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Abstract: Wrist velocity is an important risk factor for work-related musculoskeletal disorders
in the elbow/hand, which is also difficult to assess by observation or self-reports. This study
aimed to evaluate a new convenient and low-cost inertial measurement unit (IMU)-based method
using gyroscope signals against an electrogoniometer for measuring wrist flexion velocity. Twelve
participants performed standard wrist movements and simulated work tasks while equipped with
both systems. Two computational algorithms for the IMU-based system, i.e., IMUnorm and IMUflex,
were used. For wrist flexion/extension, the mean absolute errors (MAEs) of median wrist flexion
velocity compared to the goniometer were <10.1◦/s for IMUnorm and <4.1◦/s for IMUflex. During
wrist deviation and pronation/supination, all methods showed errors, where the IMUnorm method
had the largest overestimations. For simulated work tasks, the IMUflex method had small bias and
better accuracy than the IMUnorm method compared to the goniometer, with the MAEs of median
wrist flexion velocity <5.8◦/s. The results suggest that the IMU-based method can be considered as
a convenient method to assess wrist motion for occupational studies or ergonomic evaluations for
the design of workstations and tools by both researchers and practitioners, and the IMUflex method
is preferred. Future studies need to examine algorithms to further improve the accuracy of the
IMU-based method in tasks of larger variations, as well as easy calibration procedures.

Keywords: inertial measurement units; gyroscope; goniometer; wrist flexion velocity; work-related
musculoskeletal disorders; ergonomics; hand-intensive work

1. Introduction

Work-related musculoskeletal disorders (WMSDs) of the hand/wrist are associated
with relatively high medical costs and loss of work days [1]. Repetitive manual work,
forceful exertions, prolonged nonneutral postures of the wrist, intensive wrist movements,
and hand-arm vibration are identified as critical risk factors for hand/wrist WMSDs, which
are common in service industries, manufacturing industries, office work, as well as the
healthcare sector [2–8]. From a meta-analysis on the prevalence of WMSDs in Europe’s
secondary industries during the 21st century, wrist WMSD is among the most common
WMSDs with a twelve-month prevalence of 42% [9].

There are a few observational methods that consider hand/wrist workload and its asso-
ciated risk [10]. However, the micro-postures and small body parts, including hand/wrist,
are shown to be difficult to assess by observations with satisfactory accuracy [10,11]. Poor
correlations were reported between the raters using the same observational method on
the upper limb, which included the risk factors of frequency and wrist posture [12]. Poor
correlations were also found between different observational methods in estimating the
hand repetitiveness [13]. Technical measurement methods can provide a quantitative risk
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assessment with good accuracy and reliability, which may contribute to the establishment
of exposure–response relationships [14–16]. There are many IMU systems developed for
occupational exposure assessment [17]. However, most multi-sensor systems are complex
to use in the field by practitioners [18,19]. In addition, many systems can be used for
assessments of the upper arm and trunk, but few can be used for assessment of wrist
motion [20–22]. Recent research has explored a multi-sensor system focusing on wrist risk
assessment. For example, Seidel and colleagues used a multi-sensor system including iner-
tial sensors, a potentiometer, an electromyograph, and a data logger to quantify the hand
activity level, showing good accuracy [23]. Still, the wear burden, the required expertise,
and the demand of monetary and time resources for such multi-sensor systems can be
relatively high.

The importance of assessing wrist angular velocity has been identified and raised by a
few authors [24–27]. Researchers could establish a quantitative exposure–response relation-
ship between the wrist flexion velocity and the disorders in the hand/wrist, and an action
limit of 20◦/s for median wrist velocity during an 8 h working day was proposed [25,28].
The electrogoniometer is one commonly used and validated technical measurement method
for assessing wrist motion in occupational studies [29]. The proposed action limit on me-
dian wrist velocity was also based on measurement data of about 50 occupational groups
using electrogoniometers [25]. Although being widely used in research, the electrogoniome-
ter has a few disadvantages of being fragile, expensive, bringing certain burdens to the
wearers as it requires cables and a logger to be carried, as well as requiring resources for
data analysis.

New generations of Inertial Measurement Units (IMUs) with built-in gyroscopes and
Bluetooth technology provide potentials of new methods for assessing wrist velocity [30].
The IMUs can be connected wirelessly to a smartphone application to process the data and
generate assessment results automatically, which are convenient for both the wearer, practi-
tioners, and researchers, and at the same time being cheaper and less resource-demanding
for data analysis [31,32]. Common IMU systems usually integrate the gyroscopes’ and
accelerometers’ signals to improve the performance of posture and motion assessment
under rapid movements [33] where the drift in the gyroscope would be a problem over
time and the integration of a magnetometer to correct the drift would be affected by the
local magnetic field [34]. It is possible to use the gyroscope directly for velocity assessment,
where the gyroscope drift that originates from integration and accumulation of noise will
not be a concern. Before such a gyroscope and smartphone application method to be used
in the field, the performance of the IMU-based method with various algorithms needs
to be evaluated. As the goniometer has been widely used in the field and has laid the
foundation for the proposed action limit on wrist velocity at work, it is considered as a
standard measure for evaluating the IMU-based method.

Therefore, the aim of this study was to evaluate a new simplified IMU-based method,
with two computational algorithms, i.e., the IMUnorm and the IMUflex, against an electro-
goniometer for measuring wrist flexion velocity during standard wrist movements and
simulated work tasks.

2. Methods
2.1. Participants

Twelve participants (six males and six females, all right-handed) volunteered in the
study. The inclusion criteria were healthy adults and pain-free in the dominant wrist/hand.
Participants were provided with information about the purpose and design of the study,
and signed an informed consent ahead of the experiment. The mean (SD) age of the
participants was 26 years (4.1), with a mean height of 169 cm (7.3), mean weight of 67 kg
(14.9), and mean body mass index of 23.2 (4.3). The study was approved by the Regional
Ethics Committee in Stockholm (Dnr, 2019-01206).
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2.2. Measurement Systems

A twin axis electrical goniometer (Biometrics Ltd., Newport, UK) with a sampling
frequency of 20 Hz was used as the standard for measuring wrist velocity. The goniometer,
with a sampling frequency 52 Hz, was placed on the dorsal surface of the dominant hand
with one end-block on the third metacarpal of the hand and the other on the forearm
midline, at a distance from the wrist joint where the cables between the two end-blocks
were kept straight and not squeezed when the wrist was fully extended. The participants
were instructed to hold their arms flat on a table for calibrating the neutral wrist position at
the beginning of the experiment (Figure 1).
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Figure 1. Placement of the goniometer and the two inertial measurement units (IMUs), mounted on
the goniometer end-blocks, on (a) the forearm close to the wrist, and (b) the middle of the hand.

Two IMU sensors (Movesense, Suunto, Helsinki) were placed at the top of goniometer
end-blocks on both the forearm and the hand (Figure 1a,b). The IMUs were attached using
double-sided tape beneath and a medical tape on top to ensure fixation and avoid relative
movements. Additionally, a customized wooden block was mounted between the hand
IMU and the goniometer end-block for better stability due to the triangle shape of the
end-block on the hand. The IMUs were connected and recorded using an open-source
iPhone application Movesense showcase v.1.0.5 (Amer Sports Digital Services Oy, Helsinki).

2.3. Experimental Design

Before the experiment started, the participants were informed about the tasks that
they would perform and were given the opportunity to test and familiarize themselves
with the wrist movements. Two types of tests were included in the study to evaluate the
IMU-based method against the goniometer: (1) standard wrist movements in three planes,
i.e., flexion/extension, radial/ulnar deviation, and pronation/supination, at paces of 30,
60, and 90 beats per minute (bpm), following a metronome (Figure 2a–c); and (2) simulated
work tasks, which involved different types of hand/wrist movements: blow-drying hair,
folding paper planes, and sorting mail (Figure 2d–f). Each standard wrist movement was
performed for at least 10 cycles and all in a sitting position by a desk. Each work task was
performed for one minute at the participants’ own chosen pace. The blow-drying hair
and sorting mail were performed in a standing position, whilst folding paper planes was
performed in a sitting position.
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tion, and (c) pronation/supination; and three simulated work tasks including: (d) blow-drying hair,
(e) folding paper planes, and (f) sorting mail.

2.4. Signal Processing and Statistical Analysis

The measurement data from both the systems were processed in MATLAB (2021,
MathWorks, Inc., Natick, MA, USA). For the goniometer, the flexion/extension angle
output was low-pass-filtered at 5 Hz [35] and the derivatives of the flexion/extension angle
were calculated as wrist flexion velocity. For the IMUs, the output from the gyroscopes in
three axes of both IMUs on the hand and forearm were synchronized, low-pass-filtered (4th-
order Butterworth filter with a cut-off frequency at 5 Hz), and down-sampled to 20 Hz. Two
computational algorithms were used for calculating the wrist flexion velocity: IMUnorm
and IMUflex. For IMUnorm, the vector norm of gyroscopes of both the hand and forearm
IMUs were calculated and then subtracted, and the absolute value of the difference was
taken as the wrist velocity as follows:

vwrist =

∣∣∣∣√ (gxhand)
2 + (gyhand)

2 + (gzhand)
2 −

√
(gx f orearm)

2 + (gy f orearm)
2 + (gz f orearm)

2
∣∣∣∣ (1)

For IMUflex, the gyroscope output at the x-axis (i.e., the flexion/extension axis) of the
hand and forearm IMUs were subtracted as the wrist velocity as follows:

vwrist =
√

(gxhand − gx f orearm)
2 (2)

The calculated IMU-based wrist velocities were synchronized with the goniometer
output, and the 10th, 50th, and 90th percentiles of the wrist flexion velocity were calculated
for each of the standard movements and simulated work tasks. The two computational
algorithms for IMUs were compared against the goniometer separately. The mean absolute
errors (MAEs) and its standard deviation (SD) were computed between each pair of com-
parison for all tasks at the 10th, 50th, and 90th percentile. In addition, correlation plots and
Bland–Altman plots of the median wrist flexion velocity for all tasks were used to compare
the IMUnorm and IMUflex against the goniometer.
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3. Results

The measured wrist flexion velocity by the goniometer and two IMU-based meth-
ods and the mean absolute errors (MAEs) from the comparison during standard wrist
movements are shown in Table 1. For the wrist flexion/extension, the IMUflex had good
accuracy with the MAEs ranging from 1.4◦/s to 4.1◦/s for median wrist velocity as the pace
increased. The IMUnorm had slightly larger errors with the MAEs of median wrist velocity
ranging from 4.1◦/s up to 10.1◦/s. Larger errors were observed for the 90th percentile of
wrist velocity between the IMU-based methods and goniometer as the speed increased.
The correlation and limits of agreement between the IMUnorm and goniometer during wrist
flexion/extension are shown in Figure 3a,b, and those between the IMUflex and goniometer
are shown in Figure 3c,d. The squared correlation coefficient (r2) was high between both
IMU-based methods and the goniometer (r2 = 0.98 and 1.00, respectively). The IMUnorm
had a tendency of underestimation when the flexion speed increased from 30 to 90 BPM,
with limits of agreement of −20◦/s and 6.4◦/s.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 13 
 

 

ranging from 4.1°/s up to 10.1°/s. Larger errors were observed for the 90th percentile of 

wrist velocity between the IMU-based methods and goniometer as the speed increased. 

The correlation and limits of agreement between the IMUnorm and goniometer during wrist 

flexion/extension are shown in Figure 3a,b, and those between the IMUflex and goniometer 

are shown in Figure 3c,d. The squared correlation coefficient (r²) was high between both 

IMU-based methods and the goniometer (r² = 0.98 and 1.00, respectively). The IMUnorm 

had a tendency of underestimation when the flexion speed increased from 30 to 90 BPM, 

with limits of agreement of −20°/s and 6.4°/s. 

 

Figure 3. Median wrist flexion velocity during wrist flexion/extension at paces of 30, 60, and 90 BPM 

measured by the goniometer and the IMU-based methods, showing by linear correlation and Bland–

Altman plots: (a,b) the IMUnorm and goniometer; and (c,d) the IMUflex and goniometer. Squared cor-

relation coefficients (r2) and limits of agreements are presented. 

During wrist deviation and pronation/supination, the flexion velocity should theo-

retically be close to zero. However, errors were observed in the goniometer and two IMU-

based methods, where the IMUnorm had the largest overestimations with the mean values 

of the 50th percentile of flexion velocity up to 23.4°/s for deviation at 90 BPM and 51.4°/s 

for pronation/supination at 90 BPM (see Individual Method, Table 1). The correlation and 

limits of agreement between the IMUnorm and goniometer during wrist deviation are 

shown in Figure 4a,b, and those during pronation/supination are shown in Figure 5a,b. 

Distinctive differences were observed between the IMUnorm and goniometer, with larger 

differences as the speed of motion increased from 30 to 90 BPM, and larger differences 

during the pronation/supination than deviation. The IMUflex and goniometer had errors 

calculating the wrist flexion velocity at similar levels during deviation, with mean values 

of the 50th percentile wrist velocity up to 8.1°/s and 7.9°/s, respectively (see Individual 

Method, Table 1). For wrist pronation/supination, the IMUflex had smaller errors compared 

to the goniometer (mean values of 50th percentile wrist velocity up to 9.6°/s vs. 19.1°/s, 

respectively). The correlation and limits of agreement between the IMUflex and goniometer 

during wrist deviation are shown in Figure 4c,d, and those during pronation/supination 

Figure 3. Median wrist flexion velocity during wrist flexion/extension at paces of 30, 60, and 90 BPM
measured by the goniometer and the IMU-based methods, showing by linear correlation and Bland–
Altman plots: (a,b) the IMUnorm and goniometer; and (c,d) the IMUflex and goniometer. Squared
correlation coefficients (r2) and limits of agreements are presented.

During wrist deviation and pronation/supination, the flexion velocity should the-
oretically be close to zero. However, errors were observed in the goniometer and two
IMU-based methods, where the IMUnorm had the largest overestimations with the mean
values of the 50th percentile of flexion velocity up to 23.4◦/s for deviation at 90 BPM
and 51.4◦/s for pronation/supination at 90 BPM (see Individual Method, Table 1). The
correlation and limits of agreement between the IMUnorm and goniometer during wrist
deviation are shown in Figure 4a,b, and those during pronation/supination are shown in
Figure 5a,b. Distinctive differences were observed between the IMUnorm and goniometer,
with larger differences as the speed of motion increased from 30 to 90 BPM, and larger
differences during the pronation/supination than deviation. The IMUflex and goniometer
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had errors calculating the wrist flexion velocity at similar levels during deviation, with
mean values of the 50th percentile wrist velocity up to 8.1◦/s and 7.9◦/s, respectively (see
Individual Method, Table 1). For wrist pronation/supination, the IMUflex had smaller
errors compared to the goniometer (mean values of 50th percentile wrist velocity up to
9.6◦/s vs. 19.1◦/s, respectively). The correlation and limits of agreement between the
IMUflex and goniometer during wrist deviation are shown in Figure 4c,d, and those during
pronation/supination are shown in Figure 5c,d. As the values of the goniometer during
deviation and pronation/supination were shown to be flawed, the difference between the
IMU-based methods and the goniometer in these two wrist movements should not be
considered as errors compared to the ground truth.

Table 1. The mean and standard deviation (SD) of wrist flexion velocity from the goniometer, the
IMUnorm and the IMUflex, and the mean absolute errors (MAEs) and SD for the comparisons of
methods during the standard wrist movements at paces of 30, 60, and 90 beats per minute (BPM).
Data are shown for the 10th, 50th, and 90th percentiles of the wrist velocity with 12 participants
included.

◦/s Percentile
Individual Method, Mean (SD) Comparison of Methods, MAEs (SD)

Goniometer IMUnorm IMUflex IMUnorm−Goniometer IMUflex−Goniometer

Flexion/Extension
30 BPM 10th 4.2 (3.2) 4.8 (2.2) 4.2 (3.1) 1.4 (0.9) 0.3 (0.2)

50th 40.7 (17.5) 36.9 (15.5) 39.4 (16.9) 4.1 (2.6) 1.4 (1.2)
90th 125.7 (52.0) 116.8 (48.5) 118.6 (47.2) 9.0 (4.2) 7.5 (6.4)

60 BPM 10th 4.0 (4.7) 4.3 (3.3) 4.0 (5.1) 1.3 (0.8) 0.4 (0.5)
50th 72.1 (40.2) 64.8 (37.0) 69.4 (39.7) 7.8 (5.5) 3.1 (2.8)
90th 233.1 (102.6) 217.9 (98.0) 219.2 (92.3) 15.2 (7.5) 14.3 (12.1)

90 BPM 10th 6.6 (9.2) 5.4 (6.5) 6.8 (10.5) 2.0 (3.0) 1.0 (1.4)
50th 90.6 (63.7) 81.4 (60.1) 87.8 (63.3) 10.1 (7.7) 4.1 (3.2)
90th 322.0 (145.7) 300.8 (143.3) 301.8 (136.7) 21.4 (12.1) 20.2 (14.1)

Radial/Ulnar Deviation
30 BPM 10th 0.5 (0.2) 1.4 (0.6) 0.5 (0.2) 0.9 (0.5) 0.1 (0.1)

50th 4.2 (1.6) 12.0 (6.1) 3.7 (1.5) 7.9 (5.2) 0.8 (0.7)
90th 16.9 (7.1) 51.2 (19.2) 16.1 (7.4) 34.3 (16.1) 2.9 (2.9)

60 BPM 10th 0.9 (0.5) 1.7 (0.8) 0.8 (0.3) 0.9 (0.7) 0.2 (0.2)
50th 7.9 (4.3) 22.3 (13.2) 7.2 (3.4) 14.4 (11.9) 1.4 (1.9)
90th 37.0 (35.9) 101.2 (35.0) 39.1 (35.7) 65.1 (32.5) 6.8 (7.6)

90 BPM 10th 0.9 (0.7) 2.0 (1.2) 0.9 (0.7) 1.1 (0.7) 0.2 (0.1)
50th 7.9 (3.7) 23.4 (18.0) 8.1 (4.1) 15.7 (14.9) 1.3 (1.2)
90th 33.5 (16.0) 130.0 (55.5) 38.5 (22.3) 98.5 (47.9) 9.0 (12.4)

Pronation/Supination
30 BPM 10th 1.1 (0.5) 1.3 (0.8) 0.7 (0.2) 0.3 (0.3) 0.5 (0.3)

50th 10.2 (5.0) 26.2 (10.1) 5.0 (1.3) 16.1 (8.1) 5.2 (4.5)
90th 39.5 (15.4) 77.2 (29.2) 18.9 (6.6) 37.7 (23.8) 20.6 (12.8)

60 BPM 10th 1.6 (1.0) 1.9 (1.9) 1.2 (0.7) 0.7 (1.0) 0.5 (0.4)
50th 18.5 (10.0) 46.8 (23.1) 10.1 (7.4) 29.1 (19.0) 8.6 (8.3)
90th 103.6 (100.8) 170.1 (89.6) 61.3 (105.3) 69.7 (49.3) 42.3 (26.7)

90 BPM 10th 1.6 (1.5) 2.0 (2.0) 1.0 (0.7) 0.6 (0.9) 0.7 (0.9)
50th 19.1 (10.5) 51.4 (32.7) 9.6 (5.0) 32.3 (24.7) 9.5 (6.4)
90th 101.4 (54.4) 197.3 (83.6) 41.3 (17.2) 96.6 (50.8) 60.1 (45.7)

The wrist flexion velocity measured by the goniometer and two IMU-based methods
and the mean absolute errors (MAEs) during simulated work tasks are shown in Table 2.
The IMUflex had an overall better accuracy than the IMUnorm compared to the goniometer,
with the MAEs of median wrist flexion velocity <5.8◦/s for all work tasks, vs. <10.6◦/s for
IMUnorm (see Comparison of Methods, Table 2). The largest MAEs were observed during
blow-drying hair for both IMU-based methods, whereas the smallest differences were
observed during folding paper planes. The correlation and limits of agreement between
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the IMUnorm and goniometer during three work tasks are shown in Figure 6a,b, and those
between the IMUflex and goniometer are shown in Figure 6c,d. The IMUflex had a high
squared correlation coefficient compared to the goniometer (r2 = 0.93), a small bias of
0.78◦/s, and limits of agreement of −10◦/s and 12◦/s. The IMUnorm had a lower squared
correlation coefficient compared to the goniometer (r2 = 0.71), a bias of −3◦/s, and larger
limits of agreement of −26◦/s and 20◦/s.

Table 2. The mean and standard deviation (SD) of wrist flexion velocity from the goniometer, the
IMUnorm and the IMUflex, and the mean absolute errors (MAEs) and SD for the comparisons of
methods during the simulated work tasks. Data are shown for the 10th, 50th, and 90th percentiles of
the wrist velocity during each task with 12 participants included.

◦/s Percentile
Individual Method, Mean (SD) Comparison of Methods, MAEs (SD)

Goniometer IMUnorm IMUflex IMUnorm−Goniometer IMUflex−Goniometer

Blow-drying
hair

10th 5.2 (4.0) 5.8 (4.2) 6.6 (4.5) 1.4 (1.7) 1.4 (1.6)
50th 36.3 (29.9) 37.8 (24.0) 40.5 (28.4) 10.6 (12.7) 5.8 (6.0)
90th 111.7 (58.8) 105.9 (44.3) 115.6 (54.9) 24.6 (26.0) 10.8 (10.3)

Folding paper
planes

10th 3.1 (1.0) 2.6 (1.0) 2.9 (1.1) 0.6 (0.5) 0.3 (0.2)
50th 23.1 (5.9) 18.9 (6.2) 22.0 (6.0) 4.4 (2.3) 1.6 (1.2)
90th 93.0 (18.7) 74.9 (21.9) 92.0 (22.7) 19.1 (9.5) 7.9 (5.1)

Sorting mail
10th 8.9 (1.5) 7.4 (2.4) 8.5 (1.7) 2.2 (1.6) 0.8 (0.4)
50th 51.8 (9.1) 45.6 (9.8) 51.1 (8.9) 8.1 (8.4) 3.6 (2.9)
90th 145.4 (19.9) 122.4 (21.8) 140.5 (23.0) 25.8 (13.5) 7.9 (6.5)
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correlation coefficients (r2) and limits of agreements are presented.
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Squared correlation coefficients (r2) and limits of agreements are presented.
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4. Discussion

This study evaluated a new simplified IMU-based method using two computational
algorithms, i.e., the IMUnorm and the IMUflex, against the electrogoniometer for measuring
wrist flexion velocity during standard wrist movements and simulated work tasks. The
results showed that the IMUflex method had an overall better performance than the IMUnorm
compared to the goniometer in all standard wrist movements and simulated work tasks,
with relatively small bias. The new IMU-based method has a great potential to be applied
as a convenient method for risk assessment of wrist motion at work by both researchers
and practitioners.

The standard wrist movements including motion in three planes were chosen to test
the performance of the IMU-based method compared to the goniometer under constrained
conditions. During standard wrist flexion/extension movements, it was observed that
the IMUflex had high agreement and small bias compared with the goniometer method
(Table 1 and Figure 3). The IMUnorm method had slightly larger differences compared to
the goniometer, especially when the speed increased from 30 to 90 BPM.

For the radial-ulnar deviation movements, the wrist flexion velocity should theoret-
ically be close to zero. However, errors were observed both by the goniometer and the
IMU-based methods. The measured flexion velocity, which deviated from zero by all meth-
ods, could partly be explained by the coupling of wrist flexion-extension and deviation [36].
Therefore, there were wrist movements in the flexion-extension plane even though the
participants were instructed to only move in the radial-ulnar deviation plane, which are
mainly due to the constraints of carpal ligaments and muscle contraction patterns [36]. In
addition, the errors of the IMU-based methods could be caused by the unaligned deviation
and rotation axes of the built-in gyroscopes of the hand and forearm IMUs, and the soft
tissue artifacts, i.e., the relative movement between the skin and underlying bone. For the
IMUnorm method, the extra high errors were partly expected (Table 1 and Figures 4 and 5),
as the inclusion of all three axes of the gyroscopes would also record the deviation and
rotation movements of the wrist. For the IMUflex method, as the flexion axes of the gy-
roscopes of the hand and forearm IMUs were assumed to be aligned, estimation errors
would occur when the axes were not perfectly aligned. The misalignment could happen
due to the irregular articular surface of the carpal bones, the placement of the two IMUs on
goniometer end-blocks, and combined wrist movements on more than two planes. For the
goniometer, the errors can be explained by its inherent crosstalk between the flexion and
deviation recordings due to twisting of the goniometer transducer, the impact of forearm
rotation, and the movement of skin [35,37,38], which could be observed during the devia-
tion and supination/pronation movements (see Individual method, Table 1). Nevertheless,
the IMUflex method showed small bias in the wrist flexion velocity results compared with
the goniometer during deviation (Table 1 and Figure 4c,d). For wrist pronation/supination,
the IMUflex had smaller errors compared to the goniometer, i.e., smaller values above zero
in this case (Table 1 and Figure 5c,d).

Three tasks using the hand/wrist in different intensities were included in the experi-
ment. The task of folding paper planes was the least intensive and showed the smallest
wrist velocities measured by all three methods. It also had the smallest differences between
the two IMU-based methods and goniometer (see Comparison of methods, Table 2). Blow-
drying hair and sorting mail involved more intensive wrist motions and combined motions
on different planes of the wrist joint. The task of sorting mail showed the highest wrist
velocities measured by all three methods, with the mean 50th percentile of wrist velocity
between 45.6 and 51.8◦/s (see Individual method, Table 2). The task of blow-drying hair
had a larger variation between the participants, as they were instructed to perform the
task at their own chosen pace. Overall, the IMUflex method had smaller MAEs than the
IMUnorm in comparison with the goniometer during all simulated work tasks.
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Limitations and Future Studies

As discussed above, during the radial/ulnar deviation and pronation/supination
movements, the recorded wrist flexion velocity should theoretically be close to zero.
Nonetheless, the goniometer, which is considered as a standard measure in this study,
showed errors. Therefore, the difference between the goniometer and two IMU-based
methods cannot be considered as errors compared to the ground truth. Still, the crosstalk
was shown to have a marginal effect on the assessment when the wrist flexion summary
measures were used in the occupational studies [37,39]. In addition, to be used for risk
assessment in occupational studies with the proposed action level of wrist velocity [28],
the comparison of the IMU-based methods against the goniometer is still valuable. Future
work will evaluate both the IMU-based methods and the goniometer against an optical mo-
tion tracking system, which can be considered as a standard measurement in a laboratory
environment.

Another limitation was that in order to equip both systems on participants, due to lack
of space on the hand and forearm, the IMUs were mounted on the goniometer end-block,
which was not ideal. When used by itself for measuring wrist motion, the IMUs would
be placed on the skin, and the forearm IMU would be closer to the wrist joint. In this way,
the two IMUs can be better aligned, and the impact of soft tissue artifacts can be reduced,
especially during pronation/supination.

In the current study, no extra calibration procedure was performed to align the gyro-
scope axes, as the IMUs were mounted on the hand and forearm so the text on both IMU
cases were aligned. The two IMU-based algorithms could be compared to a goniometer
and showed sufficient accuracy in simulated work tasks. One could expect that when
using in the field studies, the two IMUs may be misaligned due to errors or the relative
movement of sensors on the skin, and calibration would be crucial to reduce the errors.
Therefore, simple calibration procedures need to be explored and evaluated for future field
studies in the next step.

In addition, in the field where exposures of a whole working day are measured, the
variation in the hand/wrist movements will be higher compared to the laboratory setting.
The sample size of this study was small, but for similar studies on wrist motion with human
participants, a sample size of 10 to 12 was common [36,40].

Future studies need to examine algorithms to improve the accuracy of the IMU-
based method, especially in tasks involving combined movements of wrist deviation and
pronation/supination and movements of larger variation. Potential calibration procedures
can be explored to improve the alignment of gyroscope axes of the two IMUs, without
adding too much complexity to the method for being used by practitioners. It is also of
great interest to investigate the performance of the IMU-based method in field studies.
When the accuracy is of highest need, sophisticated measurement methods such as an
optical motion tracking system can be used in the laboratory, while for occupational studies
in the field, or for studies evaluating new work designs and tools involving hand-intensive
work, the IMU-based method has the great advantage of being easy to use, having a low
wearer burden, being cost-efficient, and providing direct risk assessment results.

5. Conclusions

A new simplified IMU-based method using two computational algorithms, i.e., the
IMUnorm and the IMUflex, was evaluated against the goniometer for measuring wrist flexion
velocity in this study. The IMUflex method showed small bias in small- to medium-paced
standard hand/wrist movements and all simulated work tasks compared to the goniometer.
The results suggest that the IMU-based method has great potential to be used for risk assess-
ments of wrist motion by both researchers and practitioners, in occupational studies, and in
design and evaluating new workstations or tools. Future work should look into algorithms
to improve the accuracy of the IMU-based method in tasks involving combined movements
of wrist deviation and pronation/supination, as well as easy calibration procedures for
field studies.
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