
����������
�������

Citation: Alsaade, F.W.; Yao, Q.;

Al-zahrani, M.S.; Alzahrani, A.S.;

Jahanshahi, H. Indirect-Neural-

Approximation-Based Fault-Tolerant

Integrated Attitude and Position

Control of Spacecraft Proximity

Operations. Sensors 2022, 22, 1726.

https://doi.org/10.3390/s22051726

Academic Editors: Luige Vladareanu,

Hongnian Yu, Hongbo Wang

and Yongfei Feng

Received: 4 January 2022

Accepted: 18 February 2022

Published: 23 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Indirect-Neural-Approximation-Based Fault-Tolerant
Integrated Attitude and Position Control of Spacecraft
Proximity Operations
Fawaz W. Alsaade 1 , Qijia Yao 2,* , Mohammed S. Al-zahrani 3 , Ali S. Alzahrani 4 and Hadi Jahanshahi 5

1 Department of Computer Science, College of Computer Sciences and Information Technology,
King Faisal University, Al-Ahsa 31982, Saudi Arabia; falsaade@kfu.edu.sa

2 School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
3 Department of Computer Networks and Communications, College of Computer Sciences and

Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia; malzahrani@kfu.edu.sa
4 Department of Computer Engineering, College of Computer Sciences and Information Technology,

King Faisal University, Al-Ahsa 31982, Saudi Arabia; aalzahrani@kfu.edu.sa
5 Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada;

jahanshahi.hadi90@gmail.com
* Correspondence: qijia_yao@126.com

Abstract: In this paper, a neural adaptive fault-tolerant control scheme is proposed for the inte-
grated attitude and position control of spacecraft proximity operations in the presence of unknown
parameters, disturbances, and actuator faults. The proposed controller is made up of a relative
attitude control law and a relative position control law. Both the relative attitude control law and
relative position control law are designed by adopting the neural networks (NNs) to approximate
the upper bound of the lumped unknowns. Benefiting from the indirect neural approximation,
the proposed controller does not need any model information for feedback. In addition, only two
adaptive parameters are required for the indirect neural approximation, and the online calculation
burden of the proposed controller is therefore significantly reduced. Lyapunov analysis shows that
the overall closed-loop system is ultimately uniformly bounded. The proposed controller can ensure
the relative attitude, angular velocity, position, and velocity stabilize into the small neighborhoods
around the origin. Lastly, the effectiveness and superior performance of the proposed control scheme
are confirmed by a simulated example.

Keywords: neural adaptive control; fault-tolerant control; integrated attitude and position control;
spacecraft proximity operations; indirect neural approximation; Lyapunov analysis

1. Introduction

Nowadays, with the rapid development of sensing and control technologies, space
missions have become increasingly complicated. The spacecraft proximity operation plays
an important role in various space missions, such as rendezvous and docking, active debris
removal, and on-orbit servicing. The relative attitude and position control is a critical
technique for spacecraft proximity operations. During the proximity operations, the chaser
and target are inevitably affected by uncertain parameters and disturbances. Even worse,
the parameters of the target may be fully unknown for noncooperative proximity operations.
In addition, the chaser also frequently suffers from actuator faults due to the harsh space
environment. The presence of unknown parameters, disturbances, and actuator faults
bring great difficulty to the relative attitude and position control of spacecraft proximity
operations. Traditionally, the spacecraft relative attitude and position control systems
are often designed independently. However, the inherent couplings between the relative
attitude and position are neglected in this way and these controllers cannot be directly
applied to the spacecraft proximity operations, especially when high control accuracy is
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required. The integrated attitude and position control based on the six-degree-of-freedom
(6-DOF) dynamic model of spacecraft proximity operations is an effective solution to
this problem.

Until recently, many relevant results have been reported for the integrated attitude
and position control of spacecraft proximity operations. Singla et al. [1] designed a model
reference adaptive output feedback control law for the spacecraft rendezvous and docking
under measurement uncertainties. Kristiansen et al. [2] presented three nonlinear control so-
lutions for the 6-DOF spacecraft coordination control based on the integrator backstepping
and passivity-based control, respectively. In [3,4], an integrated nonlinear optimal control
approach was developed for the spacecraft proximity operations. Zhang and Duan [5]
proposed a robust adaptive backstepping control scheme for the integrated translational
and rotational motion of spacecraft with actuator misalignment. In [6,7], several robust op-
timal sliding mode control methods were carried out for the coupled attitude and position
maneuvers of spacecraft. Sun and Huo [8] designed a 6-DOF integrated adaptive back-
stepping controller for the spacecraft proximity operations under uncertainties. In [9,10],
integrated robust adaptive control approaches were developed for the relative position
tracking and attitude synchronization for spacecraft rendezvous. In [11,12], disturbance
observer-based robust control approaches were proposed for the spacecraft proximity and
docking with input saturation. Hu et al. [13] presented a robust fault-tolerant tracking
control scheme for the spacecraft proximity operations by utilizing the adaptive sliding
mode control technique. Wang and Ji [14] designed two backstepping control schemes
for the relative motion control of spacecraft rendezvous based on the input-to-state stable
property and finite-time control technique, respectively. In [15], an adaptive nonlinear state
feedback control method was proposed for the fault-tolerant constrained pose control of
cooperative spacecraft rendezvous and docking. Zhou et al. [16] developed an adaptive
sliding mode method for the robust attitude and position tracking of spacecraft proximity
operations by integrating with an unscented Kalman filter. In [17–19], several adaptive
nonsingular terminal sliding mode control laws were designed for the fixed-time, 6-DOF
tracking control of noncooperative spacecraft fly-around missions. In addition, there have
been also some research studies concerned with 6-DOF integrated controls in spacecraft
based on the dual quaternion representation [20–27].

It should be noted that most of the above controllers require prior knowledge of nomi-
nal model information for feedback. Nevertheless, the physical parameters of the chaser
and the target may be fully unknown in some extreme cases. The intelligent approximation
is an efficient tool to construct the model-free controllers, owing to the powerful learning
capability of the neural network (NN) and fuzzy logic system. By adopting the NNs or
fuzzy logic systems to approximate the lumped unknowns, the intelligent control does not
need any model information for feedback. In [28,29], robust adaptive backstepping NN
control strategies were presented for the spacecraft rendezvous and docking with input
saturation. Sun et al. [30] developed an adaptive fuzzy backstepping controller for the pose
tracking of spacecraft rendezvous and proximity maneuvers under uncertainties. However,
all of the above intelligent controllers involve a large number of adaptive parameters, which
restricts their applications in practical engineering, especially considering the onboard
computer has limited online calculation capability.

Motivated by the above discussions, this paper proposes a neural adaptive fault-
tolerant control scheme for the integrated attitude and position control of spacecraft prox-
imity operations in the presence of unknown parameters, disturbances, and actuator faults.
The proposed controller is made up of a relative attitude control law and a relative position
control law. In comparison with most of the existing investigations, the main contributions
of this research are summarized as follows:

• Both the relative attitude control law and relative position control law are designed
by integrating with the neural approximation. Benefiting from this design, the pro-
posed controller is model-free and strongly robust against the lumped unknowns in
6-DOF dynamics;
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• Rather than the conventional intelligent approximation [28–30], in which the NNs and
fuzzy logic systems are introduced to directly approximate the lumped unknowns,
the indirect neural approximation is exploited in this paper by adopting the NNs
to approximate the upper bound of the lumped unknowns. In this way, only two
adaptive parameters are required for the indirect neural approximation, and the online
calculation burden of the proposed controller is therefore significantly reduced;

• Lyapunov analysis shows that the overall closed-loop system is ultimately uniformly
bounded. The proposed controller can ensure that the relative attitude, angular veloc-
ity, position, and velocity stabilize into the small neighborhoods around the origin.

The remainder of this paper is arranged as follows: Section 2 describes the problem
and gives some preliminaries. Section 3 introduces the control methodology and provides
the Lyapunov analysis. Section 4 performs a simulated example. Lastly, Section 5 presents
the main conclusions of this study.

2. Problem Statement and Preliminaries
2.1. The 6-DOF Dynamics of Spacecraft Proximity Operations

Consider the spacecraft proximity operation system depicted in Figure 1, in which a
chaser is approaching a freely tumbling target. P denotes the desired docking point, which
is fixed with respect to the target. Three coordinate frames are introduced to describe the
6-DOF dynamics of the spacecraft proximity operation. They are the earth-centered inertial
frame FI , the chaser’s body-fixed frame Fc, and the target’s body-fixed frame Ft, respectively.
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Figure 1. Diagram of the spacecraft proximity operation system.

The modified Rodrigues parameters (MRPs) are utilized to represent the attitude
orientation of the chaser. Then, the attitude and position dynamics of the chaser can be
expressed in frame Fc as 

.
σ = G(σ)ω,
J

.
ω + S(ω)Jω = Γτuτ + dτ ,

.
r = v− S(ω)r,
m

.
v + mS(ω)v = Γ f u f + d f ,

(1)

where G(σ) = 1
2

(
1−σTσ

2 I3 + S(σ) + σσT
)
∈ R3×3. σ ∈ R3, ω ∈ R3, r ∈ R3, and v ∈ R3

are the attitude, angular velocity, position, and velocity of the chaser with respect to the
earth center in frame Fc. uτ ∈ R3 and u f ∈ R3 are the control torques and forces produced



Sensors 2022, 22, 1726 4 of 16

by the actuators. dτ ∈ R3 and d f ∈ R3 are the disturbance torques and forces acting on the
chaser. J ∈ R3×3 and m ∈ R denote the inertia matrix and mass of the chaser. The notation
S(ω) stands for the skew-symmetric matrix of ω, denoted as

S(ω) =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

. (2)

where Γτ = diag{γτ1, γτ2, γτ3} and Γ f = diag
{

γ f 1, γ f 2, γ f 3

}
are the actuator health factor

matrices, with 0 ≤ γτi ≤ 1 and 0 ≤ γ f i ≤ 1 (i = 1, 2, 3). The case γτi = 1 and γ f i = 1
means the corresponding control torque and force are healthy. The case 0 < γτi < 1 and
0 < γ f i < 1 means the corresponding control torque and force are partially faulty. The
case γτi = 0 and γ f i = 0 means the corresponding control torque and force are completely
failed. In this paper, the chaser is assumed to be fully actuated with 0 < γτi ≤ 1 and
0 < γ f i ≤ 1 (i = 1, 2, 3).

Similarly, the attitude and position dynamics of the target can be expressed in frame
Ft as 

.
σt = G(σt)ωt,
Jt

.
ωt + S(ωt)Jtωt = hτ ,

.
rt = vt − S(ωt)rt,
mt

.
vt + mtS(ωt)vt = h f ,

(3)

where σt ∈ R3, ωt ∈ R3, rt ∈ R3, and vt ∈ R3 are the attitude, angular velocity, position,
and velocity of the target with respect to the earth center in frame Ft. hτ ∈ R3 and h f ∈ R3

are the disturbance torques and forces acted on the target. Jt ∈ R3×3 and mt ∈ R denote
the inertia matrix and mass of the target.

According to the geometric relationship in Figure 1, the position and velocity of the
point P with respect to the earth center in frame Ft can be expressed as{

rp = rt + pt,
vp = vt + S(ωt)pt,

(4)

where pt is the constant position vector of the point P with respect to the target in frame Ft.
The relative attitude, angular velocity, position, and velocity of the target with respect to
the chaser can be defined in frame Fp as

σe = σ ⊗ σ−1
t =

(1−σT
t σt)σ−(1−σTσ)σt−2S(σt)σ

1+σT
t σtσTσ+2σT

t σ
,

ωe = ω−R(σe)ωt,
re = r−R(σe)rp,
ve = v−R(σe)vp,

(5)

where R(σe) = I3 +
8S2(σe)−4(1−σT

e σe)S(σe)

(1+σT
e σe)

2 ∈ R3×3 is the rotation matrix from frame Ft to

frame Fp. The matrix R(σe) has the property
.

R(σe) = −S(ωe)R(σe).
Note that

.
rp = vp − S(ωt)rp and

.
ωt = −J−1

t S
(
RT(ω−ωe)

)
JtR

T(ω−ωe) + J−1
t ωt.

Substituting (1), (3), and (4) into (5), the relative attitude and position dynamics of the
target with respect to the chaser can be obtained in frame Fp as

.
σe = G(σe)ωe, (6)

J
.

ωe = Γτuτ + ζτ , (7)
.
re = ve − S(ω)re, (8)

m
.
ve = Γ f u f + ζ f , (9)
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where ζτ and ζ f are the lumped unknowns in the relative attitude and position dynamics,
given as

ζτ = −S(ω)Jω + S(ω)Jωe − JR(σe)J−1
t S

(
RT(σe)(ω−ωe)

)
JtR

T(σe)(ω−ωe)− dτ + JR(σe)J−1
t hτ , (10)

ζ f = −mS(ω)ve −mS2(ω−ωe)R(σe)pt −mR(σe)S(pt)J
−1
t S

(
RT(σe)(ω−ωe)

)
JtR

T(σe)(ω−ωe)

+d f −
mR(σe)h f

mt
+ mR(σe)S(pt)J

−1
t hτ .

(11)

Remark 1. From the 6-DOF dynamic model of spacecraft proximity operations (8) and (9), the
relative translational motion of the target with respect to the chaser is heavily affected by the relative
rotational motion due to the inherent coupling between the relative attitude and position.

2.2. Purpose

The purpose of this research is to design a controller for the spacecraft proximity
operation system such that relative attitude σe, angular velocity ωe, position re, and velocity
ve can stabilize into the small neighborhoods around the origin, even in the presence of
unknown parameters, disturbances, and actuator faults.

2.3. Neural Approximation

Lemma 1. Ref. [31] For any continuous nonlinear function f (Z), Z ∈ Rn, it can be approximated
by a radial basis function NN (RBFNN) as

f (Z) = W∗TΦ(Z) + ε(Z), (12)

where W∗ ∈ RN is the ideal RBFNN weight, Φ(Z) = [φ1(Z), φ2(Z), . . . , φN(Z)]
T is the basis

function vector, ε(Z) is the identification error satisfying |ε(Z)| ≤ ε, ε is a positive constant, and N
is the number of RBFNN nodes. Moreover, ϕi(Z) is commonly chosen as the Gaussian function

ϕi(Z) = exp
(
−‖Z− ci‖2/w2

i

)
, i = 1, 2, . . . , N, (13)

where ci = [ci1, ci2, . . . , cin]
T ∈ Rn, and wi are the center and width of the Gaussian function, respectively.

3. Control Design Methodology
3.1. Architecture of the Whole Control Design

The structure of the proposed neural adaptive fault-tolerant control scheme is shown
in Figure 2. Specifically, the proposed controller is made up of a relative position control
law and a relative attitude control law. Both the relative position control law and relative
attitude control law are designed by adopting the NNs to approximate the upper bound
of the lumped unknowns. The ultimate uniform boundedness of the overall closed-loop
system is achieved through Lyapunov analysis.



Sensors 2022, 22, 1726 6 of 16

Sensors 2022, 22, x FOR PEER REVIEW 6 of 17 
 

 

where NW  is the ideal RBFNN weight,        
T

1 2, , , N     Φ Z Z Z Z  is the basis 

function vector,   Z  is the identification error satisfying   Z ,   is a positive con-

stant, and N  is the number of RBFNN nodes. Moreover,  i Z  is commonly chosen as the 

Gaussian function 

   2 2exp , 1,2, , ,i i iw i N     Z Z c  (13) 

where  
T

1 2, , , n

i i i inc c c c , and iw  are the center and width of the Gaussian function, re-

spectively. 

3. Control Design Methodology 

3.1. Architecture of the Whole Control Design 

The structure of the proposed neural adaptive fault-tolerant control scheme is shown 

in Figure 2. Specifically, the proposed controller is made up of a relative position control 

law and a relative attitude control law. Both the relative position control law and relative 

attitude control law are designed by adopting the NNs to approximate the upper bound 

of the lumped unknowns. The ultimate uniform boundedness of the overall closed-loop 

system is achieved through Lyapunov analysis. 

,r v

,σ ω

Relative position 

control law

Relative attitude 

control law

RBFNN 

approximation

Adaptive 

updating law

RBFNN 

approximation

Adaptive 

updating law

,e er v,t tr v

,t tσ ω ,e eσ ω

ChaserControl scheme

fu

fd

u

dh

fh

ˆ
fb

b̂

,e eσ ω

Relative position 

subsystem

Relative attitude 

subsystem
F

re
e
ly

 t
u
m

b
li

n
g

 t
a
rg

e
t

 

Figure 2. Architecture of the whole control design. 

3.2. Relative Attitude Control Design 

First, consider the relative attitude subsystem described as (6) and (7). Introduce the 

following filtered error: 

1 1 ,e e s ω σ  (14) 

where 1 0  . Evaluating the time differentiation of 1s  yields 

1 ,   Js Γ u ξ  (15) 

where  1 e e   ξ ζ G σ ω . Define the input variable 
T

T T,e e
   Z σ ω . By Lemma 1, the 

lumped uncertainty can be expressed as 

   T ,     

 ξ W Φ Z ε Z  (16) 

Figure 2. Architecture of the whole control design.

3.2. Relative Attitude Control Design

First, consider the relative attitude subsystem described as (6) and (7). Introduce the
following filtered error:

s1 = ωe + α1σe, (14)

where α1 > 0. Evaluating the time differentiation of s1 yields

J
.
s1 = Γτuτ + ξτ , (15)

where ξτ = ζτ + α1G(σe)ωe. Define the input variable Zτ =
[
σT

e , ωT
e
]T. By Lemma 1, the

lumped uncertainty can be expressed as

ξτ = W∗Tτ Φτ(Zτ) + ετ(Zτ), (16)

where W∗τ ∈ RN×3 is the ideal RBFNN weight, Φτ(Zτ) ∈ RN is the Gaussian basis function
vector, ετ(Zτ) ∈ R3 is the approximation error satisfying ‖ετ(Zτ)‖ ≤ ετ , ετ is a positive
constant, and N is the number of RBFNN nodes. Note that ‖W∗τ‖ ≤ Wτ . Substituting it
into (16) yields

‖ξτ‖ ≤ ‖W∗τ‖‖Φτ(Zτ)‖+ ‖ετ(Zτ)‖
≤ bτΦτ ,

(17)

where bτ = max
{

Wτ , ετ

}
is an unknown constant, and Φτ = ‖Φτ(Zτ)‖+ 1 is a known

function. Then, the relative attitude control law is designed as

uτ = −k1s1 − η1b̂τΦ2
τs1, (18)

where k1 > 0, η1 > 0, and b̂τ is the estimation of bτ . Moreover, the adaptive updating law
is designed as

.
b̂τ = −µ1b̂τ + η1Φ2

τ‖sτ‖2, (19)

where µ1 > 0.

Theorem 1. When the relative attitude control law (18) and the adaptive updating law (19) are
employed to the relative attitude subsystem described as (6) and (7), the overall closed-loop system is
ultimately uniformly bounded and the relative attitude σe, and angular velocity ωe can stabilize
into the small neighborhoods around the origin.

Proof. Introduce the following Lyapunov function:
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V1 =
1
2

sT
1 Js1 +

1
2γτmin

b̃2
τ , (20)

where γτmin = min{γτ1, γτ2, γτ3}, and b̃τ = bτ − γτminb̂τ denotes the estimation error of
bτ . Evaluating the time differentiation of V1 yields

.
V1 = sT

1 J
.
s1 − b̃τ

.
b̂τ

= sT
1 (Γτuτ + ξτ)− b̃τ

.
b̂τ .

(21)

Substituting the relative attitude control law (18) and the adaptive updating law (19),
we have

.
V1 = sT

1

(
Γτ

(
−k1s1 − η1b̂τΦ2

τs1

)
+ ξτ

)
− b̃τ

(
−µ1b̂τ + η1Φ2

τ‖sτ‖2
)

= −γτmink1‖s1‖2 − η1bτΦ2
τ‖s1‖2 + sT

1 ξτ + µ1b̃τ b̂τ .
(22)

Consider the following inequalities:

sT
1 ξτ ≤ bτΦτ‖s1‖2 ≤ η1bτΦ2

τ‖s1‖2 +
1

4η1
, (23)

µ1b̃τ b̂τ =
µ1

γτmin
b̃τ

(
bτ − b̃τ

)
≤ µ1

2γτmin

(
b2

τ − b̃2
τ

)
. (24)

Substituting (23) and (24) into (22) yields

.
V1 ≤ −γτmink1‖s1‖2 − µ1

2γτmin
b̃2

τ +
1

4η1
+ µ1

2γτmin
b2

τ

≤ −κ1V1 + ϑ1,
(25)

where κ1 = min
{

2γτmink1
λmax(J)

, µ1

}
, and ϑ1 = 1

4η1
+ µ1

2γτmin
b2

τ . Solving inequality (25), we fur-
ther have

V1 ≤
(

V1(0)−
ϑ1

κ1

)
e−κ1t +

ϑ1

κ1
. (26)

Combining with the definition of V1, it follows that the overall closed-loop system is
ultimately uniformly bounded, and the error signals s1 and b̃τ can stabilize into the small
neighborhoods around the origin. Considering the definition of s1, this further implies that
the relative attitude σe and angular velocity ωe can stabilize into the small neighborhoods
around the origin. The proof of Theorem 1 is thus finished. �

3.3. Relative Position Control Design

Then, consider the relative position subsystem described as (8) and (9). Introduce the
following filtered error:

s2 = ve + α2re, (27)

where α2 > 0. Evaluating the time differentiation of s2 yields

m
.
s2 = Γ f u f + ξ f , (28)

where ξτ = ζτ + α2(ve − S(ω)re). Define the input variable Z f =
[
σT

e , ωT
e pT

e , vT
e
]T. By

Lemma 1, the lumped uncertainty can be expressed as

ξ f = W∗Tf Φ f

(
Z f

)
+ ε f

(
Z f

)
, (29)

where W∗f ∈ RN×3 is the ideal RBFNN weight, Φ f

(
Z f

)
∈ RN is the Gaussian basis

function vector, ε f

(
Z f

)
∈ R3 is the approximation error satisfying ‖ε f

(
Z f

)
‖ ≤ ε f , ε f
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is a positive constant, and N is the number of RBFNN nodes. Note that ‖W∗f ‖ ≤ W f .
Substituting it into (29) yields

‖ξ f ‖ ≤ ‖W∗f ‖‖Φ f

(
Z f

)
‖+ ‖ε f

(
Z f

)
‖

≤ b f Φ f ,
(30)

where b f = max
{

W f , ε f

}
is an unknown constant, and Φ f = ‖Φ f

(
Z f

)
‖+ 1 is a known

function. Then, the relative position control law is designed as

u f = −k2s2 − η2b̂ f Φ2
f s2, (31)

where k2 > 0, η2 > 0, and b̂ f is the estimation of b f . Moreover, the adaptive updating law
is designed as

.
b̂ f = −µ2b̂ f + η2Φ2

f ‖s f ‖2, (32)

where µ2 > 0.

Theorem 2. When the relative position control law (31) and the adaptive updating law (32) are
employed to the relative position subsystem described as (8) and (9), the overall closed-loop system
is ultimately uniformly bounded and the relative position re, and velocity ve can stabilize into the
small neighborhoods around the origin.

Proof. Introduce the following Lyapunov function:

V2 =
1
2

msT
2 s2 +

1
2γ f min

b̃2
f , (33)

where γ f min = min
{

γ f 1, γ f 2, γ f 3

}
, and b̃ f = b f − γ f minb̂ f denotes the estimation error of

b f . Evaluating the time differentiation of V2 yields

.
V2 = msT

2
.
s2 − b̃ f

.
b̂ f

= sT
2

(
Γ f u f + ξ f

)
− b̃ f

.
b̂ f .

(34)

Substituting the relative position control law (31) and the adaptive updating law (32),
we have

.
V2 = sT

2

(
Γ f

(
−k2s2 − η2b̂ f Φ2

f s2

)
+ ξ f

)
− b̃ f

(
−µ2b̂ f + η2Φ2

f ‖s f ‖2
)

= −γ f mink2‖s2‖2 − η2b f Φ2
f ‖s2‖2 + sT

2 ξ f + µ2b̃ f b̂ f .
(35)

Consider the following inequalities:

sT
2 ξ f ≤ b f Φ f ‖s2‖2 ≤ η2b f Φ2

f ‖s2‖2 +
1

4η2
, (36)

µ2b̃ f b̂ f =
µ2

γ f min
b̃ f

(
b f − b̃ f

)
≤ µ2

2γ f min

(
b2

f − b̃2
f

)
. (37)

Substituting (36) and (37) into (35) yields

.
V2 ≤ −γ f mink2‖s2‖2 − µ2

2γ f min
b̃2

f +
1

4η2
+ µ2

2γ f min
b2

f

≤ −κ2V2 + ϑ2,
(38)

where κ2 = min
{ 2γ f mink2

m , µ2

}
and ϑ2 = 1

4η2
+ µ2

2γ f min
b2

f . Solving inequality (38), we fur-
ther have
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V2 ≤
(

V2(0)−
ϑ2

κ2

)
e−κ2t +

ϑ2

κ2
. (39)

Combined with the definition of V2, it follows that the overall closed-loop system is
ultimately uniformly bounded, and error signals s2 and b̃ f can stabilize into the small
neighborhoods around the origin. Considering the definition of s2, this further implies that
the relative position re and velocity ve can stabilize into the small neighborhoods around
the origin. The proof of Theorem 2 is thus finished. �

Remark 2. In the conventional intelligent approximation [28–30], the NNs and fuzzy logic systems
are introduced to directly approximate the lumped unknowns, and the number of the adaptive
parameters is 2× 3N. Alternatively, the indirect neural approximation is exploited in this paper
by adopting NNs to approximate the upper bound of the lumped unknowns. In this way, only
two adaptive parameters, b̂τ and b̂ f , are required for the indirect neural approximation, and the
online calculation burden of the proposed controller is therefore significantly reduced. Actually, the
indirect neural approximation makes the proposed controller more suitable for practical engineering,
especially considering the onboard computer has limited online calculation capability.

Remark 3. According to Theorems 1 and 2, the proposed controller can ensure the relative attitude,
angular velocity, position, and velocity stabilize into the small neighborhoods around the origin.
From (26) and (39), it follows that the small neighborhoods around the origin are adjustable. If we
set the parameters α1, α2, k1, and k2 as large as required, the small neighborhoods can be made
sufficiently small.

Remark 4. It is noteworthy that the RBFNN utilized for intelligent control in this paper can also
be replaced by some other approximation tools, such as recurrent NNs, wavelet NNs, and fuzzy
logic systems. Moreover, adaptive dynamic programming is an effective methodology for the optimal
control of unknown nonlinear systems with the help of critic NNs [32–35]. Future investigation
building on this research will focus on extending the present results by embedding them with an
adaptive dynamic programming approach.

4. Simulated Example

A simulated example is performed to illustrate the proposed control scheme. The
sampling frequency for feedback is set as fs = 20 Hz. The initial attitude, angular velocity,
position, and velocity of the chaser are given as σ(0) = [0, 0, 0]T, ω(0) = [0, 0, 0]T rad/s,
r(0) = [1, 1, 1]T × 7.078× 106 m, and v(0) = [2, 3,−2]T m/s. The initial relative attitude,
angular velocity, position, and velocity of the target with respect to the chaser are given as

σe(0) = [0.2,−0.4, 0.3]T, ωe(0) = [0.02,−0.02, 0.02]T rad/s, re(0) =
[
50
√

2, 0,−50
√

2
]T

m,

and ve(0) = [0.5,−0.5, 0.5]T m/s. Moreover, the constant position vector of the desired
docking point with respect to the target in frame Ft is given as pt = [0, 5, 0]T m. The inertia
matrices of the chaser and the target are chosen as

J =

 38 −2.5 −5.5
−2.5 44 −2.7
−5.5 −2.7 36

 kg ·m2, (40)

Jt =

 3336 −135.4 −154.2
−135.4 3184 −148.5
−154.2 −148.5 2423

 kg ·m2. (41)
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The masses of the chaser and the target are chosen as m = 58.2 kg, and mt = 5425.6 kg. The
inertia matrices and the masses are assumed to be fully unknown for the control design.
The disturbance torques and forces acted on the chaser and the target are chosen as

dτ = hτ =

 1 + sin(πt/125) + sin(πt/200)
1 + sin(πt/125) + sin(πt/250)
1 + cos(πt/125) + cos(πt/250)

× 10−5 Nm, (42)

d f = h f =

 1 + sin(πt/125) + sin(πt/200)
1 + sin(πt/125) + sin(πt/250)
1 + cos(πt/125) + cos(πt/250)

× 10−4 N. (43)

Due to the actuator saturation, the acceptable maximum control torques and forces
are set as

|uτi| ≤ 2 Nm,
∣∣∣u f i

∣∣∣ ≤ 200 N, i = 1, 2, 3. (44)

In addition, the actuator faults are also considered. The actuator health factor matrices
are given as

Γτ = diag{0.8 + 0.1 sin(0.1t), 0.8− 0.1 cos(0.3t), 0.7− 0.2 sin(0.2t)}, (45)

Γ f = diag{0.7 + 0.1 sin(0.2t), 0.6 + 0.2 cos(0.1t), 0.8 + 0.2 cos(0.1t)}. (46)

The commonly used proportional-derivative (PD) controller is employed for perfor-
mance comparisons. The compared PD controller is also made up of a relative attitude
control law and a relative position control law. The relative attitude control law is de-
signed as

uτ = −kp1σe − kd1ωe, (47)

where kp1 > 0 and kd1 > 0. Moreover, the relative position control law is designed as

u f = −kp2re − kd2ve, (48)

where kp2 > 0 and kd2 > 0.
The parameters of the proposed neural adaptive fault-tolerant controller are given as

α1 = 0.5, α2 = 0.5, k1 = 20, k2 = 20, µ1 = 1, µ2 = 1, η1 = 0.1, and η2 = 0.1. Seven nodes
are selected for the hidden layer of the RBFNN. The parameters of the RBFNN are selected
as ci = [−3,−2,−1, 0, 1, 2, 3]T, and wi = 6. The initial values of the adaptive parameters
are set as b̂τ = 0 and b̂ f = 0. Additionally, the parameters of the compared PD controller
are given as kp1 = 12, kp2 = 16, kd1 = 12, and kd2 = 16.

The translational motion of the chaser and the target for proximity operation is pro-
vided in Figure 3. It is clearly seen that the chaser, under both the proposed neural adaptive
fault-tolerant controller and the compared PD controller, can quickly approach the tar-
get, and the spacecraft proximity operation can be well accomplished. Specifically, the
simulation results of the proposed neural adaptive fault-tolerant controller are given in
Figures 4–7. Figure 4 shows the time profiles of the relative attitude and angular velocity
under the proposed controller. The time profiles of the relative position and velocity under
the proposed controller are presented in Figure 5. Figure 6 gives the time profiles of the
control torques and forces of the chaser under the proposed controller. The changing
curves of two adaptive parameters under the proposed controller are depicted in Figure 7.
Moreover, the simulation results of the compared PD controller are given in Figures 8–10.
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From Figures 4, 5, 8 and 9, it is revealed that the steady-state relative errors under
the PD controller are much larger than those under the proposed controller. Meanwhile,
the PD controller has the obvious unexpected overshooting problem, which the proposed
controller does not have. The proposed controller can achieve superior performance, even
in the presence of unknown parameters, disturbances, and actuator faults. Nevertheless,
the performance of the PD controller is relatively poor, due to the existence of lumped
unknowns in 6-DOF dynamics. Benefiting from the indirect neural approximation, the
proposed controller is robust against unknown parameters and disturbances and is also
insensitive to actuator faults. Figures 6 and 10 reveal that the control torques and forces
of the chaser can always satisfy the actuator saturation constraints during the spacecraft
proximity operation. From Figure 7, it can be inferred that the two adaptive parameters are
bounded and change with time smoothly.
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Furthermore, some crucial indexes are introduced to quantitatively compare the per-
formance between the proposed controller and the PD controller. Specifically, the integrated

absolute errors (IAEs) are defined as IAEσ =
3
∑

i=1

∫ t
0 |σei(τs)|dτs, IAEω =

3
∑

i=1

∫ t
0 |ωei(τs)|dτs,

IAEr =
3
∑

i=1

∫ t
0 |rei(τs)|dτs, and IAEv =

3
∑

i=1

∫ t
0 |vei(τs)|dτs, which evaluates the steady-

state response performance of the controller. Moreover, the integrated time absolute

errors (ITAEs) are defined as ITAEσ =
3
∑

i=1

∫ t
0 τs|σei(τs)|dτs, ITAEω =

3
∑

i=1

∫ t
0 τs|ωei(τs)|dτs,

ITAEr =
3
∑

i=1

∫ t
0 τs|rei(τs)|dτs, and ITAEv =

3
∑

i=1

∫ t
0 τs|vei(τs)|dτs, which evaluates the tran-

sient response performance of the controller. The total time for performance comparison
is set as t = 120 s. The IAEs and ITAEs under the proposed controller are IAEσ = 3.64,
IAEω = 1.70, IAEr = 424.95, IAEv = 116.73, ITAEσ = 28.16, ITAEω = 15.83,
ITAEr = 4480.8, and ITAEv = 1265.6. By contrast, the IAEs and ITAEs under the PD
controller are IAEσ = 3.75, IAEω = 2.33, IAEr = 797.86, IAEv = 243.22, ITAEσ = 30.55,
ITAEω = 25.12, ITAEr = 13900, and ITAEv = 4695.2. It is not difficult to find that the
IAEs and ITAEs under the PD controller are much larger than those under the proposed
controller. This means that the proposed controller can achieve better steady-state and
transient responses than the PD controller.

In summary, the simulation results indicate that the proposed neural adaptive fault-
tolerant controller can realize superior performance and good uncertainty rejection capabil-
ity, which guarantees the successful implementation of the spacecraft proximity operation.

5. Conclusions

This paper aimed to propose a neural, adaptive, fault-tolerant control scheme for the
integrated attitude and position control of spacecraft proximity operations in the presence
of unknown parameters, disturbances, and actuator faults. The proposed controller is made
up of a relative attitude control law and a relative position control law. Both the relative
attitude control law and relative position control law were designed by adopting the NNs to
approximate the upper bound of the lumped unknowns. By introducing the indirect neural
approximation, the proposed controller is more suitable for practical engineering, especially
considering the onboard computer has limited online calculation capability. The ultimate



Sensors 2022, 22, 1726 15 of 16

uniform boundedness of the overall closed-loop system can be achieved through Lyapunov
analysis. The proposed controller can ensure the relative attitude, angular velocity, position,
and velocity stabilize into the small neighborhoods around the origin. Lastly, simulation
results indicate the effectiveness and superior performance of the proposed control scheme.
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