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Abstract: Future network services must adapt to the highly dynamic uplink and downlink traffic.
To fulfill this requirement, the 3rd Generation Partnership Project (3GPP) proposed dynamic time
division duplex (D-TDD) technology in Long Term Evolution (LTE) Release 11. Afterward, the
3GPP RAN#86 meeting clarified that 5G NR needs to support dynamic adjustment of the duplex
pattern (transmission direction) in the time domain. Although 5G NR provides a more flexible duplex
pattern, how to configure an effective duplex pattern according to services traffic is still an open
research area. In this research, we propose a distributed multi-agent deep reinforcement learning
(MARL) based decentralized D-TDD configuration method. First, we model a D-TDD configuration
problem as a dynamic programming problem. Given the buffer length of all UE, we model the
D-TDD configuration policy as a conditional probability distribution. Our goal is to find a D-TDD
configuration policy that maximizes the expected discount return of all UE’s sum rates. Second, in
order to reduce signaling overhead, we design a fully decentralized solution with distributed MARL
technology. Each agent in MARL makes decisions only based on local observations. We regard each
base station (BS) as an agent, and each agent configures uplink and downlink time slot ratio according
to length of intra-BS user (UE) queue buffer. Third, in order to solve the problem of overall system
revenue caused by the lack of global information in MARL, we apply leniency control and binary
LSTM (BLSTM) based auto-encoder. Leniency controller effectively controls Q-value estimation
process in MARL according to Q-value and current network conditions, and auto-encoder makes up
for the defect that leniency control cannot handle complex environments and high-dimensional data.
Through the parallel distributed training, the global D-TDD policy is obtained. This method deploys
the MARL algorithm on the Mobile Edge Computing (MEC) server of each BS and uses the storage
and computing capabilities of the server for distributed training. The simulation results show that
the proposed distributed MARL converges stably in various environments, and performs better than
distributed deep reinforcement algorithm.

Keywords: dynamic TDD; MARL; leniency control; 5G and B5G; decentralized network

1. Introduction

Mobile data traffic is forecasted to grow significantly because of the rapid change in
patterns of application services and massive explosion in use of connected devices. On the
other hand, 5G and B5G (beyond 5G) network needs to provide UEs with services in
different scenarios, such as URLLC, IoT, and IoV [1]. The behavior of UEs in these scenarios
is also different. This is to say, the volume and pattern of network traffic will change
rapidly. In response to this sudden surge, D-TDD is chosen as a possible solution [2,3].
The traditional static TDD (S-TDD) synchronizes the uplink/downlink (UL/DL) slots
ratio configuration of all BSs. However, D-TDD technology dynamic changes the ratio of
downlink/uplink slots for traffic adaptation. This bring two gains to the system [4]:
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(1) High Time Resource Utilization: Since S-TDD fix ratio of UL/DL, the probability
that the ratio does not fit traffic pattern increases. This causes the situation, for example,
where no data are transmitted in the downlink time slot because the ratio of downlink slots
is less than ratio of downlink services. In contrast, D-TDD dynamic configures UL/DL
slots ratio, which improve time resource utilization [5,6].

(2) Low Latency: D-TDD can also reduce latency [7]. This is because dynamic ratio of
UL/DL configuration reduces the queue length of buffer.

However, flexible UL/DL ratio configuration can future result in cross-link interface
(CLI) [8]. Compared with inter-BS interference, CLI has a greater impact on uplink trans-
mission. This is caused by unequal uplink and downlink transmission power. Due to
hardware limitations, transmit power of UE’s mobile device is usually less than transmit
power of BS. Therefore, the interference power generated by the downlink transmission of
neighboring BSs seriously affect the quality of uplink transmission service. On the other
hand, 5G NR provides more flexible duplex pattern for D-TDD, but it still lacks a D-TDD
configuration scheme [9]. So the adaptive dynamic TDD configuration scheme becomes an
important research subject. Article [10] considers UE association and D-TDD configuration,
then proposes a joint solution. Article [11] proposes successful approximation of fixed
point (SAFP) and resource muting for dominant interference (RMDI) algorithm to solve the
D-TDD configuration problem.

The above existing work on D-TDD generally uses a centralized solution, which has
two shortcomings: signaling overhead and control delay. First, the centralized solution
needs to be deployed on a centralized controller or cloud servers. The centralized solu-
tion requires transmission of data from end devices to a centralized controller or cloud
server [12], which leads to high transmission, computing and signaling costs [13]. Secondly,
the transmission of data and the issuance of control commands in centralized solution cause
additional delays. Coupled with the calculation time of the algorithm, many scenarios and
services, such as URLLC [14], cannot accept the high time cost of a centralized solution.
Moreover, 5G and B5G network topology is more complex and provides different types of
services to UE, which puts forward higher requirements to D-TDD technology. According
to the paper [15], 5G and B5G network should be concise and expandable, and centralized
solutions reduce the expandability of network.

Coping with this issue, a distributed solution becomes an option. In contrast with
centralized schemes, distributed solutions can improve computation efficiency by parallel
execution at distributed locations. Considering that the wireless communication network
is a natural distributed system, a decentralized solution can be distributed deployed in
each BS. Combined with MEC technology, data collection and related computing tasks are
performed by MEC servers. This reduces the control delay and signaling overhead. In the
paper [16], the system-level simulation of centralized and decentralized dynamic TDD
resource allocation schemes were conducted. The results show that distributed D-TDD
improves resource utilization and reduces latency.

In recent years, MARL, as a new pattern of the decentralized solution, has attracted
the attention of many researchers [17]. MARL expends reinforcement learning to the field
of the multi-agent environment. The task of learning in a multi-agent environment is
more complicated than that in a single-agent environment, because agent interacts with
environment and other agents at the same time, which increases the non-stationarity of
the learning environment. In order to improve the performance of learning in a multi-
agent environment, researchers generally use four methods: (1) Extended reinforcement
learning: extend RL to multi-agent environment directly; (2) Learning communication:
agent communicates with each other to complete learning task; (3) Learning cooperation:
agent learns to cooperate without communication; (4) Agents modeling agents: agent
reason about the behaviors of other agents by predicting other agents.

In addition to MARL, federated learning (FL) is also seen as a distributed learning
solution. FL is a machine learning method in which distributed learning nodes (e.g.,
mobile devices) collaboratively train a model under the orchestration of a central controller



Sensors 2022, 22, 1746 3 of 20

(e.g., service provider), while keeping the training data decentralized [18]. According to
paper [19], FL can be divided into three categories: (1) Horizontal Federated Learning:
datasets in distributed nodes share the same feature space but are different in samples;
(2) Vertical Federated Learning: datasets in distributed nodes differ in feature space but
share the same feature space; (3) Federated Transfer Learning: datasets in distributed
nodes are different in samples and feature space. Decentralized training data can mitigate
the privacy and overhead issues of traditional centralized machine learning. Thus, some
researchers give rise to the idea of federated reinforcement learning (FRL) which can be
considered as an integration of FL and RL [20]. According to paper [21], MARL research
is similar with FRL research [22], but FRL has advantages of high privacy protection and
wide application scenarios. Therefore, the paper [23] proposed a federated RL-based
channel resource allocation framework for 5G/B5G networks, and suggested collaborating
learning estimates for faster learning convergence. In the paper, the authors deploy local
learning models (LLMs) and global learning models (GLMs) in distributed nodes (UE) and
centralized controllers (APs), respectively. Every UE integrates locally updated value in a
federated ACK (FACK) message, which is fed to APs for training GLM. UE trains LLM
combining the feedback from the local exploration and the Q-value estimated by GLM.

FRL has advantages of high privacy protection and wide application scenarios, but to
the best knowledge of the authors, almost all FRL solutions cause additional signaling
and data transmission. This is because FRL based solutions require a centralized server
to control the interaction of distributed nodes. Considering our motivation for designing
a decentralized solution: avoiding additional signaling and data transmission. Learning
cooperation is a suitable MARL method. Each agent makes policy decisions based on
local observations without information of other agent. Furthermore, we need to solve
two problems in learning cooperation: (1) The non-stationarity of agent learning environ-
ment [24] caused by lack of global state information; (2) Relative over-generalization: a
sub-optimal policy in joint action space is preferred over an optimal policy for distributed
agent [25]. Consider in the field of wireless communication, for example, each BS (seen
as an agent) needs to configure UL/DL slots ratio (seen as an action) according to service
buffer and channel conditions of the intra-BS UE (seen as local observations). For the
lack of system configuration information, it is difficult for a BS to learn the impact of
inter-BS interference on data rate (seen as a local reward) through exploration. In other
words, from the perspective of distributed agents, the agent’s decision-making process no
longer meets the Markov decision-making conditions [24]. This is the non-stationarity that
distributed MARL encounters. On the other hand, each BS can only obtain transmission
rate information itself, and cannot obtain the influence itself’s D-TDD configuration on the
overall system rate (sum of each BS’s UL/DL transmission rate.). This leads to a BS making
a resource allocation decision which is most beneficial to itself, thereby reducing the overall
system rate. This is the relative over-generalization that MARL needs to face.

Even though several standard activities and related studies exist in the literature,
providing efficient D-TDD configuration in 5G and B5G network still remains an open
research area. In fact, the problem is complex and multifaceted, and, therefore, no single
technology seems to be able to provide an effective solution. To the best of our knowledge,
none of the existing studies proposed a fully decentralized solution to solve the problem
of D-TDD configuration. Therefore, in this paper, we apply leniency control based MARL
(LC-MARL) and propose a fully decentralized D-TDD configuration scheme to effectively
accommodate different traffic demands of uplink/downlink service. Our contribution is:

• We formulate D-TDD configuration problem as a dynamic programming problem,
and design a distributed MARL based decentralized solution;

• In order to obtain a higher overall system gain of distributed MARL, we apply a
leniency control based learning cooperation method. Leniency controller reduces the
influence of non-stationary learning environment on agent by effectively controlling
the Q value estimation in MARL according exploration level and reward (buffer length
under D-TDD configuration);
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• BLSTM based binary auto-encoder is designed to extra the features of high dimen-
sional time series and generate binary hashing-code, which increases the ability of
leniency control;

• The proposed fully decentralized D-TDD configuration scheme requires no informa-
tion interactions between BSs, which save the resource caused by transmission of
control signaling and data.

2. Materials and Methods
2.1. System Model
2.1.1. Network

Figure 1 illustrates a cellular wireless network, where each hexagon corresponds to
one BS coverage area. UEs are distributed as a Poisson point process ΦUE with density
λ in each BS coverage area. We denoted UEs by u ∈ U = {1, 2, . . . , Nue} which Nue is
number of UEs. BS are denoted by b ∈ B = {1, 2, . . . , Nbs} which Nbs is the number of BS.
Each BS uses orthogonal frequency-division multiplexing (OFDM) transmission method to
provide UEs with data transmission services. With OFDM, UEs connect to the same BS
are orthogonal with each other and no intra-BS interference exists. We assume that all BSs
reuse the same frequency and bandwidth resources, which lead to inter-BS interference.
Let c ∈ C = {1, 2, . . . , Nc} denote reused orthogonal sub-channels of each BS, with Nc is
the number of orthogonal sub-channels.

Figure 1. Wireless network.

Thus, path loss of UE u between BS b on channel c is

PLc
u,b = 32.4 + 21log10(du,b) + 20log10( fc) (1)

where du,b is the distance between UE u and BS b, and fc denote the frequency of sub-
channel. We compute the channel gain at time t of the transmission between UE u and BS b
over sub-channel c as follows:

gc
u,b = |hc

u,b|PLc
u,b (2)

where hc
u,b is the small-scale fading component. Moreover, each UE selects BS which

provides the max RSRP as service BS, and sets the value of ηu,b to 1, which indicates the
association between UE u and BS b.

2.1.2. 5G NR Duplex Pattern

Time Division Long Term Evaluation (TD-LTE) fixes each radio frame to 10 slots,
and the time length of each slot is 1 millisecond. In addition, uplink and downlink duplex
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pattern of TD-LTE is fixed. This means that the number of uplink and downlink time slots
cannot be adjusted according to the service buffer situation. In order to improve the quality
of service for UEs, 5G NR provides a variety of radio frame structure settings, and the
uplink and downlink duplex pattern is more flexible.

The 5G defines a numerology parameter µ ∈ {0, 1, 2, 3, 4}. The 5G NR specifies
five physical layer numerologies, which result in different sub-carrier spacing (SCS) and
slot durations. For the sake of paper readability, we summarized the 5G NR supported
transmission numerology and relevant information in Table 1. For the details, the SCS and
slot duration are calculated by 15 ∗ 2µ and 1/2µ, respectively. The 5G NR still fixes the
number of sub-frames in each radio frame and the number of symbols in each slot with 10
and 14. However, we can change the number of slots in a sub-frame which is calculated
by 2µ.

In the 5G NR protocol, BS informs UE of uplink/downlink pattern and time slot
configuration through broadcast or RRC configuration message. The key parameter of
uplink/downlink pattern is UL/DL transmission periodicity, denoted as δ. δ indicates
the repeated period of UL/DL pattern. According to different Numerology parameter
configuration µ, δ value has different options (see Table 2). For example, when µ = 2, δ
can only be set to 1.25 ms or 2.5 ms. Moreover, the 5G NR implements symbol-level time
division duplex and sets time slots configuration through several parameters:

• dslots: the number of downlink time slots after the start of transmission period.
• uslots: the number of uplink time slots before the end of transmission period.
• dsym: the number of downlink symbols in the time slot after the last complete downlink

time slot.
• usym: the number of UL symbols in the end of a slot preceding the first full UL slot.

Table 1. Supported transmission numerologies and additional info.

µ SCS Number of Slots Per Frame Time Length of Slot

0 15 khz 10 1 ms
1 30 khz 20 0.5 ms
2 60 khz 40 0.25 ms
3 120 khz 80 0.125 ms
4 240 khz 60 0.0625 ms

The remaining symbols are regarded as flexible symbols which can be allocated
to uplink or downlink by dedicated configuration. So, we can obtain the transmission
direction τ of BS b at time t. When τb(t) = 1, UE receives downlink data transmitted by BS,
and when τb(t) = 0, UE sends uplink data to BS.

Table 2. Supported transmission numerologies and period of UL/DL pattern.

δ (ms) µ SCS (kHz)

0.625 3 120
1.25 2, 3 60, 120
2.5 1, 2, 3 30, 60, 120

2.1.3. Problem Formulation

We consider a static power transmission scheme, where uplink transmission power of
all UEs is the same, and downlink transmission power of all BSs is also the same. Uplink
transmission power and downlink transmission power between UE u and BS b on each sub-
channel c are denoted as Pul

u,b and Pdl
u,b, respectively. In order to ensure the fairness of UEs,

we use a round-robin (RR) algorithm for sub-channel resource allocation. If sub-channel c
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is allocated to UE u, we set the indicator κc
u,b to 1, otherwise 0. Therefore, the uplink and

downlink transmission SINR of UE u at time t can be written as Equations (3) and (4).

γul
u (t) =

∑b∈B ∑c∈C ηu,b · κc
u,b · P

ul
u,b · g

c
u,b

σ2 + ∑u∈U ∑b∈B ∑c∈C Iul
u,b(t) + ∑u∈U ∑b∈B ∑c∈C Idl

u,b(t)
(3)

γdl
u (t) =

∑b∈B ∑c∈C ηu,b · κc
u,b · P

dl
u,b · g

c
u,b

σ2 + ∑u∈U ∑b∈B ∑c∈C Iul
u,b(t) + ∑u∈U ∑b∈B ∑c∈C Idl

u,b(t)
(4)

Iul
u,b(t) = (1− τb(t))ηu,b · κc

u,b · P
ul
u,b · g

c
u,b (5)

Idl
u,b(t) = τb(t)ηu,b · κc

u,b · P
dl
u,b · g

c
u,b (6)

where σ2 is additive white Gaussian noise power spectral density, Iul
u,b(t) and Idl

u,b(t) are UL
and DL interference, respectively. Furthermore, UL and DL transmission rate rul

u (t) and
rdl

u (t) of UE u are computed as follows:

ru
ul(t) = BW · log2(1 + γul

u ) (7)

ru
dl(t) = BW · log2(1 + γdl

u ) (8)

where BW is the bandwidth of sub-channel. We assume $ul
u (t) and $dl

u (t) are the UL/DL
packet size generated by UE u at time t, then we can obtain total uplink buffer length Ωul(t)
and total downlink buffer length Ωdl(t) by

Ωul(t) = ∑
b∈B

Ωul
b (t) = ∑

b∈B
∑
u∈b

ωul
u (t) = ∑

b∈B
∑
u∈b

(ωul
u (t− 1) + $ul

u (t)− ru
ul(t)) (9)

Ωdl(t) = ∑
b∈B

Ωdl
b (t) = ∑

b∈B
∑
u∈b

ωdl
u (t) = ∑

b∈B
∑
u∈b

(ωdl
u (t− 1) + $dl

u (t)− ru
dl(t)) (10)

where Ωul
b (t), Ωdl

b (t), ωul
u (t) and ωdl

u (t) are uplink buffer length of BS b, downlink buffer
length of BS b, uplink buffer length of UE u and downlink buffer length of UE u.

In this research, our goal is to find a D-TDD configuration policy π(α|(Ωul(t), Ωdl(t))
= (x, y)) that maximizes the expected discount return of all UE’s sum rate. That is to
say, the expected discount return of all UE’s sum rate increases means the UE uplink and
downlink data are transmitted in time. In order to achieve this goal, we obtained the utility
function f (t, (Ωul(t), Ωdl(t)) = (x, y)) described in Equation (11).

f (t, (Ωul(t), Ωdl(t)) = (x, y)) = E[
∞

∑
∆t=0

(γ∆t mod Nt · rall(t + ∆t))|(Ωul(t), Ωdl(t)) = (x, y)] (11)

where Nt is the slot number of a radio frame, and rall(t) = ∑b∈B((1− τb(t))∑u∈U ηb(t)ru
ul(t)

+ τb(t)∑u∈U ηb(t)ru
dl(t)) represents the sum rate of all UE. Then, D-TDD configuration

problem can be formulated as:

(P1) : minπ(α|(Ωul(t),Ωdl(t))=(x,y)) f (t, (Ωul(t), Ωdl(t)) = (x, y)))
s.t. C1: u ∈ U, b ∈ B

C2: τb(t), ηu,b, κc
u,b = 0or1

C3: ∑b∈B ηu,b = 1, ∑b∈B ∑u∈U κc
u,b = 1

(12)

where C1, C2, and C3 are the constraints of indicators, which define that each UE only
connects to one BS and sub-channel of each BS cannot reuse. Formulated problem P1 is a dy-
namic programming problem because of the existence of multiple discrete variables and the
nonlinear function form. A dynamic programming problem is NP-hard problem because it
combines the difficulty of optimizing over discrete variables with challenges of handling
nonlinear functions. Therefore, we are motivated to design an efficient MARL solution.
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2.2. Proposed Method

In order to reduce control delay and signaling overhead, we deploy a fully distributed
MARL algorithm at the edge of the network (each BS) to obtain D-TDD configuration. Each
BS learns D-TDD configuration by itself based on local observations under the condition of
lacking global information (buffer length, D-TDD configurations, and rates of other BS).
This leads to two problems:

• Non-stationary learning environment: The lack of other BS’s buffer length and D-TDD
configurations makes the learning environment of each BS non-stationarity. The non-
stationarity environment leads to the reward fluctuating greatly under the same local
observation and action, which increases the difficulty of learning.

• Relative over-generalization: The lack of other BS rates means that BS prefer to select
a sub-optimal action in a joint action space. This results in that a certain BS selects
a sub-optimal D-TDD configuration which increases its own data rate but increases
interference to other BS. At last, the overall system rate is decreased.

Refer to the experience of applying lenient learning to genetic algorithm, we apply
LC-MARL to solve those problem.

In this section, we introduce the proposed LC-MARL based decentralized D-TDD
configuration method in three parts. First, we introduce reinforcement model. Second, we
explain the principle of LC-MARL. Last, the detail of proposed method is illustrated.

2.2.1. Reinforcement Learning

In reinforcement learning, agents continuously collect states from environment and
choose action based on feedback rewards. In our considered scenario, agents are BSs,
and actions are candidate D-TDD configurations (UL/DL slots ratio in a frame). After BSs
choose the configuration, the network run for the next time frame and feedback of network
performance are collected to calculate the rewards of the corresponding actions. We define
state, action, and Q-value as follow.

1. State: we format the state st
b of BS b at time slot t to a tuple, where the element is

uplink and downlink buffer length of BS b. This is described as:

st
b = (Ωul

b (t), Ωdl
b (t)) (13)

where Ωul
b (t) and Ωul

b (t) represents the uplink and downlink buffer length of BS b at
time slot t. We normalize all of the state parameters values. In our proposed method,
the scheduling time interval is one frame, that is, Nt time slots. Instead of conventional
reinforcement learning that only considers the state of one time slot, we consider
states of historical time sequence with Nt time slots in a frame for representing the
state Sb(t) of BS b at scheduling moment t. Thus, Sb(t) can be formulated as:

Sb(t) = (st−Nt
b , st−Nt+1

b , . . . , st−1
b ) (14)

where the number of Nt is obtained by Table 1 according to numerology µ. BS b
performs D-TDD configuration at scheduling moment t. After the Nt time slots, BS
obtains the next state Sb(t + Nt) feedback by the wireless environment. Then, BS
b performs the configuration at the scheduling moment tNt . The process of state
transition is described in Figure 2, where the termination condition is that all UE
buffers are cleared.

2. Action: in D-TDD configuration task, the action space W of each BS is the available
configurations of UL/DL ratio. According to [26], we consider that there are six
different types of duplex pattern. Thus, the action of BS b at time t is defined as

αb(t) = (Nup, Ndown) ∈W

W = {(1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4)} (15)
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where Nup and Ndown are uplink and downlink ratio. BS selects action following
ε − greedy policy according to Q-value of tuple (Sb(t), αb(t)), and the calculation
method of Q-value is described in the next part.

3. Q-value: after agent selects action, the reward Rb(t) is calculated to evaluate the feed-
back of tuple (Sb(t), αb(t)) and agent transits to the next state Sb(t+ Nt). As described
in Equation (11), our purpose is to transmit uplink an downlink services data in time.
Therefore, the reward function of tuple (Sb(t), αb(t)) can be defined as:

Rb(t) = −(r
up
b (t) + rdown

b (t)) = −(∑
u∈b

ωul
u (t + Nt) + ∑

u∈b
ωdl

u (t + Nt)) (16)

In the Formula (16), rul
b (t) and rdl

b (t) denote the uplink and downlink reward at
time t, which are negatively correlated with the sum of intra-BS UE uplink buffer
length ωul

u (t + Nt) and downlink buffer length ωdl
u (t + Nt) at the beginning of the

next scheduling moment t + Nt. In terms of Bellman Equations for deterministic
policies [27], the Q-value of tuple (Sb(t), αb(t)) can be written as:

Q(Sb(t), αb(t)) = Rb(t) + γmaxα∈W Q(Sb(t + Nt), αb(t + Nt)) (17)

For high dimensions of states, it is difficult to maintain a Q-table for agents. So we
use a neural network (NN) to estimate the Q-value. Agents save (Sb(t), αb(t), Sb(t +
Nt), R(Sb(t), αb(t)) of each exploration into experience reply memory (ERM). Dur-
ing training, agents select a training mini-batch from ERM to train the online NN. The
benchmark value Y(Sb(t), αb(t)) for online NN is calculated by

Y(Sb(t), αb(t)) = Rb(t) + γQ∗(φ(Sb(t + Nt)), maxα∈W Q(φ(Sb(t + Nt)), αb(t + Nt), θ), θ∗) (18)

where θ is the hyper-parameter vector of neural network, φ(Sb(t + Nt)) is the features
extracted by LSTM of the next time series state. Q∗ means the Q-value calculated by
another NN called target NN. In the process of benchmark value calculation, online
NN is used for selecting the action αb(t + Nt) of the next state Sb(t + Nt), and target
NN is used for estimating the Q-value of the next state tuple (Sb(t + Nt), αb(t + Nt)).
Every G steps, the hyper-parameter of online NN is copied to target NN. This method
prevents Q-value over-estimation issue [28,29].

In distributed MARL, each BS is an agent that independently completes a learning
task based on their local observation, which saves the resources used by data transmission.
However, that would cause the problem of no-stationary environment and relative over-
generalization. So, we apply the LC-MARL algorithm to solve this problem. In the
following part, we introduce the LC-MARL in terms of leniency control process and auto-
encoder based hashing process.
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Figure 2. State transition diagram.

2.2.2. Leniency Control Based Distributed MARL

The idea of leniency control is derived from the application of lenient learning in [30] by
Potter and De Jong, they applied lenient learning to extend traditional GA which improves
the performance of solving complex problems. Ref. [31,32] applied lenient learning to
MARL. In [31], the author verified that leniency control can effectively prevent relative
over-generalization. The motivation of [32] is to help co-evolutionary algorithms converge
towards a sub-optimal policy, which is a difficult task because the noise generated by other
agent’s exploration strategy makes learning environment non-stationary. When we use
distributed MARL to solve the D-TDD configuration problem, the noise is caused by other
BS’s D-TDD configuration strategy. So, we apply a leniency control to solve the problem
of non-stationary learning environment in D-TDD configuration tasks. As described in
Equation (19), leniency controller maintains a leniency value for each tuple (Sb(t), αb(t)).

l(Sb(t), αb(t)) = 1− e−K∗T(Sb(t),αb(t)) (19)

where K is a leniency moderation factor, and T(Sb(t), αb(t)) is temperature function. Each
state–action pair initially assigned a defined maximum temperature value, and tempera-
ture value T(Sb(t), αb(t)) decayed each time that the state–action pair is visited. Follow-
ing the update, Tt(Sb(t), αb(t)) is decayed using a discount factor β ∈ [0, 1], such that
Tt+1(Sb(t), αb(t)) = βTt(Sb(t), αb(t)). Thus, we can find that leniency value of a state–
action pair decreases when the times it is visited increases. Given a TD-Error δ, where
δ = Y(Sb(t), αb(t)) − Q(Sb(t), αb(t), θ), leniency control is applied to the calculation of
benchmark value as follows:

Yl(Sb(t), αb(t)) =
{

Q(Sb(t), αb(t), θ) + δ δ > 0 or x > l(Sb(t), αb(t))
Q(Sb(t), αb(t), θ) δ ≤ 0 and x ≤ l(Sb(t), αb(t))

(20)

The random variable x ∼ U(0, 1) is adopted to ensure that an update on a negative
δ is executed with a probability 1− l(Sb(t), αb(t)). As shown in Equation (20), when the
TD-error of the Q-value is less than 0, the lenient controller tends to ignore the sampling
of this action. This reduces the impact of noise on learning in a non-stationary learning
environment. On the other hand, the lenient controller does not ignore all samples when TD-
error is less than 0, but effectively ignores it with probability 1− l(Sb(t), αb(t)). According
to Equations (19) and (20), leniency control tends to forgive (ignore) sub-optimal Q-value
iteration in the initial exploration phase. As the agent explores, the probability of leniency
control ignoring the sub-optimal Q-value decreases. That is to say, an agent is less lenient to
a frequently visited state–action tuple Q-value iteration, while quite lenient in unexplored
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areas. This also avoids agents iterating towards a local optimum instead of a global
optimum, that is, a relative over-generalization. Thus, leniency control increases the ability
of convergence towards the globally optimal solution in distributed MARL. The specific
process of LC-MARL is shown in Figure 3.
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Figure 3. Process of LC-MARL.

LC-MARL fulfill decentralized D-TDD configuration task, but it has a shortcoming:
weak learning ability in a high-dimensional space environment. In D-TDD configuration
learning task, the state is defined as a time series of the UE buffer, whose space dimension
is high due to that the number of slots in a frame is large. So, maintaining a leniency value
of each visited state–action pair is no longer feasible. Motivated by this shortcoming, we
apply a binary auto-encoder based self-supervised temporal hashing method to improves
the learning ability of LC-MARL in a high-dimensional environment.

2.2.3. Binary Auto-Encoder Based Self-Supervised Temporal Hashing

Recently, many studies focus on the application of auto-encoder to reinforcement
learning. For example, auto-encoders were adopted to automatically cluster states in a
meaningful way in Montezuma’s Revenge [33]. So, we apply binary auto-encoder to reduce
the dimension of Sb(t). As shown in Figure 4 binary auto-encoder consists of an encoder
layer and a decoder layer which contains two decoders named backward binary decoder
and forward binary decoder, respectively.

Figure 4. Binary auto-encoder.
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Encoder layer extracts the feature of inputs and output a lower dimension binary
code, then decoder layer reconstructs the inputs from binary code. The loss function
of auto-encoder is the mean squared error between decoder layer’s outputs and inputs.
After training, the encoder layer of binary auto-encoder serves as a temporal hashing
function Φ(Sb(t)) ∈ {1,−1}k), which reduce the dimension of state to k. So, we use
hash-key output by Φ(Sb(t)) to maintain leniency value of state–action pair, which can be
rewritten as

l(Sb(t), αb(t)) = 1− e−K∗T(Φ(Sb(t)),αb(t)) (21)

Different from [33], state is defined as time series in D-TDD configuration task. So as
illustrated in Figure 5, a novel variant of LSTM named BLSTM is adopted to generate a
binary hash code in encoder layer.
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Figure 5. Binary LSTM.

The traditional method of extracting binary features of time series is to add a binary
output layer to the LSTM-based feature extraction layer. This method is more likely to lose
information in the time series. Therefore, we binarize the hidden state ht of LSTM and add
it to recurrent calculation process. At the same time, in order to output effective binary
information and avoid gradient explosion, we added a batch normalization layer to output
normalized LSTM cell state information ct. The detailed implementation of BLSTM is given
as follows:

ft = σ(Wx f xt + Ub f bt−1 + Mc f ◦ ct−1 + b f ) (22)

it = σ(Wxixt + Ubibt−1 + Mci ◦ ct−1 + bi) (23)

ot = σ(Wxoxt + Ubobt−1 + Mco ◦ ct−1 + bo) (24)

zt = φ(Wxmxt + Ubm ◦ bt−1 + bm) (25)

ct = batch_norm( ft ◦ ct−1 + it ◦ zt) (26)

ht = ot ◦ ct (27)

bt = sgn(ht) (28)

where ◦, σ and φ denotes the element-wise multiplication, sigmoid function, and tanh function.

2.2.4. Details of Proposed Method

We can find the process of proposed method as shown in Algorithm 1. First, we initial-
ize ERM, online NN, and target NN. Then, the algorithm enters LC-MARL training stage.
The training phase contains M episodes. In each episode, agents learn by continuously
exploring environment until it satisfies termination condition. In D-TDD configuration task,
the termination condition is that all UE buffers are cleared or exploration step reaches the
maximum value. In each step, each BS uses online NN to estimate Q-value of all available
duplex patterns under local observation Sb(t), and then selects the duplex patterns αb(t)
according to ε-greedy strategy. After Nt time slots, the wireless network environment
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feeds back the reward of each BS. Leniency controller of each agent calculates the leniency
value of state–action pair (Sb(t), αb(t)) in this step, and stores the data of this step into
ERM. Finally, each agent extracts a mini-batch from the ERM to train the online network,
and synchronizes the online NN and target NN every G step.

Algorithm 1 LC-MARL based decentralized D-TDD configuration

1: Initialize the wireless network environment
2: Initialize the ERM of each BS
3: Initialize the online NN of each BS with weight θb
4: Initialize the target NN of each BS with weight θ∗b = θb
5: /* Traning */
6: for episode = 1, 2, . . . , M do
7: Initialize uplink and downlink buffer length of each UE
8: t = 0
9: while the termination condition is not satisfied do

10: /*Action Seclect*/
11: for BS b in B do
12: Observe local state Sb(t)
13: Use online NN to estimate Q-value of all (Sb(t), αb), ∀αb ∈W
14: Choose duplex pattern αb(t) = argmaxffb∈WQ(Sb(t), ffb) with probability

1− ε
15: end for
16: Global duplex pattern α(t) = [α1(t), . . . , αNbs(t)]
17: Feed global duplex pattern to wireless communication environment
18: Calculate the SINR of each UE u according to Equations (3) and (4)
19: Calculate reward Rb(t) and evolved state Sb(t + Nt) of each BS b
20: /*Online NN Training*/
21: for BS b in B do
22: Calculate leniency value l(Sb(t), αb(t)) according to Equation (21)
23: Store experience tuple (Sb(t), αb(t), Rb(t), Sb(t + Nt), l(Sb(t), αb(t))) to ERM
24: Sample a mini-batch of ERM
25: Calculate benchmark value according to Equation (20)
26: Perform gradient descent to train online NN of BS b
27: end for
28: /* parameter synchronization */
29: Every G steps, set θ∗b = θb
30: t = t + Nt
31: end while
32: end for
33: Output trained online NN of each BS
34: Obtain D-TDD configuration of each BS by Formula (29)
35: Obtain global D-TDD configuration by Formula (30)

After training process, we obtain each BS’s D-TDD configuration policy πb(αb|Sb(t))
by trained online NN of each BS, as shown in Equation (29).

πb(αb|Sb(t))←
{

1 i f α = A∗, A∗ = argmaxα∈W Q(φ(Sb(t)), αb(t), θ)
0 else

(29)

Because each BS obtains its own D-TDD configuration through independent training,
we obtain the global D-TDD configuration policy π(α|S(t)) by Formula (30).
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π(α|S(t)) = ∏
b∈B

πb(αb|Sb(t))

α = [α1, α2, . . . αNbs ]

S(t) = [S1(t), S2(t), . . . SNbs(t)] (30)

It is worth mentioning that because LC-MARL independently learns D-TDD configu-
ration strategy of each BS, it does not require UE service information of other BSs, which
reduces signaling overhead and avoids data transmission between BSs. At the same time,
our proposed method can be deployed on the MEC. Compared with centralized method,
our proposed method is located closer to wireless network, which reduces the time for
transmitting D-TDD configuration decisions to wireless network.

3. Results

In this section, we carry out a simulation to validate our proposed lenient-MARL based
D-TDD duplex control framework. First, we investigate the convergence of our proposed
MARL algorithms. Second, we evaluate the performance of the framework in terms of
overall system rate and each BS data transmission rate. For the simulation environment,
we set up a server powered by a dual Intel(R) Xeon CPU 2.40 GHz 4-cores and 16 GB RAM.
We use python3.8 for the wireless communication simulation. Further, we build BLSTM,
auto-encoder, and deep learning static graph with tensorflow1.0.

A summary of the wireless environment simulation parameters is provide in Table 3.
We assumed that each BS uses the same frequency. All UEs are distributed within BS
coverage area, and the number of UEs in the coverage area follow Poisson distribution
with expectation λUE. Each UE selects BS which provides the max reference signal received
power RSRP as a serving BS. λh and λl represent the high-load and low-load packet gener-
ation rates, respectively. The UE uplink and downlink high-load probability is represented
by phigh

UL and phigh
DL . Moreover, four types of traffic are considered in our simulation, namely

high uplink load, high downlink load, high load, and low load. The specific parameters of
the four flow types are shown in Table 4.

Table 3. Simulation parameters of wireless environment.

Parameter Value

BS number 2, 3, 4, 5
Sub-channel number 10
Sub-channel bandwidth 1 Mhz
BS power 46 dbm
BS distance 500 m
λUE 8
λh 325
λl 125

Table 4. Traffic type.

Traffic Type phigh
UL phigh

DL

High uplink load 0.8 0.2
High downlink load 0.2 0.8
High load 0.8 0.8
Low load 0.2 0.2

Table 5 summarizes the hyper-parameters of LC-MARL. In order to estimate Q-value
of time series state, we extract feature of the time series state through the LSTM layer.
Then, we construct a three-layer fully connected neural network, with the number of
cells in each layer decreasing. For each learning step, Adam is adopted to optimize the
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hyper-parameter of online NN. This method computes individual adaptive learning rates
for different parameters from estimates of first and second moments of the gradients [34],
and the initial learning rate is shown in Table 5. The discount rate is 0.9. A higher discount
rate value enhances the effect of future reward on Q-value and encourages agents to learn
a policy to reach the termination faster. In this case, that means the data in the buffer are
transmitted in time.

Table 5. Hyper-parameters of LC-MARL.

Component Hyper-Parameter Setting

Reinforcement Learning

Learning rate 0.005

Discount rate 0.9

Synchronization steps 30

Memory size 1500

Batch size 100

Maximum step in a episode 500

Cell number 20

LSTM hidden state number 5

Hidden layer number 3

ε-greedy
Initial value 1

Minimum value 0.05

Leniency control

MaxTemperatur 1

Temperature modification coefficient K 2

Initial max temperature rate 1

Auto-encoder

Max temperature decay coefficient 0.999

Hash-key dimensions 5

Binary LSTM hidden state number 5

LSTM layer number 2

Figure 6a,b plot the convergence of our proposed LC-MARL algorithm with different
packet size. In the Figure, the x-axis and y-axis represents episode steps and total system
reward. It is clear that total system reward increases with continuous training. Unlike
Figure 6a,b has a larger total reward jitter.

For network performance analysis, we compare the proposed LC-MARL solution with
decentralized deep reinforcement learning (DDRL) in terms of overall system rate and
rate of distribute agents (each BS). For the detail of DDRL, we expand deep reinforcement
learning proposed by paper [26] to multi-agent domain, which is a common learning
cooperation MARL solution [35]. In DDRL based method, each BS obtains the D-TDD
configuration through parallel distributed learning. At each scheduling moment, BS
performs a D-TDD configuration based on state information of wireless environment,
and obtains reward and next state feedback from environment at next scheduling moment,
then stores data in memory. At each scheduling moment, BS trains a NN to estimate the
Q-value through memory replay method. Compared with our proposed method, DDRL
based method does not use auto-encoder based leniency control to avoid non-stationary
learning environment issue and relative over-generalization issue in MARL.
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(a) (b)

Figure 6. Convergence of LC-MARL.(a) packet size-550; (b) packet size-250;

Figure 7 shows the overall system rate of different traffic types with 4 SBs, where
overall system rate is the sum of each BS’s UL/DL transmission rate. In the Figure, the x-
axis and y-axis represents packet size and sum rate of all UEs. As shown in the Figure,
compared with DDRL based framework, our proposed method can reach a higher overall
system rate under all four traffic types.

(a) (b)

(c) (d)

Figure 7. Overall rate comparison in different traffic type. (a) high load; (b) low load; (c) high uplink
load; (d) high downlink load.
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To verify the performance of our proposed algorithm under different numbers of BSs,
we carried out simulations where the number of BSs is 2, 3, 4, and 5. The simulation results
are shown in Table 6, where RateDDRL and RateLC−MARL are the overall system rate of
DDRL based method and the overall system rate of LC-MARL based method. We reflect
the advantages of the proposed method through performance gain which is calculated by
the overall system rate of LC-MARL based method minus the overall system rate of DDRL
based method. As shown in Table 6, as the number of agents increases, the performance
gains of our proposed method are higher.

Table 6. Performance comparison in different BS numbers.

BS Number RateDDRL (bps) RateLC−MARL (bps) Performance Gain

2 896,956 932,579 35,623
3 1,003,520 1,031,180 27,660
4 1,174,080 1,237,370 63,290
5 1,193,120 1,281,630 88,510

We further evaluate the performance of our proposed framework by comparing the
distributed benefits of our framework and DDRL based solution. Figure 8 describes the
data rate of each BS and overall system rate under different packet sizes. It can be seen
from the Figure that our proposed framework can achieve a higher overall system rate
through distributed learning. Taking Figure 8d as an example, compared with our solution,
the DDRL based solution increases the data transmission rate of BS 2, but our solution
increases the overall system rate.

(a) (b) (c)

(d) (e) (f)

Figure 8. BS rate and overall rate comparison in different packet size.(a) packet size-250; (b) packet
size-300; (c) packet size-350; (d) packet size-400; (e) packet size-450; (f) packet size-500;
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4. Discussion

The curve in Figure 6b converges faster and has greater jitter. This is because the packet
size of simulation in Figure 6b is smaller than that in Figure 6a. For LC-MARL, the D-TDD
configuration policy is easier to learn with less network load. In D-TDD configuration task,
the termination condition of each episode is for all UE buffer to be cleared. So, in each
training episode, agent reaches the end of episode through fewer training steps, which
reduces the number of samples in each episode. Therefore, total system reward of each
episode jitter greatly. However, it is observed that total system reward gradually stabilizes
as the training progresses and converges at 110 episodes. In other words, the algorithm
completes exploration of scenarios with less load through less training.

As shown in Figure 7, compared to DDRL based framework our proposed control
framework performance well on overall system rate in all traffic types. This is because
DDRL based scheme is a fully decentralized MARL method, where the learning goal of
each BS is to improve service quality of BS rather than overall system rate. Although our
solution has the same learning goals as the DDRL based solution, we improve overall
benefits of fully distributed MARL method through proposed effective leniency control.
In addition, the overall system rate under high load traffic increases slowly, because the
system rate gradually reaches the limit of system capacity as the size of the data packet
increases under high load traffic.

As described in Figure 8, the DDRL based method is more likely to fall into local
optimum for the absence of effective global information. This is because a sub-optimal
policy in joint action space is preferred over an optimal policy for the distributed agents in
DDRL based method. This is the relative over-generalization issue in MARL. Compared
to DDRL based method our proposed method improves overall system rate by effectively
controlling the calculation process of the target Q-value according to Equation (20). Further-
more, auto-encoder improve the ability of leniency control to handle the high dimensional
learning environment in D-TDD configuration task. This also enhances the performance
of our proposed method. Moreover, as the number of BSs increases, the dimension of
the joint action space becomes higher. This leads to a more serious problem of relative
over-generalization. Therefore, the performance gain of the proposed method in Table 6
increases with the number of BSs increasing.

5. Conclusions

In this paper, we developed a D-TDD framework for 5G NR that allows each BS
dynamic adjust duplex pattern to adapt services buffer. In order to reduce signaling
overhead and control delay, we designed a distribute MARL based decentralized D-TDD
configuration solution. Further, our proposed LC-MARL based D-TDD configuration
method uses leniency control to enable BSs cooperate configure duplex pattern based
on local observations. LC-MARL is a learning cooperation method to improve MARL
performance. Different from learning communication method, learning cooperation means
agent maximizes their shared reward without communication. This is the reason why LC-
MARL can reduce signaling overhead and control delay. In order to verify the performance
of our proposed method, we perform our proposed method performance simulations in
different scenarios and compare them with another learning cooperation MARL method.
Simulation showed that the proposed MARL converged stably in various environments.
Compared with another learning cooperation method (DDRL), our solution provides data
rate gains. For our future work, we will continue to consider other available duplex method
in B5G technology.
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Abbreviations
The following abbreviations are used in this paper:

3GPP 3rd generation partnership project
5G 5th generation mobile communication technology
NR New radio
B5G Beyond 5G
URLLC Ultra-reliable and low latency communications
IoT Internet of things
IoV Internet of vehicle
D-TDD Dynamic time division duplex
S-TDD static time division duplex
LTE Long-term evolution
TD-LTE Time division long-term evaluation
MARL Multi-agent deep reinforcement learning
BS Base station
UE User
LSTM Long short-term memory
BLSTM Binary LSTM
MEC Mobile edge computing
UL Uplink
DL Downlink
LC-MARL Leniency control based MARL
DDRL Decentralized deep reinforcement learning
OFDM Orthogonal frequency-division multiplexing
NN Neural network
U The set of UE
B The set of BS
C The set of reused orthogonal sub-channels of each BS
µ Numerology parameter
δ UL/DL transmission periodicity
ηu,b Association indicator of UE u between BS b
τb(t) Transmission direction of BS b at time t

κc
u,b

Association indicator of UE u between BS b on
sub-channel c

γul
u (t) Uplink SINR of UE u at time t

γdl
u (t) Downlink SINR of UE u at time t

ru
ul(t) Uplink rate of UE u

ru
dl(t) Downlink rate of UE u

Ωul
b (t) Uplink buffer length of BS b

Ωdl
b (t) Downlink buffer length of BS b

ωul
u (t) Uplink buffer length of UE u

ωdl
u (t) Downlink buffer length of UE u

st
b State of BS b at time t

St
b Time series state of BS b at time t

αb(t) Action of BS b at time t
Rb(t) Reward of BS b fed by environment at time t
γ Discount factor
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Q(Sb(t), αb(t)) Q-value of tuple (Sb(t), αb(t))
Q(Sb(t), αb(t), θ) Q-value calculated by online NN
Q∗(Sb(t), αb(t), θ) Q-value calculated by target NN
θ Hyper-parameter of online NN
θ Hyper-parameter of target NN
Y(Sb(t), αb(t)) Benchmark value of tuple (Sb(t), αb(t))
l(Sb(t), αb(t)) Leniency value of tuple (Sb(t), αb(t))
K Leniency moderation factor
T(Sb(t), αb(t)) Temperature function of tuple (Sb(t), αb(t))
δ TD-Error
πb(αb|Sb(t)) D-TDD configuration policy of BS b
π(α|S(t)) Global D-TDD configuration policy

References
1. Parkvall, S.; Dahlman, E.; Furuskar, A.; Frenne, M. NR: The new 5G radio access technology. IEEE Commun. Stand. Mag. 2017,

1, 24–30. [CrossRef]
2. Lagen, S.; Agustin, A.; Vidal, J. Joint user scheduling, precoder design, and transmit direction selection in MIMO TDD small cell

networks. IEEE Trans. Wirel. Commun. 2017, 16, 2434–2449. [CrossRef]
3. Ardah, K.; Fodor, G.; Silva, Y.C.; Freitas, W.C.; Cavalcanti, F.R. A novel cell reconfiguration technique for dynamic TDD wireless

networks. IEEE Wirel. Commun. Lett. 2017, 7, 320–323. [CrossRef]
4. Kim, H.; Kim, J.; Hong, D. Dynamic TDD Systems for 5G and Beyond: A Survey of Cross-Link Interference Mitigation. IEEE

Commun. Surv. Tutor. 2020, 22, 2315–2348. [CrossRef]
5. Yang, H.H.; Geraci, G.; Zhong, Y.; Quek, T.Q. Packet throughput analysis of static and dynamic TDD in small cell networks. IEEE

Wirel. Commun. Lett. 2017, 6, 742–745. [CrossRef]
6. Jayasinghe, P.; Tölli, A.; Latva-aho, M. Bi-directional signaling strategies for dynamic TDD networks. In Proceedings of the 2015

IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden, 28
June–1 July 2015; pp. 540–544.

7. Kulkarni, M.N.; Andrews, J.G.; Ghosh, A. Performance of dynamic and static TDD in self-backhauled millimeter wave cellular
networks. IEEE Trans. Wirel. Commun. 2017, 16, 6460–6478. [CrossRef]

8. Kim, H.; Lee, K.; Wang, H.; Hong, D. Cross link interference mitigation schemes in dynamic TDD systems. In Proceedings of the
2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5.

9. Dao, N.N.; Noh, W.; Cho, S. Deep Reinforcement Learning-Based Hierarchical Time Division Duplexing Control for Dense
Wireless and Mobile Networks. IEEE Trans. Wirel. Commun. 2021, 20, 7135–7150.

10. Sapountzis, N.; Spyropoulos, T.; Nikaein, N.; Salim, U. Joint optimization of user association and dynamic TDD for ultra-dense
networks. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications, Honolulu, HI, USA,
16–19 April 2018; pp. 2681–2689.

11. Liao, Q. Dynamic uplink/downlink resource management in flexible duplex-enabled wireless networks. In Proceedings
of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017;
pp. 625–631.

12. Qiao, X.; Huang, Y.; Dustdar, S.; Chen, J. 6G vision: An AI-driven decentralized network and service architecture. IEEE Internet
Comput. 2020, 24, 33–40. [CrossRef]

13. Wang, Y.; Feng, G.; Sun, Y.; Qin, S.; Liang, Y.C. Decentralized Learning Based Indoor Interference Mitigation for 5G-and-Beyond
Systems. IEEE Trans. Veh. Technol. 2020, 69, 12124–12135. [CrossRef]

14. Li, Z.; Uusitalo, M.A.; Shariatmadari, H.; Singh, B. 5G URLLC: Design challenges and system concepts. In Proceedings of the
IEEE 2018 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 28–31 August 2018;
pp. 1–6.

15. Mu-gen, P.; Yao-hua, S.; Wen-bo, W. Intelligent-Concise Radio Access Networks in 6G: Architecture, Techniques and Insight. J.
Beijing Univ. Posts Telecommun. 2020, 43, 1.

16. Venkatasubramanian, V.; Hesse, M.; Marsch, P.; Maternia, M. On the performance gain of flexible UL/DL TDD with centralized
and decentralized resource allocation in dense 5G deployments. In Proceedings of the 2014 IEEE 25th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014;
pp. 1840–1845.

17. Althamary, I.; Huang, C.W.; Lin, P. A survey on multi-agent reinforcement learning methods for vehicular networks. In
Proceedings of the IEEE 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier,
Morocco, 24–28 June 2019; pp. 1154–1159.

18. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. Advances and open problems in federated learning. arXiv 2019, arXiv:1912.04977.

19. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol.
(TIST) 2019, 10, 1–19. [CrossRef]

http://doi.org/10.1109/MCOMSTD.2017.1700042
http://dx.doi.org/10.1109/TWC.2017.2664837
http://dx.doi.org/10.1109/LWC.2017.2776264
http://dx.doi.org/10.1109/COMST.2020.3008765
http://dx.doi.org/10.1109/LWC.2017.2738019
http://dx.doi.org/10.1109/TWC.2017.2723887
http://dx.doi.org/10.1109/MIC.2020.2987738
http://dx.doi.org/10.1109/TVT.2020.3012311
http://dx.doi.org/10.1145/3298981


Sensors 2022, 22, 1746 20 of 20

20. AbdulRahman, S.; Tout, H.; Ould-Slimane, H.; Mourad, A.; Talhi, C.; Guizani, M. A survey on federated learning: The journey
from centralized to distributed on-site learning and beyond. IEEE Internet Things J. 2020, 8, 5476–5497. [CrossRef]

21. Qi, J.; Zhou, Q.; Lei, L.; Zheng, K. Federated reinforcement learning: Techniques, applications, and open challenges. arXiv 2021,
arXiv:2108.11887.

22. Stone, P.; Veloso, M. Multiagent systems: A survey from a machine learning perspective. Auton. Robot. 2000, 8, 345–383.
[CrossRef]

23. Ali, R.; Zikria, Y.B.; Garg, S.; Bashir, A.K.; Obaidat, M.S.; Kim, H.S. A Federated Reinforcement Learning Framework for
Incumbent Technologies in Beyond 5G Networks. IEEE Netw. 2021, 35, 152–159. [CrossRef]

24. Tuyls, K.; Weiss, G. Multiagent learning: Basics, challenges, and prospects. AI Mag. 2012, 33, 41–41. [CrossRef]
25. Wei, E.; Luke, S. Lenient learning in independent-learner stochastic cooperative games. J. Mach. Learn. Res. 2016, 17, 2914–2955.
26. Tang, F.; Zhou, Y.; Kato, N. Deep reinforcement learning for dynamic uplink/downlink resource allocation in high mobility 5G

HetNet. IEEE J. Sel. Areas Commun. 2020, 38, 2773–2782. [CrossRef]
27. Szepesvári, C. Algorithms for reinforcement learning. Synth. Lect. Artif. Intell. Mach. Learn. 2010, 4, 1–103. [CrossRef]
28. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference

on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30.
29. Sewak, M. Deep q network (dqn), double dqn, and dueling dqn. In Deep Reinforcement Learning; Springer: Berlin/Heidelberg,

Germany, 2019; pp. 95–108.
30. Potter, M.A.; De Jong, K.A. A cooperative coevolutionary approach to function optimization. In International Conference on Parallel

Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 1994; pp. 249–257.
31. Palmer, G.; Tuyls, K.; Bloembergen, D.; Savani, R. Lenient multi-agent deep reinforcement learning. arXiv 2017, arXiv:1707.04402.
32. Panait, L.; Tuyls, K.; Luke, S. Theoretical advantages of lenient learners: An evolutionary game theoretic perspective. J. Mach.

Learn. Res. 2008, 9, 423–457.
33. Tang, H.; Houthooft, R.; Foote, D.; Stooke, A.; Chen, X.; Duan, Y.; Schulman, J.; De Turck, F.; Abbeel, P. # exploration: A study

of count-based exploration for deep reinforcement learning. In Proceedings of the 31st Conference on Neural Information
Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; Volume 30; pp. 1–18.

34. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
35. Hernandez-Leal, P.; Kartal, B.; Taylor, M.E. A survey and critique of multiagent deep reinforcement learning. Auton. Agents

Multi-Agent Syst. 2019, 33, 750–797. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2020.3030072
http://dx.doi.org/10.1023/A:1008942012299
http://dx.doi.org/10.1109/MNET.011.2000611
http://dx.doi.org/10.1609/aimag.v33i3.2426
http://dx.doi.org/10.1109/JSAC.2020.3005495
http://dx.doi.org/10.2200/S00268ED1V01Y201005AIM009
http://dx.doi.org/10.1007/s10458-019-09421-1

	Introduction
	Materials and Methods
	System Model
	Network
	5G NR Duplex Pattern
	Problem [id=Second]FormulationFomulation

	Proposed Method
	Reinforcement Learning
	[id=First]Leniency Control Based Distributed MARL
	Binary Auto-Encoder Based Self-Supervised Temporal Hashing
	Details of Proposed Method


	Results
	Discussion
	Conclusions
	References

