
drinking
water s

0.3 ppm 0.5–20 ppm [58]

Atrazine Tyrosinase Entrapping in
poly(L-DOPA) Amperometric Water 10 ppb 50 ppb–3.0 ppm [59]

Organophosphorus
neurotoxin AChE Cross-linking

with GA Piezoelectric Water 50 mg/m3 0–50 mg/m3 [60]

Captan Glutathione-
S-transferase

Entrapment in
gel sodium

alginate
Optical Water 2 ppm - [61]

Anatoxin-a AChE Entrapment in
PVA-SbQ Amperometric Water 1 µg L−1 0–2.0 ppm [62]

Catechol Tyrosinase Chitosan-gold
nanoparticles Amperometric Environmental

monitoring 27 × 10−6 mM 0.046–50 µM [63]

Methyl salicylate
Alcohol

oxidase and
peroxidase

Molecular
tetherings in

carbon
nanotube

matrix

Amperometric Environmental
monitoring 0.00098 mM - [64]

Abbreviations: LOD—limit of detection; Gox—glucose oxidase; GA—glutaraldehyde; AchE—acetylcholinesterase;
BSA—bovine serum albumin; PVA-SbQ—polyvinyl alcohol bearing styrylpyridinium groups; L-DOPA-l-3,4-
dihydroxyphenylalanine.

2.2. Whole Cell-Based Biosensors (Microbial)

Whole-cell-based biosensors use natural or genetically engineered microorganisms
(bacteria, fungi, algae, protozoa, or viruses) that can interact with a broad array of analytes
and produce a signal detectable and quantifiable by a specific transducer [65]. Several
transducers have been integrated with microorganisms, being built on different principles:
electrical (amperometric, conductometric, potentiometric), colorimetric, and optical (col-
orimetric, luminescent, fluorescent) [66–68]. Microbial biosensors operate under a range
of working conditions and are more sensitive to environmental signals than conventional
ones [15]. They present various advantages: low limits of detection, high selectivity, and
high sensitivity. Based on these features, whole-cell bioreceptors are applicable in many
fields [51].

Microbial sensors can be considered a developed form of enzyme-based biosensors, as
their mechanisms of detection are mostly identical. Both of them require the application
of an immobilization technique to fix the biological material onto transducers or support
matrices. As in the enzymes case, microorganisms can be immobilized by physical (adsorp-
tion and entrapment) and chemical methods (covalent binding and cross-linking). Finally,
the chosen immobilization method must ensure mechanical resistance, cell viability, safe
handling, and long-term storage [69].

Besides the advantages presented over the conventional methods, namely, high sensi-
tivity, simultaneous detection of several compounds, high potential for on-site examina-
tions, and cost-effectiveness, microbial biosensors are also associated with some drawbacks.
Their long response times, the cells’ sensitivity to environmental variables (temperature,
pH, etc.), and the difficulty of maintaining cell viability for an extended period are some of
their limitations [15,65,70].

Numerous recent articles reported on the use of microbial biosensors to detect environ-
mental pollutants, such as pesticides, heavy metals (As, Cu, Hg, Pb, or Cd), phenols, and
other toxic compounds, using terrestrial and aquatic biota [15,19,71,72]. Other microbial
biosensors were proposed and developed in the last few years as well, with remarkable
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applicability to environmental monitoring. Table 3 summarizes the results of several such
investigations reported in the literature.

Table 3. Examples of microbial biosensors used for environmental monitoring.

Analyte Microorganism Immobilization
Method Transducer Target LOD Reference

As3+
Genetically

engineered S.
oneidensis

Biofilm formation Electrochemical Environmental
monitoring 40 µM [73]

Cu2+, Cd2+,
Ni2+, Pb2+

Saccharomyces
cerevisiae S288C

Physical adsorption
on BND-chitosan

hydrogell polymer
on GCE

Amperometric Wastewater - [74]

As3+, Cd2+,
Pb2+, Zn2+ E. coli Microbial culture in

microfluidic device Fluorescent Water - [75]

Pb2+ E. Coli DH5α Microbial culture in a
microfluidic device Fluorescent Environmental

monitoring [76]

Cd2+,
Cu2+,
Zn2+

Bacillus
megaterium VR1

Entrapment in
sol-gel matrix Fluorescent Soil

1.42 × 10−4,
3.16 × 10−4,
2.42 × 10−4

[14]

Cu2+ S. Cerevisiae Entrapment in
alginate beads Colorimetric Water 1 µM [77]

Paraoxon,
parathion,

methyl-
parathion

Genetically
engineered

Escherihia coli

Biofilm on GCE
modified with OMCs Amperometric Environmmental

monitoring
9 nM, 10 nM,

15 nMz [78]

Atrazine
(herbicide)

Anabaena
variabilis

Entrapment in
alginate Amperometric Environmmental

monitoring 0.07 µM [79]

Diuron
(herbicide)

Chlamydomonas
reinhardtii

Ti/TiO2 ultramicroe-
lectrodes in algal

suspension
Chronoamperometric Water 0.2 µM [80]

Simazine
(herbicide)

Dictyosphaerium
chlorelloides

Dc1M

Adsorption on
porous silicone disks Luminescent Drinking water 40.8 µg L−1 [81]

LOD—limit of detection; BND—boron-doped nanocrystalline diamond; GCE—glassy carbon electrode; OMCs—
ordered mesopore carbons.

2.3. Antibody-Based Biosensors

Antibodies or immunoglobulins are a large class of glycoproteins produced by special-
ized cells as part of the immune system to detect harmful substances (antigens), such as
microorganisms and chemicals. The antibodies can recognize and bind antigens, leading to
stable antibody–antigen complexes [82–84]. Depending on how they are harvested, anti-
bodies can be monoclonal or polyclonal. Monoclonal antibodies are laboratory-produced
by hybridoma selection, whereas polyclonal antibodies are complex mixtures of antibodies
isolated after animal immunization [85].

Antibody-based biosensors, also called immunosensors, are compact devices that de-
tect and quantify, using a transducer, the specific interaction between immunoglobulins and
antigens. Depending on the transducing mechanism, immunosensors are classified as elec-
trochemical (amperometric, potentiometric, and impedimetric), colorimetric, optical, and
microgravimetric. They can also be classified as labelled or nonlabelled sensors [17,86–88].
The labelling consists of attaching a sensitively detectable marker to the targeted analyte
or the bioreceptor. During the analysis, the tag’s activity is measured. These tags may
can be various sorts of compounds, including enzymes, fluorescent dyes, electroactive
compounds, and nanoparticles [89]. Nonlabelled immunosensors are designed so that the
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antigen–antibody complex can be directly determined by estimating the physical changes
produced by its development [51].

Immunosensors possess the advantages of better selectivity and sensitivity than clas-
sical analytical methods. At the same time, the evolution of immunoreactions on the
detector’s surface can be observed in real-time [83,90]. However, the limitations in using
antibody-based biosensors must also be considered, such as pH and temperature sensitivity,
considerable time consumption, and the need for developing specialized reagents for each
compound [91].

Several applications of the antibody-based biosensors within environmental monitor-
ing are summarized in Table 4.

Table 4. Examples of immunosensors used for environmental monitoring.

Analyte Transducer Electrode/Sensing
Material Target LOD Linearity Reference

Chlorpyrifos Impedimetric Chip modified with
gold nanoparticles - 0.5 ng mL−1 0.5–500 ng/ml [92]

TBBPA-DHEE
and

TBBPA-MHEE
Impedimetric Silica nanoparticles Aquatic

environments 0.08 ng mL−1 0.21–111.31 ng/mL [93]

Atrazine Electrochemical SWCNT Seawater,
riverine water 0.01 ng mL−1 - [94]

Microcystin-LR Impedimetric
Gold electrodes

with MoS2 andgold
nanorods

Water 5 ng L−1 0.01–20 gL−1 [95]

Okadaic acid
Domoic acid Optical (SPR)

Gold electrode with
carboxymethylated

surface
Seawater 0.36 ng mL−1

1.66 ng mL−1 - [96]

Okadaic acid Impedimetric Graphene Seawater 0.05 ng mL−1 - [97]

Legionella
pneumophila Optical (SPR) Gold substrate Water 103 CFU mL−1 - [98]

Abbreviations: TBBPA-DHEE—tetrabromobisphenol A bis(2-hydroxyethyl) ether; TBBPA-MHEE—
tetrabromobisphenol A mono(hydroxyethyl) ether; SWCNT—single-walled carbon nanotubes; SPR—surface
plasmon resonance; microcystin—LR-microcystin-leucinearginine.

2.4. DNA/Aptamer-Based Biosensors
2.4.1. Aptamer-Based Biosensors

Aptamers or “chemical antibodies” [99] are artificial, single-stranded oligonucleotide
(DNA (deoxyribonucleic acid) or RNA (ribonucleic acid) sequences (15–80 base pairs in
length) that can bind to specific target molecules [100]. The range of aptamer targets is
extensive, from small molecules (peptides, proteins, carbohydrates, metal ions) to cells,
viruses, and bacteria [101–103].

Aptamers can be selected in vitro through a process called SELEX (systematic evolu-
tion of ligands by exponential enrichment) [104–106]. The SELEX procedure starts with
preparing an extensive library of oligonucleotides with different sequences, with which the
target molecules are incubated for some time. After incubation, unbounded molecules are
separated, and the target-bound oligonucleotides are eluted by heating or washing. The
bound aptamer molecules are amplified by the polymerase chain reaction (PCR) to create
the input for the following selection rounds. The entire process uses 5–15 cycles of selection
and amplification [107–109].

In comparison with antibodies, aptamers have some specific advantages, such as
higher stability in various environmental conditions (temperature, pH), lower cost, the
ability to regenerate, and the possibility of being chemically synthesized or modified in
accordance with target molecules [89,102,108].



Sensors 2022, 22, 1513 9 of 19

In the last few years, several biosensors (colorimetric, fluorescent, electrochemical, and
SERS—surface enhanced Raman spectroscopy) have been designed to detect environmental
pollutants, using aptamers as the bioreceptors. Furthermore, the synthesis of new nanoma-
terials showed their significant potential for the development of innovative aptasensors.
The latter are sustained by their strong biocompatibility with aptamers [102,106].

Table 5 summarizes recent studies on aptasensors developed for the detection
of pollutants.

Table 5. Examples of aptamer-based biosensors used for environmental monitoring.

Analyte Detection Method Target LOD Linearity Reference

Ag+ SERS based on Au@Ag
core–shell nanoparticles

Tap water,
river water 50 × 10−12 mg L−1 0.1–100 nM [110]

As3+ Colorimetric with GNPs Wastewater 0.0006 mg L−1 1–400 range/ppm [111]

As3+ Colorimetric with AuNPs Soil 1.97 ppm - [112]

Cd2+
Fluorescence with use of

SYBR green I as
signal reporter

Tap water,
river water 3 × 10−9 mg L−1 1.12–224.82 µg L−1 [113]

Hg2+ SERS based on dual
recycling Water environment 0.11 fM 0.2–125 fM [114]

Hg2+ SERS based on SiO2@Au
core/shell nanoparticles Lake water 10 × 10−9 mg L−1 - [115]

Pb2+
Electrochemical

(Impedance), G-rich ap-
tamer/MWCNTs/GNPs

Water 4.3 × 10–15 M 5.0 × 10−11–1.0 ×
10−14 M

[116]

Pb2+ Fluorescence based on
gold nanoflowers Tap water 0.285 nM 0.01–850 nM [117]

Pb2+ Colorimetric with use of
silver staining Soil 5.0 × 10−7 mg L−1 - [118]

Acetampirid Chemiluminescence with
use of AuNPs Wastewater Soil 62 × 10−12 mg L−1

1.0 × 10−9 mg L−1 - [119]

Malathion
Colorimetric based on

AuNPs and
cationic polymer

Lake water 6 × 10−14 mg L−1 0.5–1000 pM [120]

Omethoate Fluorescence based
on S-GQD - 1 ppb 0–200 ppm [121]

Organophosphorus
pesticides

Fluorescence with
poly(T) CuNPs Lake water 0.22 nM 0–200 nM [122]

Tetracycline
Photoelectrochemical
based on CdTe-BiOBr

heterojunction
Soil 9.25 pM 10–1500 pM [123]

Abbreviations: GNPs—gold nanoparticules; G—guanine; SERS—surface-enhanced Raman scattering; CuNPs—
copper nanoparticles; S-GQD—sulphur-doped graphene quantum dot, SYBR—N′,N′-dimethyl-N-[4-[(E)-(3-
methyl-1,3-benzothiazol-2-ylidene)methyl]-1-phenylquinolin-1-ium-2-yl]-N-propylpropane-1,3-diamine; G-rich—
guanine-rich; MWCNTs— carboxylic acid group functionalized multiwalled carbon nanotubes (MWNTs-COOH).

2.4.2. DNA-Based Biosensors

DNA-based biosensors use nucleic acids (single-stranded DNA, ss-DNA) as recogni-
tion elements. Their working principle is based on two mechanisms: (i) the hybridization
process between the target DNA and its complementary strand immobilized on a sensing
area through the spontaneous hydrogen bonding between adenine–thymine and cytosine–
guanine pairs [49,124]; (ii) the alteration of the ss-DNA structure by the target analyte’s
molecules [125]. These mechanisms induce various physicochemical changes that lead to
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the generation of a specific signal that can be converted into a measurable response by an
appropriate transducer, usually optical or electrochemical [126].

A significant stage in the design of DNA-based biosensors is the immobilization
procedure of the nucleic acid fragments on the electrode surface. Regardless of the method
used (adsorption, covalent bonding, or avidin–biotin interaction), the immobilization must
preserve the activity of these fragments—that is, ensure their stability and accessibility to
the target molecules [127].

Due to their multiple advantages, such as specificity, sensitivity, biocompatibility,
and cost-effectivity, DNA-based biosensors are used in several fields, including disease
prognosis, clinical diagnosis, food control, and environmental screening [126,128].

Several studies have illustrated the ability of DNA-based biosensors to detect traces
of heavy metals in the environment [125,128–130]. In this case, the working principle is
based on the affinity of some heavy metal ions toward forming stable duplex structures
together with certain DNA bases. Mercury ion (Hg2+) selectively binds thymine (T) bases
and creates a thermal stable T-Hg2+–T duplex [131]. Similarly, silver ions (Ag+) selectively
interact with two cytosine (C) bases and form C–Ag+–C base pairs, which stabilize the DNA
duplex [49,125]. Therefore, in the presence of some metal ions, thymine-rich or cytosine-
rich single-stranded DNA can form stable structures by which metals can be detected with
adequate transducers [125].

Some of the recent DNA-based biosensors’ applications are presented in Table 6.

Table 6. Examples of DNA-based biosensors used for environmental monitoring.

Analyte Transducer Target LOD Linearity Reference

Hg2+ Electrochemical Tap water,
river water 0.05 nM 0.1–200 nM [132]

Pb2+ Fluorescent Aqueous
systems 5 nM 0–50 nM [133]

Pb2+ Fluorescent Lake water 0.6 nM 2–10 nM [134]

Organophosphorus
pesticides Fluorescent Lake water 0.018 µg L−1 2–10 µg/L [134]

Cyanazine Impedimetric Water 0.8 nM 4.0 nM–70 µM [135]

Pirazon Impedimetric Water 1 × 10−10 M 5 × 10−9–5 × 10−5 M [136]

Legionella
pneumophila Optical (SPRi) Water 104 CFU mL−1 - [137]

Vibrio cholerae Impedimetric - 7.41 × 10−30 mol L−1 10−8–10−14 mol L−1 [138]

Escherichia coli Amperometric Soil 100 cells/g soil - [139]

Bacillus
thuringiensis Impedimetric - 0.997 × 10−12 M 1 pM–1 µM [140]

Ostreopsis cf. ovata Colorimetric Plankton,
bentonite 9 pg/µL - [141]

Abbreviations: SPR—surface plasmon resonance imaging; CFU—colony-forming units.

3. Biomimetic Sensors

Although the terminology may seem new, the basis of biomimetics was laid years
ago. Its principle is finding solutions that mimic a natural system’s mechanisms, especially
regarding the structure of an organism or its specific interactions with the environment. The
created products can be performant and adequately adapted to real environments [142].

Biomimetic sensors were first constructed while considering the basic principles of the
related enzymatic biosensors. The intention was to maintain high sensibility, selectivity,
sensitivity, and easy operation, while simultaneously decreasing some of the disadvantages.
The limitations that need to be overcome mainly relate to each enzyme’s specific features,
such as inactivation issues, or high costs because of the purification and standardization pro-
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cesses. In such contexts, the research was conducted toward finding sustainable solutions
for creating imitative systems. Some of the developed models are based on metal complexes,
molecularly imprinted polymers, nanozymes, synzymes, and nanochannels [143].

In the last few years, the domain of biomimetic sensors has registered significant
progress. Initially, biomimetic sensors were constructed using uni- or bi-dimensional struc-
tures (Figure 5). Then tridimensional assemblies were widely used, and the results indicated
improved performances, sometimes exceeding the natural models’ performances [143].
Finding the proper ligand for the targeted analyte is the first step in designing precise
tools. The peptide selection used in the recognition systems is important for the sensor’s
affinity [144]. Computer modelling [145] and simulation are two stages that improve the
performances of these devices.
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The domain of biomimetic sensors used for environmental pollutants detection is cur-
rently developing. Research has opened multiple promising directions for the construction
of such sensors: modified nanoparticles [146–148], metal chalcogenides nanocrystals built
on various microorganisms [149], valorization of classical imprinted electrodes [150], and
nanozymes for phenol removal [151].

Some examples of sensors created based on mimetic principles with applications in
environmental monitoring are summarized in Table 7.

Table 7. Examples of biomimetic sensors used for environmental monitoring.

Analyte Mimetic Structure Transducer Target Sensibility
(LOD) Linearity Reference

Heavy metals

Cu2+, Cr3+, Fe3+,
Pb2+, Fe2+, Cd2+,
Cr6+, Co2+, Zn2+,

Ag+, Al3+

Enzyme immobilization
Metal phosphates-

acetylcholinesterase
nanoflowers

Colorimetric Water
Cu2+—0.81 µM,
Cr3+—0.75 µM
Al3+—1.06 µM

2.5–500 µM. [152]

Pb2+ Gold nanoparticles with
glutathione linker

UV–vis
spectroscopic Water 47.6 nM

(9.9 ppb) 2–14 mM [153]

Hg2+
Cysteine-decorated

ferromagnetic particle
(Cys-Fe3O4)

Colorimetric River water 5.9 pM. 0.02–90 nM [154]

Chemicals

Methyl green Magnetic molecularly
imprinted polymer

Square-wave
adsorptive anodic

stripping
voltammetry

River
waterIndustrial

wastewater
1.0 × 10−8

mol L−1
9.9 × 10−8–1.8 ×

10−6 mol L−1 [145]

Acetylcholinesterase
inhibitors

Microchannel 1-phenyl-
1,2,3-butanetrione

2-oxime (PBO)-based
microsensor

Potentiometric

Surface waters
used for

municipal
drinking water

supplies

LD50, LC50 2–1360 mg kg−1 [155]

Acetone gas
Zeolitic imidazolate

framework-90
polyhedron crystals

quartz crystal
microbalance Air Lower than

20 ppb - [156]
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Table 7. Cont.

Analyte Mimetic Structure Transducer Target Sensibility
(LOD) Linearity Reference

Nitrite ions

Oxo-bridged dinuclear
manganese-

phenanthroline complex
immobilized into an

ion-exchange Polymeric
film deposited on glassy

carbon electrode

Cyclic
voltammetry

Environmental
samples

6.50 × 10−6

mol L−1
2.49 × 10−6–9.90
× 10−6 mol L−1 [157]

Catechol Metal-organic
frameworks Water 33 nmol L−1 - [158]

Urea

Embedding urease and
bovine hemoglobin in

metal-organic
frameworks through

biomimetic
mineralization

Colorimetric Sewage 0.02 mM 0.08–20.00 mM [159]

Pesticides

Diurone

Carbon paste electrode
modified with the

nickel(II)
1,4,8,11,15,18,22,25-

octabutoxy-29H,31H-
phthalocyanine

complex

Cyclic
voltammetry and

amperometry
River water, soil 6.14 × 10−6

mol L−1,
9.9 ×10−6

and
1.5 × 10−4 mol L−1

[160]

Organophosphorus
pesticides

Employing a
functionalized

polyacrylamide, polyhy-
droxamicalkanoate

Amperometric Water supply 0.26 µmol L−1 - [161]

Carbamate
Gold

nanoclusters-anchored
MnO2 (AuNCs-MnO2)

nanocomposite
Fluorimetric/ColorimetricSoil, water 0.125 µg L−1. - [162]

Paraoxon
Cu3(PO4)2·3H2O, AChE
and ChO -based lab-on

paper platform

Cyclic
voltammetry and

Colorimetric

Tap and river
water 6 fg mL−1 - [163]

Toxins

Bacterial toxins Microcystins inserted
into a polymeric matrix Potentiometric Water

below the
guideline value
establishedby

WHO

7.24 × 10−10–1.28
× 10−9 M [150]

Abbreviations: LOD—limit of detection; LD50—lethal dose (50%); LC50—lethal concentration (50%); WHO—
World Health Organization; Cys—cysteine.

4. Future Perspectives

Another approach of biosensors regards the possibility of simultaneous detection of
multiple pollutants. Several investigations have been successfully conducted to that end.
Raymundo-Pereira et al. [164] evidenced the possibility of using carbon screen-printed
electrodes for parallel identification of estradiol, paracetamol, and hydroquinone in tap
water. Their findings could have an important application in wastewater analysis. Good
prospects for use in water quality analysis were also provided by a luminescent sensor
derived from a stable europium(III) metal–organic framework. It was tested for antibiotic
identification [165]. The interest in using biosensors for water contaminant detection was
also fostered by Martins et al. [166]. They identified sulfamethoxazole and trimethoprim
from water samples.

The first steps toward making a biosensor with two detection mechanisms were
made by Belaidi et al. [167]. Their electrochemical and optical detection biosensor, based
on different algae responses, showed promising perspectives for simultaneous pesticide
identification in water samples. These findings also provoked the design of a mimetic
biosensor capable of detecting multiple pollutants.

The biosensors constructed for environmental quality monitoring will continue to be
improved by using novel nanocomposites and nanomaterials, and new functionalization
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methods, but the necessity for in situ and real-time monitoring of pollutants will lead to the
development of new sensing systems and even their coupling with aircraft systems [168].

With the current need for cheap, sensitive, fast, and reliable devices for environmental
monitoring, the main challenge remains the gap between the results of academic research
and the implementation of these biosensors as marketable products.

5. Conclusions

This review aimed to show that the need for fast, reliable, and stable devices for the
detection of environmental pollutants can be satisfied by biosensors. However, these should
answer the demands of sensitivity and selectivity when used in complex and unpredictable
environmental samples with changeable compositions.

Independent of the sensing element or transducer, when developing biosensors for
environmental pollutants detection, it is important to consider the possibility of continuous
use, which would require fast renewal of the biological activity during the detection cycles;
portability; cost; and last but not least, the possibility of automatization and integration into
professional devices. In most investigations, the performance of the biosensor is assessed
based on standardized laboratory samples.

The biological sensing elements—enzymes, aptamers, DNA, antibodies, and
microorganisms—might face challenges in terms of stability, possible interference, and op-
timal working conditions, but these still have the advantage of being open to improvements
in terms of specificity and selectivity.

As a result of scientific research in recent years, biomimetic sensors are characterized by
better kinetic performances than enzyme-based biosensors. Still, specificity and selectivity
remain their main shortcomings.
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