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Abstract: To address the problem of automatically detecting and removing the mask without user
interaction, we present a GAN-based automatic approach for face de-occlusion, called Automatic
Mask Generation Network for Face De-occlusion Using Stacked Generative Adversarial Networks
(AFD-StackGAN). In this approach, we decompose the problem into two primary stages (i.e., Stage-
I Network and Stage-II Network) and employ a separate GAN in both stages. Stage-I Network
(Binary Mask Generation Network) automatically creates a binary mask for the masked region in
the input images (occluded images). Then, Stage-II Network (Face De-occlusion Network) removes
the mask object and synthesizes the damaged region with fine details while retaining the restored
face’s appearance and structural consistency. Furthermore, we create a paired synthetic face-occluded
dataset using the publicly available CelebA face images to train the proposed model. AFD-StackGAN
is evaluated using real-world test images gathered from the Internet. Our extensive experimental
results confirm the robustness and efficiency of the proposed model in removing complex mask
objects from facial images compared to the previous image manipulation approaches. Additionally,
we provide ablation studies for performance comparison between the user-defined mask and auto-
defined mask and demonstrate the benefits of refiner networks in the generation process.

Keywords: generative adversarial network (GAN); automatic mask removal; image restoration

1. Introduction

Face occlusion, a growing trend in recent years worldwide, is one of the leading
causes of computer vision problems, such as face recognition, identification, tracking,
detection, classification, face parsing, contour extraction, etc., which are challenging to
tackle. Faces play the most substantial role in describing human face characteristics, facial
identity, facial expression, and facial emotions. Thus, people used several methods, such
as wearing fancy masks, painting the face with makeup, or pasting a tattoo, to hide their
face characteristics, identity, expression, and emotions from the public, video surveillance
cameras, or face verification systems because content replacement by serious occlusion
with non-face objects always produces partial appearance and ambiguous representation.
Obtaining high-resolution and non-occluded face images from occluded face images is
essential but challenging for face analysis because faces usually contain few repetitive
structures. For successful face recognition systems (FRS) or guessing someone’s identity,
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removing the occulted object covering most of the face and correctly restoring the face’s
missing contents without destroying the existing data distribution is very important. The
performance of a face recognition system (FRS) model may often degrade in the presence
of unknown occlusions or disguises. Removing the mask object covering the human face’s
discriminative region and then correctly restoring the face’s missing contents might help
guess someone’s face secret identity.

Over the last several years, researchers have made significant progress in creating
image synthesis algorithms that turn an occluded face image into an occlusion-free face
image. They have achieved promising results for removing an object in an image; however,
they feature some unignorable defects associated with the affected regions, such as lack
of high-frequency and perceptual information in situations where they have to deal with
occlusion masks of large objects of complex nature, and have significant variations in
the structure, size, shape, type, and position in the face image. This is primarily because
these methods are trained where occlusion masks, including medical masks, sunglasses,
eyeglasses, microphones, scarves, cups, hands, and flowers, have less structure, size, shape,
type, position variations in the face image. Their algorithms also show severe deformations
and aliasing flaws in their results, especially for regions around the eyes. Such degraded
results severely affect many computer vision systems, such as recognition, identification,
tracking, detection, and classification.

The biggest motivation behind this research is to de-occlude the occluded parts of
an image while keeping the image smoothness unaffected, focusing on the facial area,
i.e., removal of the self-employed non-face objects/foreground occluding objects which
fill the hole left behind in facial images with visually plausible content. This involves
the automatic creation of varied binary masks for the occluded regions after detecting
them in the input images (occluded images) and then inpainting the holes left behind after
removing unwanted objects from images with plausible correct contents and fine detail.
Various occlusions regions are observed from actual face images. Thus, automatically, face
occlusions pose a challenging task because:

1. The result heavily depends on the accuracy of detection of the occluded region (i.e.,
failing to detect an occluded region properly may cause generation of poor binary
mask that severely affects de-occlusion task);

2. It is not easy to recover complex semantics of the face under the occluded region de-
tected due to significant variations in the occluded region (i.e., occluded objects/non-
face items have vast structures, sizes, colors, shapes, types, and positions variations in
the facial images);

3. Training data, i.e., facial image pairs with and without mask object datasets, are sparse
or non-existent.

The proposed model proposes an interaction-free approach (i.e., the proposed ap-
proach can perform face de-occlusion without requiring a manual occlusion mask) that
first generates the binary mask for the occluded region of random sizes, shapes, colors, and
structures after detecting it and then removes the non–face objects from the foreground of
the input occluded facial images while maintaining the face’s overall coherency.

An example result of GAN [1] based automatic mask generation network for face
de-occlusion using StackGAN (AFD-StackGAN) is shown in Figure 1. Following the well-
known “coarse-to-fine structure recovery method,” the proposed model’s Stage-I Network
(Binary Mask Generation Network) generates a binary mask for the masked region after
detecting the mask object in the input facial images. Then, Stage-II Network (Face De-
occlusion Network) removes the mask object and synthesizes the damaged region with
plausible content while retaining the global coherency of the face structure. Furthermore,
we trained the proposed model on a synthetically created facial images dataset. Since
there are no facial image pairings with or without mask objects, we have created a paired
synthetic dataset using the CelebA dataset. We assessed the proposed model on real-
world test images containing non-face items with vast structure, size, color, shape, type,
and position variations in the facial images gathered from the Internet. We compared
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the performance of the proposed model with previous face recovery methods. Several
experiments illustrate that the proposed AFD-StackGAN outperforms other previous face
recovery methods.

Figure 1. The proposed AFD-StackGAN results on real-world images.

The main contributions of an automatic mask removal network for face de-occlusion
are summarized as follows:

• This work proposes a novel GAN-based inpainting method by employing an automatic
mask generation network for face de-occlusion without human interaction. This work
automatically eliminates challenging mask objects from the face and synthesizes the
damaged area with fine details while holding the restored face’s appearance and
structural consistency;

• This work attempts to alleviate the manual mask selection burden by creating a
straightforward method that can intelligently and automatically generate the occluded
region’s binary mask in facial images;

• One potential application of an automatic mask generation network could be a video
where mask objects continuously conceal the face’s structural semantics;

• We experimentally show that the proposed model with an automatically generated
mask is more effective than those with manually generated masks for removing mask
objects and generating realistic semantics of face images.

The structure of this research work is as follows. Section 2 reviews the work related to
image editing. The proposed approach, as well as the loss function, is described in Section 3.
The proposed scheme’s implementation and training details are discussed in Section 4.
Results and comparison are argued in Section 5. Section 6 concludes the whole paper.

2. Related Works

This section will cover related work concisely in the context of object detection and
removal of objects in an image.
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2.1. Object Detection Methods

Object detection is the process of finding various objects in an image. Face occlusion
detection aims to detect the facial region occluded by other objects. The task of object
detection becomes even more complicated when their appearance is invisible to other
visible objects in the scene.

R-CNN [2], Fast R-CNN [3], Faster R-CNN [4], and Mask R-CNN [5] are convolution
neural network (CNN)-based [6] pioneer works that produce state-of-the-art results for
numerous object detection; however, they will require many training samples and a lot of
computing power. As a result, instead of employing costly approaches for automatically
detecting mask objects (non-face objects) in facial images, we use a simple segmentation
network that focuses on the mask object in facial images (occluded images).

A fully convolutional neural network (FCN) [7] is a pioneering end-to-end trained
network for image segmentation that uses a CNN-based auto-encoder setup. Several
variants of FCN, such as [8–10], have been proposed to make it more appropriate for image
segmentation tasks. Generally, all these approaches use a modified version of the classifica-
tion network (removing its fully connected layers and replacing them with a typical CNN
layer) as an encoder to produce a low-resolution image representation. De-convolution is
used for up-sampling to obtain the output size equal to the input image. However, they
use different approaches for mapping encoded representation into pixel-wise prediction. U-
shaped (U-Net) [11] is a CNN-based encoder-decoder with skip connections used between
mirrored layers in the encoder-decoder network architecture. The U-Net-based network is
widely used for fast and precise segmentation of images to have better visual and quality
results. U-Net’s encoder captures the context in the image using a series of convolution
with max-pooling layers, while the decoder up-samples the encoded information using
transposed convolution. Moreover, feature maps from the encoder are concatenated to
the feature maps of the decoder. The U-Net has vast applications, especially in medical
imaging, object detection, biometric recognition, and surveillance systems.

The Segmentor GAN (Se-GAN) [12] model detects the occluded objects in the same
image. The Se-GAN segmentor network takes an image and visible area as its input and
generates the mask of the whole object that has been occluded. The Se-GAN generator
generates the appearance for the object painting’s occluded area by painting the missing
pixels. The discriminator of Se-GAN discriminates the generator generated and the actual
image regions. Both Se-GAN networks are trained in an adversarial way to generate an
object image with invisible regions. Perceptual-GAN (P-GAN) [13] generates ultra-resolved
descriptions of small objects for better detection by decreasing the differences between
small and large objects. The P-GAN includes a generator that transforms the small objects’
sparse representations to highly super-resolved images that are sufficiently like actual
large objects and a perceptual discriminator that differentiates the generator-generated
super-resolved representations of small objects from the real through an adversarial loss.
In addition to this, the discriminator network boosts the detection performance through an
additional perceptual loss.

Similarly, Multi-Task GAN (MT-GAN) [14] used an SRN (super-resolution network) to
up-scale the small-scale distorted image into the large-scale clear image for better detection.
It consists of a super-resolution network and a multitask network. MT-GAN’s super-
resolution network works as a generator, which up-scales the small-scale distorted image
into a large-scale clear image. MT-GAN’s multitask network works as a discriminator
to discriminate the real higher-resolution images from those generated, predict object
categories scores, and further improve the bounding boxes at once. The GAN-based
Detection of Objects (GAN-DO) [15] method recently learned an adversarial objective for
object detection through training. GAN-DO takes a low-quality image as input for accurate
object detection, in contrast with previous methods that take a high-quality image as input.
The discriminator learns to differentiate between the output of higher-quality original data
from the pre-trained baseline model and the generator’s different-quality output. The
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generator learns to outsmart the discriminator. The discriminator classifies the generator
output of the augmented data as the output of the original data by the baseline model.

Hence, instead of using these expensive algorithms to detect non-face objects in facial
images automatically, we employ a simple encoder-decoder network architecture focusing
on mask objects. The encoder-decoder network architecture has three convolution layers for
the encoder part and three convolutions (transpose convolution) layers for the decoder part.

2.2. Object Removal Methods

Another essential application related to this work is object removal, in which the user
removes the non-face object from an image and reconstructs the image by filling in the hole
left behind with appropriate contents and adequate details so that the reconstructed image
looks real. Image editing/inpainting is a common way of performing this task.

Non-learning-based object removal methods [16–19] erase mask objects from an image
and inpaint the affected region by propagating matching pixels from the neighboring areas
using an iterative search approach. Criminisi et al. [16] introduced an exemplar-based
texture synthesis technique, a unified methodology for generating plausible texture in a
specified region. However, it cannot produce good results for synthesizing areas where
matching patches are not present in the image. Wang et al. [17] utilized a modified sum of
squared differences and normalized cross-correlation to find the most appropriate patch.
Artifacts are generated at the borders of removed items, even though they properly remove
the object in essential scenarios. Hays and Efros [18] search through millions of scene
images for the most similar information to the input sample, then copy and paste that infor-
mation into the missing pixels in the input sample. These non-learning procedures provide
better results, but they rely greatly on the supplied image data. Park et al. [19] eliminate
eyeglasses from face images by adjusting the patch priority function in determining the
filling order using a regularized factor. Their technique effectively eliminates tiny objects
such as eyeglasses, but it fails to create realistic content for removing massive objects from
face images. Object removal techniques generally produce good results for small items
with fixed locations, but they fail for massive objects with arbitrary locations.

Learning-based image editing approaches [20–29] outperform non-learning-based
object removal methods quantitatively and qualitatively. There has been a significant
amount of learning-based image editing work using the generative adversarial network
that has been proposed. For example, Li et al. [20] suggested a GAN-based face completion
method (GFCM). Compared to other approaches, this generative face completion method
(GFCM) contains an extra global discriminator that verifies the realism of a produced
face image and maintains the consistency of the whole face image. Although the GFCM
can produce semantically acceptable results, it has a few flaws, such as the need for an
image amalgamation operation to apply color coherency near the hole borders, and the
reconstructed face image has some artifacts, mainly when the covered parts are near the
image’s borders.

Iizuka et al. [21] suggested a globally and locally consistent image completion (GLCIC)
method to complete a missing area in an image of any size. However, it has a lot of noise
and artifacts in the recovered region, especially when there are holes towards the edges.
GLCIC employs two discriminators combined with post-processing to make the produced
component locally and globally consistent with the remainder of the image. GLCIC fills
the image for random affected regions in face images. However, it is restricted to low
resolutions (178 × 216), and it produces artifacts when the damaged area is towards the
image’s edges.

Yeh et al. [22] presented a semantic image completion approach based on a CGAN [23]
on the known region to create the best uncorrupted image. Our technique determines the
closest encoding and fills in the missing pixels by considering the context discriminator and
the damaged image. The covered region has been effectively recovered, and the missing
material has been well generated using this approach. The effects generated in the case of
large missing regions are unreliable. Liao et al. [24] proposed a GAN-based collaborative
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adversarial learning method called Collaborative GAN (CollaGAN) for face recovery.
This CollaGAN shows that a collaborative adversarial learning technique promotes direct
face completion learning for improved semantic comprehension and, in turn, better face
inpainting. The proposed CollaGAN model seeks to develop the face completion problem
(e.g., landmark detection and semantic segmentation).

Yu et al. [25] offered a new GAN-based two-stage network for generative image
in-painting that includes unique contextual attention (CA) layer that copies comparable
feature patches from adjacent related visible regions to the missing regions. Although the
entire network may be trained end-to-end, the copy–paste method may result in unwanted
artifacts in the recovered portions. Song et al. [26] introduced the Geometry Aware Face
Completion (GAFC) model, a two-stage network that performs a face completion job. A
facial geometry estimator calculates the facial geometry of the face in the first phase. An
encoder-decoder generator completes the face utilizing the facial geometry information
in the second phase. Although the model outperformed many other face completion
approaches, they come at a high computational cost due to the model’s prior knowledge of
network extraction.

Nazeri et al. [27] presented a GAN-based Edge-Connect technique (EC) to recover the
image after removing the unwanted objects. EC breaks the problem into two stages: edge
generator and image completion. The image completion network completes the empty
sections using hallucinated edges after the edge generator hallucinates the edges of the
missing part. EC was able to restore the missing regions and achieve superior results.
However, it cannot provide a realistic edge map in the event of large missing sections.

Din et al. [28] developed a GAN-based two-stage framework (MRGAN) to remove
the medical face mask and reconstruct the mask-covered region. The first step detects
the masks, and the reconstructed face is obtained in the second. The experimental results
outperformed other image editing methods. This method, on the other hand, is complex
and time-consuming. This approach also does not work well with various items (occluded
face objects). Khan et al. [29] proposed a GAN-based use of a two-stage network for
microphone removal. It produces plausible results when eliminating small objects, but
unnatural results for big complex missing areas.

3. Our Approach

The general architecture of the proposed AFD-StackGAN is shown in Figure 2. Stage-I
Network and Stage-II Network are the two major networks. The following sections consider
each network in detail. Our task is to generate the binary mask simultaneously and remove
the non-face object from the occluded image. Implementing this as an end-to-end model,
we propose a two-stage approach to address this task. Each stage focuses on one aspect:
Stage-I generates a binary mask, and Stage-II removes the mask object from the input
facial image.

3.1. Stage-I Network: Binary Mask Generation Network

Stage-I Network (Binary Mask Generation Network) generates a binary mask after
detecting the mask object in the input occluded facial image. The generator G1 at Stage-I
(Binary Mask Generation Network) takes the input image lc (occluded image) and generates
a binary mask lpre_mask.
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Figure 2. The architecture of the automatic mask removal network for face de-occlusion. It consists
of Stage-I Network that generates a binary mask and Stage-II Network that removes the mask object
from input facial images.

Generator G1. The encoder of the generator G1 takes the facial image lc as input and
maps it to a low-dimensional latent representation (bottleneck layer). The decoder then
maps back to a low-dimensional latent representation (bottleneck layer) to generate a binary
mask lpre_mask of the size of the input facial image. The architecture we design has three
convolution layers for the encoder part and three convolutions (transpose convolution)
layers for the decoder part, as shown in Figure 2. Each convolution layer is used in the
form of a relu + a convolution + a normalization layer, except the first and last layers, which
use a tanh in place of a relu. The decoder of G1 is similar to the encoder, except that de-
convolution layers substitute convolution layers. De-convolution layers are used in the
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decoder, gradually up-sampling latent representation to image scale. The decoder uses
tanh activation without the normalization layer in the last layer.

Loss Function. Ll1 loss is used to train Stage-I Network. The Ll1 loss calculates the
pixel-wise difference between a predicted binary mask lpre_mask and target binary mask
Igt_mask. Ll1 loss is used to match the details of lpre_mask with Igt_mask. The Ll1 loss between
lpre_mask and Igt_mask is expressed such as:

Ll1 =
∣∣∣∣∣∣lpre_mask − Igt_mask

∣∣∣∣∣∣ (1)

where, Ll1 loss is defined as the pixel-wise difference between a predicted binary mask
lpre_mask and target binary mask lgt_mask.

Binary masks lpre_mask generated by G1 are rough and have noise at some locations. To
obtain a clean binary mask lm, we utilized additional erosion and dilation morphological
image processing techniques as a mask refiner network. Erosion removes salt noise from
the generated mask lpre_mask and dilution fills in the holes in the generated binary mask.

3.2. Stage-II Network: Face De-Occlusion Network

Stage-II Network (Face De-occlusion Network) aims to remove the occlusion mask
from facial images and complete the region left behind with plausible content and fine
details. Stage-II consists of a pair of generator and discriminator networks: G2 + D2, and
G3+D3. The generator G2 takes the input occluded image Ic, along with the binary mask
Im, as a combined input and generates an occlusion-free image Ii

o. The generator G3 takes
the input image Ic, binary mask Im, and Ii

o (generator G2 output) as a combined input
and generates an occlusion-free final image I f

i . The two discriminators D2 and D3, force
generators G2 and G3 to produce visually plausible and naturalistic looking images by
determining the Ii

o (generator G2 output) and I f
i (generator G3 output) as a real or fake face.

The following sections consider each network in detail.
Generator G2. Generator G2 at Stage-II uses CNN-based encoding-decoding architec-

ture. This encoder-decoder uses the idea of U-Net [11] with skip connections to prevent
the loss of spatial information details at higher resolutions during the down-sampling
and up-sampling functions of the encoder and decoder. The encoder takes the image Io
as a concatenated input of occluded image Ic (Stage-I input) and refine the binary mask
Im (Stage-I output) and maps it to a low-dimensional latent representation. The decoder
then maps back the low-dimensional latent representation, reconstructs and generates the
initial coarse output facial image Ii

o. The encoder of G2 is composed of five convolution
layers (for simplicity, only three layers of the encoder are shown in Figure 2) progressively
down-sampling the latent representation. Each convolution layer is used in the form of a
relu + a convolution + an instance normalization layer, except the first and last layers, which
use a tanh in place of a relu.

The decoder of G2 is similar to the encoder, except that de-convolution layers substitute
convolution layers. De-convolution layers are used in the decoder, gradually up-sampling
the latent representation to image scale. A combination of dilated convolution (DC) [30]
and Squeeze-and-Excitation (SE) blocks [31], as shown in Figure 2, is used in the middle
of the encoder-decoder. DC is used to enhance the receptive field size without increasing
the computational power and network parameters, making the recovered area under the
occlusion mask convolutional network (FCN), which enhances a network’s representative
power by learning the weights for more consistent with its surroundings. SE block is an
addition to each feature map channel fully. SE-blocks recalibrate feature maps in the context
of the channel.

Discriminator D2. A PatchGAN discriminator D2—which only penalizes structure at
the scale of patches [32] and is used instead of regular GAN discriminators [1] to focus on
reconstructing high-frequency content. Discriminator D2 tries to decide if each patch of
size 32 × 32 in an image Ii

o (de-occluded image) is real or fake. We run D2 convolutionally
across the image Ii

o, averaging all responses to provide the ultimate output of D2
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Loss Function. To minimize the artifacts and ensure better visual quality, a careful
arrangement (amalgam) of re-construction Lrc, perceptual Lper And adversarial loss Ladv
(i.e., we unite re-construction loss, perceptual loss, and adversarial loss for each stage of
Stage-II Network), is used to produce realistic and perceptually correct missing content
occlusion-free face image. The joint loss function used to train the Stage-II Network (Face
De-occlusion Network) is defined as:

Ljoint = αLrc + βLper + Ladv (2)

where α and β are constants to adjust the weights of re-construction loss and perceptual
loss, respectively.

The re-construction loss composes of pixel-wise re-construction loss Ll1 and structure-
level similarity loss LSSIM. The re-construction loss can be written as:

Lrc = Ll1 + LSSIM (3)

The pixel-wise re-construction loss Ll1 measure the per-pixel difference between
generated occlusion-free face image Ii

o and ground-truth Igt. We calculate the pixel-wise re-
construction loss via l1-norm in place of l2-norm because l1-norm encourages less blurring
and glaring errors than l2-norm. The pixel-wise re-construction loss Ll1 can be defined as

Ll1 =
∣∣∣∣∣∣I〉o − Igt

∣∣∣∣∣∣ (4)

where || . || is the l1-norm and I〉o = G2(Io) is the output image of the generator (G2), i.e., face
image without occlusion.

The structure-level similarity loss LSSIM [33], which measures the structure-level
difference between generated occlusion-free face image Ii

o and ground-truth Igt, can be
defined as:

LSSIM = 1− SSIM
(

I〉o , Igt

)
(5)

The perceptual loss Lper which boosts the generator’s output to have identical rep-
resentation to the ground truth measures the feature-level difference between the feature
maps of the generated occlusion-free face image Ii

o and ground truth Igt, extracted by a
VGG-19 network [34], which is pre-trained on ImageNet [35]. Let ϕ〉 be the activation map
of the 〉th layer of the VGG-19 network, then the feature matching loss is defined as:

Lp = Σ
∣∣∣∣∣∣ϕ〉(I〉o

)
− ϕ〉(Igt )

∣∣∣∣∣∣ (6)

We exploit the intermediate convolution layer feature maps (conv_3, conv_4 and
conv_5) of the VGG-19 network to obtain rich structural information, which helps in
recovering a plausible structure for the face semantics.

In addition to re-construction loss Lrc, and perceptual loss Lper, the adversarial loss

Ladv, used to render the repaired image I〉o as real as possible and generate realistic results,
can be expressed in Equation (7).

Ladv =
min
G2

max
D2

E[log(D2

(
I〉o , Igt ))] + [log(1− D2(G2 (Io)))] (7)

where Igt represents the real sample (ground-truth), I〉o represents the initially generated
de-occluded image, Io is the concatenated input for G2, E represents the expectation, and
Ladv represents the adversarial loss at the base network. The log

(
D2

(
I〉o , Igt

))
is the loss

function for D2 and log(1− D2(G2 (Io))) is the loss function for G2.
Generator G3. Generator G3 at Stage-II is quite similar to the generator G2. We propose

G3 to bring the initial result Ii
o (G2 result) closer to the ground truth by rectifying what is
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missing or wrong in the initial result. To achieve this, we feed Ic and Im (G2 inputs) again
with Ii

o (G2 output) as a concatenated input I f
0 into G3, which generates the final result

I f
i with more photorealistic details in the recovered area. We feed Io and Im (G2 inputs)

again to enforce edge consistency at the affected region boundary, further increasing the
generated face image’s visual quality.

Discriminator D3. A Patch-GAN discriminator D3 at Stage-II shares the identical
architecture as D2. Discriminator D3 tries to classify if each patch of size 32× 32 in an image
I f
i (final de-occluded image) is real or fake. We run this discriminator D3 convolutionally

across the image I f
i , averaging all responses to provide the ultimate output of D3.

Loss Function. Note: We incorporate the same re-construction loss Lrc, and perceptual
loss Lper to produce a final de-occluded image. Thus, we do not mention them separately.

The adversarial loss Ladv is used to make the repaired image I f
i as real as possible and

generated realistic results, which can be expressed in Equation (8).

Ladv =
min
G3

max
D3

E[log(D2

(
I f
〉 , Igt ))] + [log(1− D3(G3

(
I f
0

)
))] (8)

where Igt represents the real sample (ground-truth), I f
i represents the finally generated

de-occluded image, I f
0 is the concatenated input for G3, E represents the expectation, and

Ladv represents the adversarial loss at the refiner network. The log
(

D3

(
I f
i , Igt

))
is the

loss function for D3 and log
(

1− D3

(
G3

(
I f
0

)))
is the loss function for G3.

3.3. Total Loss Function

The total loss function used to train the whole module is a weighted sum of Ll1
(Equation (1)) and Ljoint (Equation (2)), defined as:

Ltotal =Ll1 + αLrc + βLper + Ladv (9)

where α and β are the constants for altering the weights of reconstruction and perceptual
loss. For the first part of Stage-II (G2 + D2), we used α = 100 and β = 33 to capture better
structure, and for the second part of Stage-II (G3 + D3), we used α = 10 and β = 3.3 for
yielding natural-looking results.

4. Experiments

In this section, firstly, we describe the training and implementation details of the
proposed approach. Afterward, we introduce the competing baseline models. Finally, this
section explains the synthetic dataset creation used for training and the real-world dataset
used for evaluation.

4.1. Training and Implementation Details

For training of Stage-I Network, we input facial images Ic into mask generation
network, which generates a binary mask Ipre_mask close to the target binary mask Igt_mask.
Ipre_mask is then fed into a mask object refiner network and generates a final binary mask
Im. For training of Stage-II Network, we input facial images Ic (input of Stage-I) and
binary mask, Im (output of Stage-I), and generate an occlusion-free facial image Ii

o. Then, Ii
o

(Initially generated de-occluded image), Ic (input of Stage-I), and binary mask, Im (output
of Stage-I), are fed into an image refiner network (G3) that produces a final occlusion-free
facial image I f

i .
TensorFlow [36] is used to implement the proposed model and is trained with Nvidia

GTX 1080Ti GPU. We trained the proposed model with batch size 10 and utilized Adam [37].
The model was trained for 1000 iterations. We used TTUR [38] for training. The learning
rate of 0.0001 for the generator and 0.0004 for the discriminator in both stages were em-
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ployed. GAN training becomes more stable using different learning rates for generator and
discriminator updates.

4.2. Competing Methods

After reviewing various related approaches in Section 2, GLCIC (Iizuka et al. [21]),
GCA (Yu et al. [25]), EdgeConnect (Nazeri et al. [27]), and MRGAN (Din et al. [28]) are
the closest approaches to our work. MRGAN is a GAN-based two-stage framework
for removing amedical face mask and reconstructing the mask-covered region. While
impressive results were produced in removing medical masks, their network is incapable
of automatically detecting and removing multiple types of complex objects. In contrast, the
proposed model (AFD-StackGAN) can automatically detect and remove multiple complex
objects of various sizes, shapes, colors, and structures. EdgeConnect also uses a two-stage
adversarial approach in which it generates the guidance information in the first stage
and edits the image in the second stage. It successfully recovers the image based on
hallucinated edge information from an edge generator network. Unlike EdgeConnect,
the proposed model generates a binary mask of the non-face object (i.e., masked region)
while EdgeConnect generates the edge map of the complete image. Moreover, it uses a
GAN setup with one discriminator in both stages while the proposed model employs two
separate discriminators in both stages with two separate generators, which uses CNN-
based encoding-decoding network architecture with Skip-connection, which is used in the
generator network to strengthen the predictive ability of the generator and to prevent the
gradient vanishing caused by the deep network. The result shows that the image completed
by the encoder-decoder network architecture with Skip-connection is more realistic.

In contrast, GLCIC and GCA train both discriminators jointly at the same time along
with one generator to learn global consistency and deep missing region with a post-
processing step such as poison image blending, while we train both discriminators along
with two separate generators and our work does not use any supplementary processing or
post-processing step. GLCIC and GCA models have noticeable artifacts and blurriness in
the generated regions since these models predict the missing regions from only high-level
features. Different from GLCIC and GCA, the proposed model predicts the missing regions
from both low-level and high-level features (pixel-wise loss (l1) for low-level features and
Structural Similarity loss (SSIM) for high-level features). These schemes are not suitable
for our problem because they cannot overcome the complexity of the task and produce
artifacts due to large missing regions of arbitrary shape.

4.3. Datasets
4.3.1. Synthetic Generated Dataset

For supervised training of our model, no publicly accessible dataset comprises face
image pairings with or without mask objects. We have created a synthetic dataset using
the publicly available CelebA Face dataset [39]. With more than 200k celebrity images,
CelebA is a vast face attribute collection. To create synthetic samples, we randomly place
mask objects of various sizes, shapes, colors, and structures in the images using Adobe
Photoshop CC 2018, as shown in row two of Figure 3. Then, we create the binary masks of
the corresponding mask objects, as shown in row three. All input images and masks in our
synthetic dataset have a resolution of 256 × 256. Figure 3 shows some sample images of
our synthetic dataset. Further descriptions of our synthetic dataset are given in Table 1.
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Figure 3. Some images of our synthetic dataset.

Table 1. A summary of dataset feature description used in experiments.

Synthetic Generated Dataset Feature Description

Total Number of Samples 20,000

Number of Training Samples 18,000

Number of Testing Samples 2000

No. of Classes 50

Samples Per Class 400

Number of Training Samples 18,000
Note: In the above table, number of classes indicates how many mask objects (non-face objects) varied in sizes,
shapes, structures, and positions are used in the synthetic generated dataset, and samples per class indicates on
how many images (faces) a specific mask object is applied.

4.3.2. Real-World Generated Dataset

A dataset of occluded facial images downloaded from the Internet was formed to
demonstrate the proposed method’s effectiveness on real-world data. While creating these
occluded facial images dataset, we took all possible care to ensure that the images collected
from the Internet were diverse in sizes, shapes, structures, and positions regarding the
occlusion masks. Additionally, the binary mask of the corresponding occluded region for
real-world data using Adobe Photoshop 2018 was developed, since manually generated
binary masks for the occluded region are provided with input occluded facial images at
training and inference stages. This dataset is used for evaluation (test) purposes only. Each
image in real-world data has a resolution of 256 × 256.

4.4. Performance Evaluation Metrics

Although the GAN-based models have achieved great success in numerous computer
vision applications, it is still difficult to evaluate which methods are better than other
methods because there is no standard defined function for quantitative evaluation, which
hurts the GAN performance. Nevertheless, to quantitatively and objectively analyze the
accuracy or effectiveness of the proposed system, various numerical evaluation metrics are
chosen, such as Structural Similarity (SSIM) [33], which guesses the all-inclusive similarity
between the reconstructed and the target face images, Peak Signal-to-Noise Ratio (PSNR)
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is one of the most widely used full-reference quality metrics that measure the difference
in pixel values between the reconstructed and the target face images, Mean Square Error
(MSE) calculates the average squared difference between the reconstructed and the target
face images, Naturalness Image Quality Evaluator (NIQE) [40], which measures the quality
of image, and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [41], which
calculates naturalness of image.

Greater PSNR and SSIM values mean closer distances between synthetic data and
real data distributions (i.e., greater PSNR and SSIM values show good performance of the
generative model). In comparison, lower PSNR and SSIM values indicate greater distances
between synthetic data and real data distributions (i.e., lower PSNR and SSIM values show
the generative model’s bad performance). Lower MSE, NIQE, and BRISQUE values mean
closer distances between synthetic data and real data distributions (i.e., lower MSE, NIQE,
and BRISQUE values show good performance of the generative model). In comparison,
higher MSE, NIQE, and BRISQUE values mean greater distances between synthetic data
and real data distributions (i.e., higher MSE, NIQE, and BRISQUE values show the poor
performance of the generative model).

5. Results and Comparisons

We designed an automatic mask generation network for face de-occlusion to remove
mask objects. This automatic mask generation network automatically detects mask objects,
generates binary masks, and then removes the masks objects. This section covers the results
of Stage-I Network, Stage-II Network. We also discuss and compare the qualitative and
quantitative performance of the proposed model with baseline models.

5.1. Results of Stage-I Network

Figure 4 shows the results of the Stage-I Network on real-world images. The first
row contains input images with mask objects. The mask generation network successfully
generated binary masks, as listed in the second row. The third row displays the results
of the mask refiner network, which improves the results by rectifying what is wrong or
missing in the mask generator network results. Finally, these masks are used as input to
Stage-II Network.

Figure 4. The results of Stage-I Network on real-world images.
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5.2. Results of Stage-II Network

Figure 5 shows the results of Stage-II Network on real-world images. The first row
contains input images, the second row features corresponding binary masks generated
by the mask generation network, the third row contains refined mask refined by the
mask refiner network, and the last two rows show the output of Stage-II Network (Face
De-occlusion Network). It can be seen that the proposed Face De-occlusion Network
successfully generates correct face semantic structure and texture without any interaction.
Therefore, this fully automatic approach can be used for practical implementation, such as
live video.

Figure 5. The results of AFD-StackGAN (Stage-I Network + Stage-II Network) on real-world images.
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5.3. Qualitative Comparisons

The sample quality is primarily evaluated based on the visual fidelity generated
by the GAN-based frameworks in the absence of a consistent and robust assessment
method. Figure 6 shows the results of the proposed AFD-StackGAN and the baseline
models (Iizuka et al. [21], Yu et al. [25], Nazeri et al. [27], and Din et al. [28]) on real-world
images. We showed the input facial images and the output occlusion-free facial images
in the qualitative experiments’ test set. For this, we give the qualitative results of the
proposed AFD-StackGAN and baseline models. It can be seen in Figure 6 that the results of
the proposed AFD-StackGAN are smoother and more realistic than the baselines models’
generated results for real data. Quantitative results show that the proposed AFD-StackGAN
can handle occluded facial images under challenging conditions, e.g., complex occlusions
with variations in size, structure, type, shape, and position in the facial image.

• Hard Examples. Although the proposed AFD-StackGAN can handle the removal
of occlusion masks of various shapes, sizes, colors, and structures, even on images
not used to train the network, there are some examples, as shown in Figure 7, AFD-
StackGAN fails to remove the occlusion masks altogether. Common failure cases occur
when the Stage-I Network (Binary Mask Generation Network) cannot produce a good
binary mask of the mask object, as shown in the first row of Figure 7, failing to detect
them correctly. This happened when occlusion masks were different from those in our
synthetic dataset in shape, position, and structure, as they mainly cover the regions
around both eyes. As seen in the first row of Figure 7, the mask objects’ shapes, colors,
positions, and structures are different from the mask types we used in our synthetic
dataset. Moreover, the proposed model was trained using images from the CelebA
dataset, and the CelebA data set images are roughly cropped and aligned, while the
other dataset image (e.g., real-world images) are not processed in this manner, as
shown in the first row of Figure 7. Our model cannot handle unaligned faces well
and fails to generate missing regions of the images with unaligned faces. As expected,
AFD-StackGAN produces worse results overall, as seen in the third row.

5.4. Quantitative Comparisons

To quantitatively compare the performance between the proposed model and the
baseline models, we use the following five performance evaluation metrics: (1) SSIM, (2)
PSNR, (3) MSE, (4) NIQE, and BRISQUE (as explained in Section 4.4). The quantitative
score via SSIM, PSNR, and MSE is evaluated using the synthetic test dataset results because
no ground truth exists for real occluded face images since they were downloaded from the
Internet, while the quantitative score via NIQE and BRISQE is evaluated using the results
from the real test samples. For MSE, NIQE, and BRISQUE, smaller values indicate superior
efficiency, while for PSNR and SSIM, the higher, the better. The quantitative scores in terms
of SSIM, PSNR, MSE, NIQE, and BRISQUE of proposed AFD-StackGAN and baseline mod-
els are shown in Table 2. Table 2 shows the averaged test scores obtained from individual
test images. It has been observed that AFD-StackGAN generates semantically consistent
and visually plausible face images without occlusion masks, which can help improve
the performance of many computer vision algorithms for face identification/recognition
purposes in future studies.
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Figure 6. Visual assessment of the proposed AFD-StackGAN with the baseline models on real-world
images.

Figure 7. AFD-StackGAN performance for real face images with occlusion masks that have very
different structures and locations in the face images than the occlusion masks used in the synthetic
dataset. The first row shows occluded input facial images, and the second row shows de-occluded
output face images.
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Table 2. Performance comparison of different methods in terms of SSIM, MSE, PSNR, NIQE, and
BRISQUE. For PSNR and SSIM, higher values show superior performance, while for BRISQUE and
NIQE, the lower, the better.

Methods SSIM ↑ PSNR ↑ MSE ↓ NIQE ↓ BRISQUE ↓
Iizuka et al. [21] 0.763 21.953 2329.062 4.754 34.106

Yu et al. [25] 0.797 15.469 2316.839 4.951 32.761
Nazeri et. [27] 0.561 15.848 2450.889 16.991 36.426
Din et al. [28] 0.850 16.209 2223. 938 5.721 31.016

AFD-StackGAN 0.978 33.201 32.435 4.902 39.872

5.5. Ablation Studies

This section presents the ablation studies to understand the usefulness of using an
automatically generated mask than a manually generated mask and the role of using the
refiner networks in both stages.

5.5.1. Performance Comparison between Using User-Defined Mask and
Auto-Defined Mask

To evaluate the effectiveness of the proposed method, we compared the performance
between directly using the user-defined manually generated binary mask and automatically
generated binary mask. The first column in Figure 8 contains the input images. The second
column in Figure 8 is the editing result by using a user-defined manually generated binary
mask. The third column represents the editing results obtained using an automatically
generated binary mask. We can see that the editing result by using an automatically
generated binary mask is better than using a user-defined manually generated binary mask.
Table 3 shows the quantitative scores of the proposed method with a user-defined mask
and auto-defined mask

Figure 8. Visual comparison of the automatic mask removal network (used auto-generated mask)
with FD-StackGAN (used user-defined mask).
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Table 3. Performance comparison between using user-defined mask and auto-defined mask in SSIM,
PSNR, MSE, NIQE, and BRISQUE.

Methods SSIM ↑ PSNR ↑ MSE ↓ NIQE ↓ BRISQUE ↓
User-Defined Mask 0.981 32.803 34.145 4.499 42.504
Auto-Defined Mask 0.978 33.201 32.435 4.902 39.872

Note that the editing result using the user-defined manually generated binary mask is
obtained by only running Stage-II Network without Stage-I Network. The user-defined
manually generated binary mask inputs Stage-II Network and the input image.

5.5.2. Role of Refiner Networks

We performed the ablation study to show the effectiveness of refiner networks in the
proposed multi-stage approach. For this, we drew a qualitative comparison by training
the proposed model with a refiner network and without a refiner network. As shown in
Figure 9, each stage of the proposed model trained with the refiner network can generate
more photorealistic results with minimum-deformation artifact-free images than the results
of each stage of the proposed model trained without the refiner network.

Figure 9. Results of image refiner network on real-world images further improve the results by
rectifying what is missing or wrong in the mask base network results.

In the first stage of our model, the mask generation network generates a binary mask
automatically. The mask generation network-generated results (i.e., binary mask) have
some noise at some locations (red circles are used to specify the locations of some noise
artifacts). The refiner network removes the noise in the mask generation network-generated
results (blue circles specify the areas and locations of some refinement corrections). Stage-I
Network can generate a more noise-free binary mask with the help of a refiner network.

In the second stage of our model, the face de-occluded network removes the mask ob-
ject and completes the area left behind with plausible content and fine details. The initially
generated results are generally blurry with missing details and several defects, especially
for masked areas (red circles are used to specify the locations of some undesired artifacts).
The refiner network corrects what is missing or wrong in the initially generated results
(blue circles are used to specify the areas and locations of some refinement corrections)
and generated results that contain more photorealistic details with minimum undesired
artifacts. Stage-II Network can generate more natural-looking images with the help of a
refiner network.
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6. Conclusions

This work proposed a two-stage GAN-based model that successfully recovers the
de-occluded facial image after automatically generating the mask of the non-face object in
the occluded input facial image. Previous approaches cannot resolve well issues related
to removing numerous mask objects covering large discriminative regions of the person’s
face. In contrast, the proposed model can successfully remove the numerous types of mask
objects of large complex nature in the facial images, covering most of the person’s face by
creating semantically applicable and visually plausible content for the missing regions. The
performance on real world data is quite satisfactory although we train our network using
the synthetic dataset only. We analyze the proposed model performance quantitatively and
qualitatively and show that the proposed model can produce structurally consistent results
of higher perceptual quality. The proposed model is quite flexible to handle vast missing
regions or covered regions that vary in structures, sizes, colors, and shapes.

Since AFD-StackGAN is trained on a synthetic dataset, there could be a domain
discrepancy between real-world test facial images and synthetic training facial images. To
manage this issue, domain adaptation would be required to reduce the domain distance
between real images and synthetic ones, potentially solving the problem. We have planned
to work in this domain to settle this issue in the future.
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Abbreviations

GAN Generative Adversarial Network
CNN Convolutional Neural Network
FCN Fully Convolutional Network
SE Squeeze and Excitation block
DC Dilated Convolution
TTUR Two Time-scale Update Rules
Notations
lc Occluded image
lgt Ground truth image
lpre_mask Generated binary mask
lm Noise-free binary mask
lc Concatenated input of occluded image lc and generated binary mask lpre_mask
Ii
o Initially generated de-occluded facial image

I f
o Concatenated input of occluded image lc, generated binary mask lpre_mask and

initially generated de− occluded facial image Ii
o

I f
i Finally generated de-occluded facial image
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