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Abstract: This work presents polarization property studies of water clouds using a circular polar-
ization lidar through a simulation approach. The simulation approach is based on a polarized,
semianalytic Monte Carlo method under multiple-scattering conditions and considers three types of
water clouds (namely homogeneous, inhomogeneous and partially inhomogeneous). The simulation
results indicate that the layer-integrated circular depolarization ratios show similar variation trends
as those of layer-integrated linear depolarization ratios. The Mishchenko–Hovenier relationship is
validated to correlate the simulated layer-integrated circular and linear depolarization ratios. In
addition, the cloud droplet effective radius, extinction coefficient, lidar field-of-view (FOV) and height
of the cloud bottom are all found to affect the layer-integrated depolarization ratio. The current work
theoretically indicates that a circular polarization lidar can efficiently perform measurements of water
clouds, enjoying the advantage of higher sensitivity compared to a traditional linear polarization
lidar. Hence, it should be of interest to researchers in fields of polarization lidar applications.

Keywords: linear and circular polarization lidars; water clouds; Monte Carlo simulation; linear and
circular depolarization ratios; Mishchenko–Hovenier relationship

1. Introduction

In the early 1950s, the concept of polarization was first exploited in the microwave
radar to improve its signal performance [1]. Various efforts were then conducted to develop
a theoretical model of polarization expression using a scattering matrix [2,3]. Later, after
the invention of the laser in the 1960s, these polarization techniques were employed for the
measurement of atmospheric lidar [4,5]. In early attempts, the laser depolarization ratio
from the non-spherical particles (larger than the incident wavelength) was found to be
much higher by comparison than the radar depolarization ratio (particles smaller than the
incident wavelength) [6]. Such attempts provided evidence that the polarization lidar has
an eminent future in atmospheric exploration. Extensive literature on polarization lidars
was then published by [7–9].

Generally, the observation of a linear polarization lidar is based on measuring the
depolarization ratio between the two receiving channels [10,11]. The depolarization ratio
reveals the microphysical properties of water clouds and has a long history in atmospheric
research [12–15]. It has been proven to be very effective parameter for discriminating water
clouds from ice clouds, thereby discriminating spherical from non-spherical particles [16,17].
Theoretically, it is based on the calculation of the scattering matrix, whose elements are
symmetric for backscattering from spherical particles and asymmetric for backscattering
from non-spherical particles [18]. Thus, backscattering from water clouds composed of
spherical droplets does not cause any depolarization assuming single-scattering. Depo-
larization is caused either by clouds composed of ice crystals in the case of both single-
scattering and multiple-scattering or even composed of spherical water droplets in the case
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of multiple-scattering alone. In order to investigate the effects of multiple-scattering on
the depolarization ratio of water clouds, various experimental and theoretical works have
been carried out so far [19–22].

A theoretical study based on Monte Carlo simulation on cloud phase discrimination
using a circular polarization lidar is presented by [23]. The author found that spherical
and non-spherical particles can be discriminated by measuring the magnitude as well
as the rotation direction of the circularly polarized component of the backscattered light.
Furthermore, he found that the circular polarization lidar technique for cloud phase dis-
crimination is less sensitive to multiple-scattering. The authors in [24] reported that the
circular polarization lidar does not show azimuthal patterns in the lidar backscattering
signal, while the linear polarization lidar does in the case of spherical particles. However,
the perpendicular backscattering signal component of the circular polarization lidar is
less prone to noise, and therefore, its signal to noise ratio is two to five times higher than
that of linear polarization lidar [24]. Several studies have been conducted measuring the
depolarization ratio in the backscattering signal of a circular polarization lidar [25,26].
However, complete guidance about the measurement of the circular depolarization ratio
from water clouds is still lacking.

A more sophisticated tool to model the multiple-scattering effects in the backscatter
lidar signal from water clouds is the use of Monte Carlo (MC) simulation, which was first
employed by [27–29]. A linear polarization lidar is always used as a key parameter for
atmospheric detection [30]. Limited work has been published highlighting the possible
use of a circular polarization lidar [23,26]. In 1947, circular polarization was used for
the first time to increase the contrast detection in a radar backscattering signal [31]. In
the 1960s, by conducting experiments underwater, Ref. [32] showed that visibility can be
improved by reducing the backscattered light using the circular polarization technique
under the condition of small hydrosols. In recent years, the authors in [33] showed that
a circularly polarized laser beam backscattered from water fog produces less contrast in
the perpendicular channel of the lidar as compared to linear polarized beam. Furthermore,
they found a circularly polarized beam depolarizes much faster than a linear polarized
beam. Water cloud droplets can also cause circular depolarization at a scattering angle less
than 180◦ and increases more rapidly as we move away from perfect backscattering with
increasing droplet size [25]. Thus, further research is required to explore more about the
possible use of circular polarization lidars in detecting water clouds and cannot be ignored.

In this article, we present a more in-depth study through simulation, showing a great
deal of variety in water clouds using a circular polarization lidar. We use the incident
circularly polarized beam to calculate the depolarization ratio of homogeneous, inhomo-
geneous and partially inhomogeneous clouds. In each cloud type, five different cloud
cases are considered, and for each cloud case, a simulation is carried out separately. The
simulation is carried out using the polarized semianalytic Monte Carlo (PSMC) method,
whose convergence scheme is much faster compared to the standard Monte Carlo method.
The working scheme of the PSMC method is given is Section 4. Scattered Stokes vectors
are obtained from the simulation results under a multiple-scattering regime, and the layer-
integrated backscattered signal components, parallel and perpendicular, are computed.
From these signal components, the layer-integrated circular depolarization ratios are ob-
tained for five different cloud cases considered in each homogeneous, inhomogeneous and
partially inhomogeneous water cloud. The simulation is repeated for the incident linearly
polarized beam to obtain the layer-integrated linear depolarization ratio in order to make
comparisons.

Note that for the simulation, only two types of incident laser beams are considered,
linearly, parallelly and left-handed, circularly polarized. The remaining two types of
laser beams, linearly, perpendicularly and right-handed, circularly polarized, are simply
ignored because they are equivalent to the aforementioned two types in the theoretical
aspect and yield the same results from our corresponding simulation. Finally, an important
“Mishchenko–Hovenier relationship” is presented and validated through our simulated
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data. The main structure of the paper is as follows: cloud models and methods are
presented is Section 2. The theoretical framework of the paper is described in Section 3.
The polarized semianalytic Monte Carlo (PSMC) method is presented in Section 4. The
important Mishchenko–Hovenier relationship is discussed in Section 5. Section 6 comprises
the main discussion of the paper. Finally, the conclusion of the paper is highlighted in
Section 7.

2. Cloud Models and Methods

The basic microphysical properties characterizing a water cloud are the cloud droplet
effective radius Re, the cloud extinction coefficient αe (single-scattering), the cloud droplet
number concentration Nd and the liquid water content LWC [34]. Generally, water clouds
are composed of micro-liquid droplets almost spherical in shape. However, some external
factors, for instance force of gravity, might influence their spherical symmetry [35]. The
variation in the properties of clean air both in time and space also affects cloud droplets.
Therefore, the cloud droplet sizes cannot be exactly known. Hence, the radius r of a droplet
should be chosen by selecting random numbers, and the size per unit volume is described
by cloud droplet size distribution (DSD).

The water cloud DSD can be best modeled with gamma distribution [36]. Here, we
would like to follow the single-mode modified gamma distribution presented by [37] as:

n(r) =
Nd
Rm
· 1
(γ− 1)!

· ( r
Rm

)
γ−1
· exp(− r

Rm
), (1)

where Rm is the so-called mode radius, Nd is the total number of droplets (cm−3) and γ is
the shape parameter with value γ = 7 for the C1-cloud model [35]. The water cloud DSD is
expressed in units of (m−3µm−1). After some manipulation [34], we can derive the cloud
effective radius Re from Equation (1) as:

Re = Rm(γ + 2). (2)

The cloud droplet effective radius Re of a typical water cloud mainly ranges from 4 to
20 µm [5]. The curves of gamma DSD for four cloud droplet effective radii Re are plotted
in Figure 1. The values of extinction coefficient αe(m−1) can be assumed. Then, we can
calculate the liquid water content LWC as [34]:

LWC =
2
3

ρwαeRe, (3)

where ρw is the density of water. LWC is expressed in units of gm−3. The cloud droplet
concentration number Nd is given by [34]

Nd =
1

2π

αe

kR2
e

. (4)

where the parameter k is defined by [38] as the ratio of the cubic power of the volume mean
droplet radius Rv to the cubic power of the measured effective radius Re, given by:

k =
R3

v

R3
e

. (5)

In order to perform the simulation, we modeled three types of water clouds with
a cloud simulator, mainly homogeneous, inhomogeneous and partially inhomogeneous,
considering five different cloud cases in each as shown in Table 1. Note that all our cloud
models are two-dimensional, which means that the cloud properties vary along the vertical
direction and remain constant along the horizontal direction. It is one of the features of
our PSMC. In homogeneous water clouds, we kept both the cloud droplet effective radius
Re and extinction coefficient αe constant throughout the cloud from the bottom to the top.
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Therefore, the cloud as a whole can be considered as a single cloud layer. In inhomogeneous
water clouds, both the cloud droplet effective radius Re and extinction coefficient αe are
changed in a sequence from low values at the bottom to high values at the top, such that
each layer has relatively different values of Re, and αe ranges from the bottom to the top
of the cloud. In partial homogeneous water clouds, the cloud effective radius Re is kept
constant and the extinction coefficient αe of each layer is varied throughout the cloud.

Figure 1. The gamma droplet size distribution with four different effective radii, i.e., Re =

4, 8, 13, 18 µm with a shape parameter γ = 7.

Table 1. The input parameters of water clouds and lidars required for simulations.

Cloud Type Cloud
Case

FOV
(mard)

Cloud Base
Height

(m)

Cloud
Depth

(m)

Effective Radius
Re (µm)

Extinction
Coefficient

αe (m−1)

Homogeneous water
cloud

Case1 1 2005 150 9 0.02
Case2 2 2005 150 9 0.02
Case3 1 4010 150 9 0.02
Case4 1 2005 150 9 0.01
Case5 1 2005 150 12 0.02

Inhomogeneous water
cloud

Case1 1 2005 150 4, 5, . . . , 23 αe1, αe2, . . . , αe20
Case2 2 2005 150 4, 5, . . . , 23 αe1, αe2, . . . , αe20
Case3 1 4010 150 4, 5, . . . , 23 αe1, αe2, . . . , αe20
Case4 1 2005 150 4, 5, . . . , 23 αe21, αe22, . . . , αe40
Case5 1 2005 150 6, 7, . . . , 25 αe1, αe2, . . . , αe20

Partially
inhomogeneous water

cloud

Case1 1 2005 150 9 αe1, αe2, . . . , αe20
Case2 2 2005 150 9 αe1, αe2, . . . , αe20
Case3 1 4010 150 9 αe1, αe2, . . . , αe20
Case4 1 2005 150 9 αe21, αe22, . . . , αe40
Case5 1 2005 150 12 αe1, αe2, . . . , αe20

αe1 0.0200 αe2 0.0225 αe3 0.0252 αe4 0.0278 αe5 0.0295
αe6 0.0313 αe7 0.0333 αe8 0.0364 αe9 0.0385 αe10 0.0397
αe11 0.0411 αe12 0.0432 αe13 0.0465 αe14 0.0484 αe15 0.0498
αe16 0.0519 αe17 0.0543 αe18 0.0576 αe19 0.0587 αe20 0.0600
αe21 0.0210 αe22 0.0236 αe23 0.0249 αe24 0.0278 αe25 0.0292
αe26 0.0310 αe27 0.0330 αe28 0.0350 αe29 0.0370 αe30 0.0395
αe31 0.0408 αe32 0.0432 αe33 0.0458 αe34 0.0481 αe35 0.0497
αe36 0.0510 αe37 0.0540 αe38 0.0570 αe39 0.0590 αe40 0.0600

For each cloud case, the simulation is repeated two times. The first one is carried out
using the incident left-handed, circularly polarized beam and the second is carried out
using the incident linearly, parallelly polarized beam. Each simulation takes about five
to six hours to complete, the speed of which depends on the values of input parameters
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as well as the computer processor. The geometrical depth of the cloud is kept constant
for each cloud case. The FOV of the lidar for each cloud case is kept at 1 mrad except the
cloud Case2, for which the FOV is 2 mrad. The number of photons launched is 109. The
maximum number of scatterings in each layer are kept at 7. The number of averaging signal
layers is 30. The spatial resolution is 5 m, which can be obtained by dividing the total cloud
geometrical depth (150 m) by the total signal layers (30). The simulator also requires the
scattering-phase function for each cloud droplet effective radius in a separate file. The file
represents the scattering-phase matrix containing all the elements of the scattering-phase
matrix with associated scattering angles calculated by Mie theory.

Mie theory provides the mathematical solution of scattering from a spherical particle
with a size comparable to the incident wavelength, first presented by Gustav Mie in
1908 [39]. The theory is very complex and requires cumbersome mathematics; however,
a comprehensive discussion can be found in [36,40]. The droplets in water clouds are
generally spherical, and hence, Mie theory can be applied to find out all the elements
of the scattering-phase matrix. These elements are obtained using the incident 532 nm
laser wavelength. The simulation reproduces the scattered Stokes parameters via the
PSMC approach by utilizing the polarized scattering-phase function along with the cloud
properties and features of lidar as inputs.

3. Mueller–Stokes Formalism

A polarization lidar is either based on linear or circular polarization [24]. In general, the
polarization state of light is fully described by the four Stokes parameters, I, Q, U, V, com-
bined into one vector known as the Stokes vector [41]. According to Mueller–Stokes formal-
ism, the scattering of an incident polarized light with a Stokes vector S0 = [I0, Q0, U0, V0],
from an infinitesimal scattering volume of a homogeneous water cloud with spherical
cloud droplets distributed randomly can be described by the following equation [23]:

I
Q
U
V

 =


P11 P12 0 0
P12 P22 0 0
0 0 P33 P34
0 0 −P34 P44




I0
Q0
U0
V0

, (6)

where [I, Q, U, V] are the Stokes parameters of the scattered Stokes vector S describing the
final state of polarization of the scattered light, and Pij are the elements of the scattering-
phase matrix describing the scattering properties of water clouds that can be determined
from Mie theory for spherical droplets, whereas i, j = 1, 2, 3, 4 [36,42,43]. The scattering-
phase matrix Pij is related to the scattering amplitudes of the cloud droplets [44].

The direction of the scattered Stokes vector S in each scattering event is described
with respect to the scattering plane. The scattering plane contains the direction vectors
of the incident and scattered beams. This plane acts as a reference plane and changes its
direction with each scattering in a multiple-scattering medium. In general, the scattered
Stokes vector S is different from the one previously subjected to the next scattering. Thus,
four components of the Stokes vector are required to track the polarization states of a
photon that undergoes multiple-scattering [45]. The distribution of photons’ energy can be
estimated from the scattering-phase function. Using the elements of the scattering-phase
matrix along with the incident Stokes parameters, we can determine the scattering-phase
function of a water cloud droplet for both unpolarized and polarized light.

3.1. The Scattering-Phase Function

The probability of scattered light with a certain scattering angle made with incident
direction is given by the scattering-phase function. The scattering-phase function of water
clouds for both polarized and unpolarized light can be calculated from Mie theory, as
the droplets of water cloud are spherical. It is a function of the refractive index and size
of the droplet and does not depend on their concentration number [43]. Generally, the
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single-scattering-phase function P(α, β) for a light incident on a spherical water cloud
droplet with a general incident Stokes vector S0 = [I0, Q0, U0, V0] is written as [46]:

P(α, β) = P11(α)I0 + P12(α)[Q0 cos(2β) + U0 sin(2β)]. (7)

P11 and P12 are the elements of the scattering-phase matrix, and α and β are the angles
of scattering and rotation.

The scattering matrix M(α) expresses the scattering properties of the cloud droplet
and symmetrical for spherical geometry. It is given by:

M(α) =


P11(α) P12(α) 0 0
P12(α) P11(α) 0 0

0 0 P33(α) P34(α)
0 0 −P34(α) P33(α)

. (8)

The elements P11, P12, P33 and P34 (the dependency factor α is omitted for clarity) are
related to the scattering amplitudes S1 and S2:

P11 = 1
2

(
|S2|2 + |S1|2

)
,

P12 = 1
2

(
|S2|2 − |S1|2

)
,

P33 = 1
2 (S2

∗S1 + S2S1
∗),

P34 = − i
2 (S1S2

∗ − S2S1
∗).

(9)

S1 and S2 depend on the size parameter, x = 2πRe/λ, where Re is the cloud droplet
effective radius, the complex index of refraction of the particle m, the Riccati–Bessel func-
tions, the spherical Bessel functions and the spherical Henkel functions. A more in-depth
explanation of these parameters can be found in reference [43]. In our PSMC program,
S1 and S2 are obtained from a Mie theory for every scattering angle α.

The scattering-phase function shows different properties for different incident po-
larized beams. For example, for an incident linearly polarized beam, the phase function
is asymmetric about the incident axis because it depends on the angle β, whereas for an
incident circularly polarized beam, the beam has no Q0 and U0 components, and thus, the
phase function is symmetric about the axis [47]. The above phase function is valid for
the scattering of both polarized and unpolarized beams. The scattering-phase function
for unpolarized light is only a function of scattering angle α, i.e., P(α) = P11(α). Some of
the characteristics of the scattering-phase function of water clouds in the visible range of
electromagnetic spectrum are: (1) the scattering peaks at forward and backward angles are
asymmetric; (2) despite the fact that the phase function strongly depends on size parameter,
the dependency is weaker in the range of scattering 20◦ − 60◦; (3) forward–scattering
peaks are stronger; (4) the size parameter x can be derived from scattering at three angles,
α = 0, αr, π, where αr is approximately 138◦, indicating the enhanced scattering near
rainbow [35].

The scattering-phase function of water cloud is plotted on a polar plot, as shown in
Figure 2. The scattering intensity varies with the size of the cloud droplet. The forward
peak of the scattering-phase function can be explained with Mie theory. It has a width
that varies inversely with the droplet size and, consequently, larger droplets scatter the
incident light with a small, solid angle in comparison to smaller droplets, which is evident
from the figure [48]. We intentionally increase the size of the droplet to Re = 72 µm in
order to resolve the forward scattering peak; otherwise, the real Re is comparatively much
smaller in size. The backward to forward scattering ratio is related to the asymmetry factor
g defined as the integral over all solid angles by P(α) cos α [49,50]. For isotropic-scattering,
g = 0, whereas for forward- and backward-scattering, g > 0 and g < 0.
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Figure 2. The polar representation of the scattering-phase function calculated for four water cloud
droplet size distributions by Mie theory. As the size parameter of the cloud droplet increases from
(a–d), the scattering at forward angles become more prominent and the forward–scattering peak
becomes narrower.

3.2. Linearly Polarized Beam

The Stokes vector for an incident linearly, parallelly polarized beam is written as:

S0 = [1 1 0 0]. (10)

For a linearly, perpendicularly polarized beam, it becomes

S0 = [1 −1 0 0]. (11)

In the case of spherical water cloud droplets which perfectly backscatter light at a
scattering angle of 180◦, the scattering-phase matrix element P12 is zero, i.e., P12 = 0 [23].

Thus, the phase function of Equation (7) in this case is just a function of scattering
angle α, as:

P(α) = P11(α). (12)

The theoretical linearly, parallelly and linearly, perpendicularly polarized scattering-
phase functions relative to the incident beam polarization are given by [24]:

Plin‖(α) =
1
8

(
3L1(α) + 3L2(α) cos2 α + 2L3(α) cos α

)
(13)

and
Plin⊥(α) =

1
8

(
L1(α) + L2(α) cos2 α− 2L3(α) cos α

)
. (14)

The subscripts ‖, ⊥ indicate the parallelly and perpendicularly polarized components
of the phase function relative to the incident beam polarization, and L1, L2 and L3 are
related as:

L1 =
P11 − P12

2
, L2 =

P11 + P12

2
, L3 =

P33

2
. (15)

The Plin‖(α) and Plin⊥(α) are plotted versus scattering angle, depicted in Figure 3.
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Figure 3. (a–c) show linearly, parallelly polarized scattering-phase function of a spherical cloud
droplet plotted versus scattering angle calculated by using Equation (13). (d–f) show the linearly,
perpendicularly polarized scattering-phase function of a spherical cloud droplet plotted versus
scattering angle calculated using Equation (14). The scattering range at forward hemisphere is 0◦–60◦,
at centered hemisphere it is 60◦–120◦, and at backward hemisphere it is 120◦–180◦.

We separate the phase function into forward, centered and backward hemispheres. It
is evident from the figure that the linearly polarized phase function depends on the cloud
droplet effective radius Re, as each curve varies with Re accordingly. The theoretical linear
depolarization ratio as a function of scattering angle for a spherical water cloud droplet
can be calculated by Mie theory as [51]:

δlin(x, m, z, α) =
L1(α) + L2(α) cos2 α− 2L3(α) cos α

3L1(α) + 3L2(α) cos2 α + 2L3(α) cos α
, (16)

with L1, L2 and L3 given by Equation (15). Here, P11, P12 and P33 are the elements of the
scattering-phase matrix that can be obtained from Mie theory [36], x is the size parameter,
m is the refractive index of water, z is the distance where the scattering occurs and α is the
arbitrary scattering angle. It is plotted in Figure 4. Note that the calculation of Equation (16)
is based on the double-scattering model, which is well explained in [24].

Figure 4. The theoretical linear depolarization ratio as a function of scattering angle of a single
water cloud droplet (C1-cloud, γ = 7, m = 1.33) calculated by using Equation (16), (a) at forward
hemisphere 0◦–60◦, (b) at centered hemisphere 60◦–120◦ (c) and at backward hemisphere 120◦–180◦.
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From the curves of the depolarization ratio in Figure 4, we can conclude that [52]:

• At the forward hemisphere 0◦–60◦, the depolarization ratio is almost negligible from
0◦ to 20◦ and then gradually increases.

• At the centered hemisphere (60◦ − 120◦), the depolarization ratio increases in the
beginning and then decreases before reaching the higher values.

• At the backward hemisphere (120◦–180◦), the depolarization begins from certain
values, experiencing two peaks and two valleys in a sequence before reaching the
maximum close to 180◦.

• The depolarization ratio is zero for the perfect backscattering at an angle of 180◦, which
takes place in the backward hemisphere.

• The maximum depolarization is produced in the vicinity of 180◦ in the backward
hemisphere.

• Overall, the scattering in the backward hemisphere comparatively causes more depo-
larization.

3.3. Circularly Polarized Beam

When the incident laser beam is right-handed and circularly polarized, the Stokes
vector is given by:

S0 = [1 0 0 1]. (17)

For a left-handed, circularly polarized beam, the Stokes vector is

S0 = [1 0 0 − 1]. (18)

The positive and negative signs show the handedness of the circular polarization
components, respectively [23]. The general phase function is expressed with the same
expression as Equation (7). Similarly, the theoretical circularly, parallelly and circularly,
perpendicularly polarized scattering-phase functions can be calculated as [24]:

Pcir‖(α) =
1
4

(
L1(α) + L2(θ) cos2 α + 2L3(α) cos α

)
(19)

and
Pcir⊥(α) =

1
4

(
L1(α) + L2(α) cos2 α− 2L3(α) cos α

)
. (20)

These functions are plotted versus scattering angle in Figure 5.
Using Mie theory, we can calculate the theoretical circular depolarization ratio per

spherical water cloud droplet as a function of scattering angle by the equation [24]:

δcir(x, m, z, α) =
L1(α) + L2(α) cos2 α− 2L3(α) cos α

L1(α) + L2(α) cos2 α + 2L3(α) cos α
, (21)

with L1, L2 and L3 given by Equation (15). It is plotted in Figure 6. Although the values
of the circular depolarization ratio are much higher as compared to the values of linear
depolarization ratio, they follow the same increasing and decreasing trends in the forward,
centered and backward hemispheres. Therefore, the same conclusion can be derived as that
of the linear depolarization ratio.
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Figure 5. (a–c) show the circularly, parallelly polarized scattering-phase function of a spherical cloud
droplet plotted versus scattering angle calculated by using Equation (19). (d–f) show the circularly,
perpendicularly polarized scattering-phase function of a spherical cloud droplet plotted versus
scattering angle calculated by using Equation (20). The scattering range at forward hemisphere is
0◦–60◦, at centered hemisphere it is 60◦–120◦, and at backward hemisphere it is 120◦–180◦.

Figure 6. The theoretical circular depolarization ratio as a function of scattering angle of a single
water cloud droplet (C1-cloud, γ = 7, m = 1.33) calculated by using Equation (21), (a) at forward
hemisphere 0◦–60◦, (b) at centered hemisphere 60◦–120◦ (c) and at backward hemisphere 120◦–180◦.

3.4. Volume Depolarization Ratio

The volume linear depolarization ratio of water clouds with certain depths for a
linearly, parallelly polarized beam can be determined by:

δlin =
I −Q
I + Q

. (22)

We can express Equation (22) in form of polarized signals as:

δlin =
P⊥
P‖

, (23)
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where P⊥ and P‖ are the perpendicularly and parallelly polarized backscattered signals
relative to the incident laser beam polarization. Equation (23) can be integrated from the
cloud base Zbot to the cloud top Ztop of water clouds to obtain the layer-integrated volume
linear depolarization ratio ∆δlin as:

∆δlin =

ztop∫
zbot

P⊥(z)dz

ztop∫
zbot

P‖(z)dz

. (24)

Note that Equations (22)–(24) are also applicable if the incident beam is linearly,
perpendicularly polarized and yield the same depolarization ratio. So, in our simulation,
we keep our calculation limited to incident linearly, parallelly polarized beams. The volume
circular depolarization ratio of water clouds in the case of left-handed, circularly polarized
beams can be calculated as [24]:

δcir =
I + V
I −V

. (25)

We can express Equation (25) in the form of polarized signals as [34]:

δcir =
P⊥
P‖

. (26)

Similarly, we can express the layer-integrated volume circular depolarization ratio
∆δcir using Equation (26) as:

∆δcir =

ztop∫
zbot

P⊥(z)dz

ztop∫
zbot

P‖(z)dz

. (27)

where P⊥ and P‖ are the perpendicularly and parallelly polarized backscattered signals
relevant to the incident beam polarization. Equations (25)–(27) are also applicable if
the incident laser beam is right-handed and circularly polarized and yields the same
depolarization ratio. So, we kept our calculation limited to the incident left-handed,
circularly polarized beam.

4. Polarized Semianalytic Monte Carlo Simulation

The multiple-scattering of polarized light in a medium can be modeled with the polarized
Monte Carlo (PMC) simulation. The efficiency of the PMC simulation can be enhanced by
increasing the number of launching photons. In effect, the signal quality is improved, thereby
reducing the probability variance in the computation. However, it consumes a considerable
amount of memory of the computer, limiting its computational speed. The alternative is to use
the polarized semianalytic Monte Carlo (PSMC) approach, which combines both analytical
and statistical methods to evaluate the simulated signal [29,53]. The schematic view of various
steps involved in the PSMC method can be seen in Figure 7, which is well explained in [29].
In our PSMC simulation, we adopt the photon’s weight variance reduction method to speed
up the convergence scheme [29]. The PSMC simulation is based on the expected weight of
a portion of a photon’s packet which can be calculated by the combination of statistical and
analytical algorithms and then returns to the detector without any interruption, as shown
in Figure 8 [53].
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Figure 7. The flow chart of MC simulation procedure with both the standard and semianalytic
features. The green highlighted cells show the steps specific to expected value method. The cells
encircled by blue dotted lines tagged with “1” are the steps involved in the standard Euler MC
method, while the cells encircled by orange dotted lines tagged with “2” are the steps of the photon
returning to the receiver.

Figure 8. The schematic view of the scattering of fraction of photons weight at a point collected by
the detector. Aap is the aperture defining the receiver field of view and ∆Ω corresponds to the angle
for the FOV.
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The expected value of the fraction of photons weight collected by the detector upon
scattering at a point can be written as [29]:

E =
P(α)
4π

∆Ω exp

− d∫
0

αe(z)dz

T2
m, (28)

where P(α) is the scattering-phase function assumed to be constant over the small, solid
angle ∆Ω and gives the fraction of the photon packet scattered into an element of solid

angle ∆Ω about the direction α. The term exp(−
d∫

0
αe(z)dz) is the probability that the

photons scattered through an angle α will then be transmitted from the point to the air–
cloud interface with no further interactions. The term αe is of course the beam extinction
coefficient in water clouds, d is the distance from the cloud base to interaction volume, and
Tm is the molecular transmission between the lidar and the cloud [29].

The laser beam is collimated and launched perpendicular to the scattering volume of
the cloud. Since we are dealing with the polarized MC program, the polarization reference
frame of the photon is defined and tracked with the Euler MC method. There are two other
methods, the meridian plane and quaternion MC method, that can be used to track the
polarization reference frame of the photon, which are well explained in [46]. The Euler MC
method uses a triplet of unit vectors to track the polarization reference frame of the photon
after every scattering event and needs less computation. Moreover, since for any scattering
only one rotation of the reference frame is needed, the program should in principle be faster
than other polarization tracking methods. An added advantage is that the propagation of
the unit vectors is straightforward and easier to implement. In our implementation, only
two vectors are rotated for every scattering event, v and u; the third unit vector is implicitly
defined by the cross product of v and u and is only calculated when a photon reaches
a boundary. The unit vectors are rotated using Euler angles by general transformation
matrices [46].

Before the program begins, some additional steps need to be taken. The polarization
reference frame of the field must be defined, and the Stokes vector describing the incident
field of polarization must be declared. For our geometry of the beam, the initial position
and direction of the photon can be defined by vectors v and u as [54]:

v =
[
vx, vy, vz

]
= [0, 1, 0] (29)

and
u =

[
ux, uy, uz

]
= [0, 0, 1]. (30)

uz = 1 means that the photon is directed perpendicular to the cloud. The Stokes vector is
used to define the initial polarization reference frame of the photon. For example, for a
linearly, parallelly polarized incident beam, the Stokes vector is given by:

S0 = [1 1 0 0]. (31)

The photon is launched with the initial weight of 1 (W = 1). The weight is discrim-
inated by scattering as it propagates into the water clouds. The absorption ratio is quite
a small parameter in water clouds in the visible range as compared to the scattering and
is just neglected [35]. The direction cosines [ux, uy, uz] are used to specify the direction of
each photon as [55]:

ux = sin α cos β,
uy = sin α sin β,

uz = cos α,
(32)

where α is the angle that the trajectory makes with respect to the z− axis, and β is the angle
that the trajectory makes with the x− axis.
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The propagation distance ∆s covered by photon is determined by the probability
density function using random numbers RND between 0 and 1, as:

∆s =
− ln(RND)

αe
, (33)

where αe is the extinction coefficient of a water cloud. The photon position is updated after
each scattering to a new position [x′, y′, z′] with the following equation [46]:

x′ = x + ∆s ux,
y′ = y + ∆s uy,
z′ = z + ∆s uz,

(34)

where [x, y, z] and [ux, uy, uz] are the initial positions and direction cosines. The two angles,
α (the angle of scattering) and β (the angle of rotation), are determined by the rejection
method. The method requires pre-definition of the scattering-phase function given in
Equation (7) [46].

A full description of how to implement the rejection method can be found in [27].
A short overview is presented here. The rejection method is used to generate random
variables with a particular distribution. For unpolarized light, two random numbers are
generated, Prand and αrand, in the range of 0–1 and 0− π. The angle αrand is accepted as
the new scattering angle if Prand ≤ P(αrand). When the angle αrand is accepted, a similar
procedure is adopted to calculate a new angle βrand. For polarized light, three random
numbers are generated: Prand, αrand and βrand. The angle β is uniformly distributed in
the range of 0− 2π. If Prand ≤ P(αrand, βrand), then both αrand and βrand are accepted as
the new angles. If Prand > P(αrand), then αrand and Prand are re-generated and the test
is repeated [46]. Once the angles α and β are determined, the scattering process can be
calculated. In the Euler MC method, a set of rotational angles are used to follow the Stokes
vector reference frame called Euler angles [45]. The implementation of these angles is given
in [46].

The Stokes vector reference frame is tracked with only two vectors v and u, and the
rotations are implemented using the rotation matrix REuler. REuler can be expressed using
Rodriques’ formula [46]. In matrix form, it is given by [46]:

REuler(k, σ) =

 kxkxv + c kykxv− kzs kzkxv + kys
kxkyv + kzs kykyv + c kykzv− kxs
kxkzv− kys kykzv + kxs kzkzv + c

, (35)

where the unit vector k =
[
kx, ky, kz

]
is the rotation axis and c = cos(σ), s = sin(σ) and v =

1− cos(σ), where σ is the angle of rotation. In the PSMC program, the vectors v and u
are rotated twice in the following order. In the first rotation, the vector v is rotated about
u through an angle β by multiplying v with the rotational matrix REuler(u, β) (u remains
unchanged in this process), while in the second rotation, the vector u is rotated about v
through an angle α by multiplying u with the rotational matrix REuler(v, α) (v remains
unchanged in this process).

Finally, the Stokes vector is adjusted for the two rotations. The Stokes vector is
multiplied by the rotational matrix R(β) and then by the scattering matrix M(α). These
matrices are given by [46]:

R(β) =


0 0 0 0
0 cos(2β) sin(2β) 0
0 − sin(2β) cos(2β) 0
0 0 0 1

 (36)
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and

M(α) =


P11(α) P12(α) 0 0
P12(α) P11(α) 0 0

0 0 P33(α) P34(α)
0 0 −P34(α) P33(α)

. (37)

The new Stokes vector Snew after scattering becomes:

Snew = M(α)R(β)S0. (38)

The life of a photon ends when the photon passes through a boundary or when its
weight value falls below a threshold (typically 0.001) [54]. The first rotation is needed to
return the Stokes vector to the meridian plane. To do this, w is reconstructed as the cross
product of v and u, as [46]:

w = v× u. (39)

The angle ε needed to rotate the Stokes vector into a meridian plane is given by [46]:

ε = 0 when vz = 0 and uz = 0,
ε = tan−1

(
vz
−wz

)
in all other cases.

(40)

This rotation is about the direction of propagation of the photon, i.e., u− axis. This
rotation of the polarization reference frame is in a meridian plane for which vz = 0. A
second rotation by an angle ϕ about the z− axis will put the photon reference frame into
the detector reference frame. All three reference axes w, v and u are affected by this rotation.
Angle ϕ is calculated as [46]:

ϕ = tan−1
(

uy

ux

)
, (41)

where ϕ will be positive for backscattering photons and negative for transmitted photons.
The Stokes vector of the reflected photon is multiplied one final time by R(ϕ). For a
transmitted photon, the angle ϕ is [46]:

ϕ = − tan−1
(

uy

ux

)
. (42)

Since the Stokes vectors can be superimposed, all photons traveling in the direction of
a detector can be added once they have been rotated to the detector reference frame. Thus,
the final Stokes vector is written as [46]:

S f inal = R(ϕ)R(ε)S0. (43)

These steps are repeated for every scattering event.

5. Mishchenko–Hovenier Relationship

In light of Figures 4 and 6, the theoretical curves of the circular depolarization ratio
show the same increasing and decreasing trends as that of the linear depolarization ratio as
a function of the scattering angles. Although the values of the circular depolarization ratio
are 2 to 5 times higher than the linear depolarization ratio, their local maxima and minima
coincide with each other, as depicted in the figures [24]. Based on these observations, a
relationship between the two depolarization ratios is established by the authors in [2],
known as the Mishchenko–Hovenier relationship. We can obtain this relationship using
Equations (16) and (22) as [24]:

δcir(α) =
2δlin(α)

1− δlin(α)
, (44)
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where α is the scattering angle. We can see that the circular depolarization ratio is a
monotonically increasing function of the linear depolarization ratio, as shown in Figure 9.

Figure 9. Theoretical circular depolarization ratio as a function of linear depolarization ratio known
as Mishchenko–Hovenier relationship for four cloud droplet sizes distribution.

The relationship depends on the FOV of the receiver telescope and distance of the
cloud from the lidar. In addition, the relationship holds for all particle size distribution [56].
It implies from Equation (44) that δcir increases with the particle size and refractive index if
δlin increases and decreases if δlin decreases [2]. The authors in [2] showed that particles with
a symmetry plane exhibit a similar relationship for a scattering angle of 180◦. However, the
author in [24] argued that the relationship could even be generalized for spherical particles
as well if the depolarization ratio is averaged over the azimuthal angle for all scattering
angles under multiple-scattering conditions [24]. He validated the relationship for water
clouds using the calculation of double-scattering model as well as using the experimental
results. However, in this article, we validate the Mishchenko–Hovenier relationship for all
types of water cloud properties, including homogeneous, inhomogeneous and partially
inhomogeneous, under multiple-scattering conditions using the PSMC simulation. The
simulation results are presented in the next section.

6. Discussion

We begin our simulation by considering the homogeneous water cloud. The incident
beam is first left-handed and circularly polarized, for which the Stokes vector is written
as S0 = [1 0 0 −1]. The scattered Stokes parameters are obtained from the simulation
using the PSMC method. Using the scattered Stokes parameters, the layer-integrated
backscattered signal components, polarized parallel and perpendicular, are obtained, as
shown in Figure 10a,b. It is to be noted that when the laser beam is circularly polarized and
incident on water cloud, the cloud droplet only changes its helicity without changing its
intensity. This means that the water cloud droplets turn the beam polarization from left-
handed into the right-handed circular and vice versa. We refer to the signal components as
circularly, parallelly and circularly, perpendicularly polarized just to maintain a definition
consistency between the linear and circular polarization beams. Therefore, the circular
depolarization ratio is to be taken in the same sense as the linear depolarization ratio. The
backscattered signals are layer-integrated in order to average the signal points from the
bottom to the top of the cloud. Each signal belongs to each cloud case, tabulated in Table 1.
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Figure 10. The simulated layer-integrated backscattered signal components obtained from the
multiple-scattering of polarized beam in homogeneous water clouds using PSMC simulation
(a,b) shows the circularly, parallelly and circularly, perpendicularly polarized backscattered sig-
nal components, whereas (c,d) show the linearly, parallelly and linearly, perpendicularly polarized
backscattered signal components.

The simulation is repeated for each cloud case separately, and overall, ten backscattered
signal components in pairs are obtained. It is to be noted that we consider the top layer
of the water cloud as a complete boundary, and that is why the signals are truncated, just
reaching the cloud top. In practice, the receiver channels of the polarization lidar should
be sensitive to circular polarization to measure the backscattered and scattered circular
polarized signals. In the case of linearly polarized (linear parallel), the Stokes vector is
written as S0 = [1 1 0 0]. The layer-integrated backscattered signal components, linearly,
parallel and linearly, perpendicular, obtained can be seen in Figure 10c,d. If we compare
the circularly, parallelly polarized and the linearly, parallelly polarized signal components
in Figure 10a,c, we can argue that the signal intensities of circularly, parallelly polarized
components are slightly less than that of linearly, parallelly polarized signal components.
In contrast, the signal intensities of circularly, perpendicularly polarized components are
significantly higher than that of linearly, parallelly polarized signal components. Our
simulation revealed that no dramatic changes occurred when the incident left-handed,
circularly polarized and linearly, parallelly polarized beams are changed into right-handed,
circularly polarized and linearly, perpendicularly polarized beams, but only the exchange
of signal components occurred. Therefore, the simulations of these two cases of incident
beams are just ignored. From these observations, we can conclude that the measurement of
water clouds is also feasible with circular polarization, and the depolarized signal is even
more prominent.

Furthermore, the volume layer-integrated depolarization ratio ∆δ for both circularly
and linearly polarized beams are calculated using Equations (26) and (29). The ∆δ is plotted
versus the height of the cloud for all cloud cases of homogeneous, inhomogeneous and
partially inhomogeneous water clouds, as shown in Figure 11. We can see that both the
layer-integrated circular and linear depolarization ratios, ∆δcir and ∆δlin, increase rapidly
at the cloud base up to certain height and then gradually remain constant until the cloud
top. All the curves of ∆δcir and ∆δlin show the similar increasing trend from the bottom to
the top of the cloud. A slight variation in the curves is caused by the change in the cloud
droplet effective radius and extinction coefficient. However, no scaling laws exist so far that
truly define a relationship between the depolarization ratio and the cloud droplet effective
radius and extinction coefficient [6]. Thus, both the ∆δcir and ∆δlin implicitly depend on
the cloud effective radius and extinction coefficient. On the other side, the cloud Case2 and
Case3 show high depolarization ratios as compared to other cases in both scenarios. This is
because in cloud Case2, the value of the FOV is increased to be 1 and 2 mrad, causing an
increase in the depolarization ratio because multiple-scattering is increased. Larger FOVs
receive more multiple-scattered photons and thus causes high depolarization.
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Figure 11. The layer-integrated volume depolarization ratio ∆δ plotted versus height of the cloud
including all five cloud cases of homogeneous (a,b), inhomogeneous (c,d), and partially inhomoge-
neous (e,f) water clouds. The ∆δ curves with filled markers belong to the incident circularly polarized
beam and with empty markers belong to the incident linearly polarized beam. The colors and shapes
of the markers represent the cloud cases ranging from Case1 to Case5, as listed in Table 1.

The increase in depolarization ratio is also observed in the cloud Case3 by raising
the height of the cloud bottom from 2005 m to 4010 m. The reason for this is that high
clouds have larger footprints of the FOV, and thus, more multiple-scattered photons can
participate in the backscattered lidar signal that causes an increase in the depolarization
ratio. Thus, along with the cloud droplet effective radius and extinction coefficient, the
height of the cloud bottom and the size of the FOV have significant impacts not only on the
linear depolarization ratio but on circular depolarization ratio as well, which are evident
from the figures. Finally, we validate the Mishchenko–Hovenier relationship (Equation (44),
Figure 9) using the data of all five cloud cases of homogeneous, inhomogeneous and
partially inhomogeneous water clouds. We can see in Figure 12 that our simulated data
follow the same theoretical Mishchenko–Hovenier relationship between linear and circular
depolarization ratios though the properties of each cloud case differ greatly. Thus, we can
conclude that the Mishchenko–Hovenier relationship is valid for all kinds of water cloud
properties under multiple-scattering conditions.
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Figure 12. The validation of Mishchenko–Hovenier curve using fives cloud cases of (a) homogeneous,
(b) inhomogeneous and (c) partially inhomogeneous water clouds via PSMC simulation.

7. Conclusions

In this article, we discussed the polarization properties of homogeneous, inhomoge-
neous and partially inhomogeneous water clouds using a circular polarization lidar and
compared it with that of a linear polarization lidar. We considered five different cloud
cases in each type and carried out a simulation for each cloud case separately. We obtained
the layer-integrated depolarization ratios under the multiple-scattering condition using
the polarized semianalytic Monte Carlo (PSMC) method for both circular and linear po-
larization lidar. The comparison showed that both the linear and circular layer-integrated
depolarization ratios increase rapidly at the cloud base and then gradually remain constant
up to the top of the cloud. The comparison also reveals that similar trends persist in both the
depolarization curves from the bottom to the top of the cloud in all cloud cases. However,
as compared to the linear depolarization ratio, the values of the circular depolarization
ratio were significantly high, which proved the high sensitivity of the circular polarization
lidar measurement of water clouds.

We also observed that cloud effective radius and extinction coefficient have the same
effect on both linear and circular depolarization ratios. In cloud Case2 and Case3, we in-
creased the FOV from 1 mrad to 2 mrad and the height of the cloud bottom from 2005 m to
4010 m, and as a result, the same percent increase was observed in both circular and linear
layer-integrated depolarization ratios. Finally, we validated the Mishchenko–Hovenier
relationship for all five cloud cases of homogeneous, inhomogeneous and partially inho-
mogeneous water clouds. We proved that the Mishchenko–Hovenier relationship even
holds for all kinds of water cloud properties under multiple-scattering conditions. Future
work is required to study the feasibility of a circular polarization lidar in retrieving the
microphysical properties of water clouds.
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